
Accepted refereed manuscript of:

Soria-Alcaraz JA, Ochoa G, Sotelo-Figeroa M & Burke EK (2017) A

methodology for determining an effective subset of heuristics in selection

hyper-heuristics, European Journal of Operational Research, 260 (3), pp. 972-

983.

DOI: 10.1016/j.ejor.2017.01.042

© 2017, Elsevier. Licensed under the Creative Commons Attribution-

NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Stirling Online Research Repository

https://core.ac.uk/display/77612297?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.ejor.2017.01.042
http://creativecommons.org/licenses/by-nc-nd/4.0/

A methodology for determining an effective subset of heuristics in selection
hyper-heuristics

Jorge A. Soria-Alcaraza,∗, Gabriela Ochoab,, Marco A. Sotelo-Figeroaa, Edmund K. Burke1,

aUniversidad de Guanajuato, Guanajuato, Mexico
bUniversity of Stirling, Stirling, Scotland, UK

cQueen Mary University of London, London, UK

Abstract

We address the important step of determining an effective subset of heuristics in selection hyper-heuristics. Little
attention has been devoted to this in the literature, and the decision is left at the discretion of the investigator. The
performance of a hyper-heuristic depends on the quality and size of the heuristic pool. Using more than one heuristic
is generally advantageous, however, an unnecessary large pool can decrease the performance of adaptive approaches.
Our goal is to bring methodological rigour to this step. The proposed methodology uses non-parametric statistics
and fitness landscape measurements from an available set of heuristics and benchmark instances, in order to produce
a compact subset of effective heuristics for the underlying problem. We also propose a new iterated local search
hyper-heuristic using multi-armed bandits coupled with a change detection mechanism. The methodology is tested
on two real-world optimisation problems: course timetabling and vehicle routing. The proposed hyper-heuristic with
a compact heuristic pool, outperforms state-of-the-art hyper-heuristics and competes with problem-specific methods
in course timetabling, even producing new best-known solutions in 5 out of the 24 studied instances.

Keywords: Metaheuristics, Hyper-heuristics, Adaptive Search, Combinatorial optimisation, Iterated Local Search

1. Introduction

Selection hyper-heuristics are search methodologies that operate at a high-level to coordinate a pool of low-level
heuristics to solve optimisation problems [6, 7]. The objective is to apply the most effective low-level heuristic at
each subsequent stage in order to solve a given problem instance. The result is an automated methodology producing
a sequence of heuristics to improve or construct a solution. Hyper-heuristics raise the level of generality at witch
optimisation systems can operate [6]. Low-level heuristics usually represent simple local search neighbourhoods
(move operators) or abstractions of the rules used by human experts for constructing solutions (constructive heuristics).

The performance of a hyper-heuristic clearly depends on the quality of the pool of low-level heuristics selected
[33] . Usually, the human expert, based on previous knowledge, chooses the composition and size of this pool with
little if any methodological guidance. Hyper and meta heuristics research over the years, clearly indicates that having
more than one operator or heuristic benefits the search process. However, an unnecessary large pool has been found
to have a detrimental effect of adaptive approaches, given the overhead in time and memory required to record their
performance history [43, 9]. There is a need for informed approaches to identify the most appropriate set of low-level
heuristics in hyper-heuristic research and practice [33].

The main contribution of this work is precisely an empirical methodology for determining the most effective
subset of low-level heuristics from a given larger set. Determining a subset requires both determining its size and
composition. We also propose an efficient adaptive hyper-heuristic variant, which extends and improves our previously
proposed learning hyper-heuristic [43]. The contributions of the paper are the following:

∗corresponding author
Email addresses: jorge.soria@ugto.mx (Jorge A. Soria-Alcaraz), goc@cs.stir.ac.uk (Gabriela Ochoa), masotelof@ugto.mx

(Marco A. Sotelo-Figeroa), e.burke@qmul.ac.uk (Edmund K. Burke)

Preprint submitted to Elsevier January 26, 2017

1. An empirical methodology for determining the most effective subset of low-level heuristics, using fitness land-
scape probing techniques and non-parametric statistical tests.

2. A new variant of iterated local search hyper-heuristics using multi-armed bandits coupled with a change detec-
tion mechanisms for adaptively selecting low-level heuristics.

3. Empirical evidence supporting the effectiveness of the proposed methodology on two real-world scheduling
problem, namely, educational course timetabling and vehicle routing.

The next Section overviews relevant background and related work in selection hyper-heuristics. Section 3 dis-
cusses the proposed methodology for selecting the most effective subset of heuristics. Section 4 describes the hyper-
heuristic variant proposed incorporating dynamic multi-armed bandits as the selection rule. Section 5 describes the
test problems considered: course timetabling and vehicle routing, while sections 6 and 7 showcases the application of
the proposed methodos application on them. Finally, section 8 presents our conclusions and future work.

2. Background and related work

2.1. Selection hyper-heuristics

Hyper-heuristics have been defined as “automated methodologies for selecting or generating heuristics to solve
computational search problems” [7]. The present study concentrates on methodologies for automatically selecting
low-level heuristics, from an available pool, on-the-fly while solving the underlying optimisation problem. The se-
lection mechanism considers only the history of domain-independent information from the search process. However,
low-level heuristics which encapsulate domain-specific information can be, and usually are, incorporated in the pool
of heuristics. Our approach considers improvement heuristics, also known as move operators. It starts from a com-
plete initial solution and iteratively selects, from the available pool, appropriate heuristics to lead the search toward a
promising direction. Several different strategies for dynamically selecting heuristics while solving the problem have
been proposed [6]. These range from simple random and greedy strategies to sophisticated adaptive or reinforcement
learning mechanisms incorporating various feedback from the search process.

Surprisingly, little work has been devoted to determine the “optimal” size and composition of the heuristic pool.
This is normally done at the discretion of the researcher, without a clear methodology. Most hyper-heuristic imple-
mentations use in the order of 3 to 12 heuristics, which the authors design themselves or incorporate from the literature.
An exception is the approach by [12] where a large number of low-level heuristics are assembled from parametrised
components, followed by a step-by-step pool reduction strategy operating on a specific instance at execution time.
The approach requires fixing the minimum number of heuristics desired (20 in [12]) from a larger available pool of
assembled heuristics, and a fixed number of iterations from which a reduction step is executed. When a reduction step
occurs, the low-level heuristics with the smallest total improvement over all previous iterations is discarded.

Our reduction methodology, described in detail in section 3 differs from [12] in two important ways. First, it
does not require any extra parameters other than the complete set of initial heuristics which are supplied by the user.
Second, it acts as a prepossessing step considering performance data from a set of instances of the underlying problem.
Therefore, once it is completed, no additional overhead is required to solve new instances of the same problem.

2.2. Automated algorithm configuration (offline tuning)

Several frameworks have been proposed in the literature for automated parameter tuning and algorithm config-
uration [4, 19, 15, 18]. We describe here ParamILS, a framework for automated algorithm configuration achieved
with local search in the configuration space. The key idea behind ParamILS is to combine a stochastic local search
algorithm (iterated local search) with mechanisms for exploiting specific properties of algorithm configuration. [19]
present extensive evidence that ParamILS can find substantially improved parameter configurations of complex and
highly optimised algorithms.

Offline tuning tools are relevant to hyper-heuristic research. In selection hyper-heuristics, a selection probability
is associated to each operator or heuristic, and these are dynamically adapted during the search process. However,
these probabilities can alternatively be considered as fixed (static) parameters of the hyper-heuristic algorithm, and
this can then be automatically tuned with an offline tuning tool. Thereafter, during the hyper-heuristic tun, operators
are selected by a roulette-wheel mechanism based on these statically-tuned probabilities. We applied this method as a

2

control mechanism to compare against the proposed adaptive hyper-heuristic in [43], and found that the adapting the
selection probabilities online produced significantly better results.

Our proposed methodology uses ParamILS in two stages. First, to contrast tuned operator selection probabilities
against adaptive methods, regardless of how many heuristics are considered in the pool. Second, as a method for
estimating the performance of all the available individual heuristics, and thus serve as an alternative, although com-
putationally expensive, ranking mechanism for the first step of the proposed reduction methodology described in the
next section.

3. Methodology for determining an effective heuristic subset

The proposed methodology requires an available pool of heuristics and a set of benchmark instances of the under-
lying problem. It uses fitness landscape metrics and non-parametric statistical tests to rank the heuristics. The ranked
heuristics are thereafter grouped incrementally until the best subset is determined. Specifically, the methodology
comprises the following three stages:

1. Statistical ranking of low-level heuristics: non-parametric statistical tests (described in more detail in section
3.1) are used to rank the estimated performance of each low-level heuristic. This requires a metric for estimating
the heuristic’s individual performance. We chose two alternative metrics to probe the search landscape. The first
is based on the notion of evolvability [38] and the second on the concept of landmarking, where the performance
of simple and quick algorithms is used to characterise the relative difficulty of the problem instances [39].
Section 3.2 gives more detailed descriptions of the landscape probing techniques employed.

2. Grouping low-level heuristics: subsets of increasing size are formed according the the statistical ranking of
the low-level heuristics. Specifically, the size of the subsets is increased one by one starting from the top two
heuristics according the non-parametric ranking, then the top three, and so on, until the whole set is considered.
The hyper-heuristic under study is executed using each heuristic subset.

3. Selecting the best subset of heuristics: the subset of heuristics producing the best hyper-heuristic performance
from step 2 is considered as the best subset. The performance metric employed will depend on the problem
under consideration. Our study uses the best subset configuration obtained after a fixed running time.

3.1. Non-parametric tests

Parametric statistical tests have been used to contrast the performance of heuristic search methods. However, they
assume independence, normality and homoscedesticity of the data, which are not guaranteed in the case of heuristic
algorithms. Non-parametric statistical procedures overcome this limitation and can be used for comparing this type of
algorithms. We used CONTROLTEST [14], a tool specially designed for non-parametric comparison among heuristic
algorithms, and considered the three tests there proposed: Friedman, Aligned Friedman, and Quade. The Friedman
test uses the arithmetic mean, Alignment Friedman uses a value of location computed as the average performance
achieved by all algorithms in each problem, and Quade considers that some problems might be more difficult than
others. All these tests consider ranks, therefore, the lower the reported value the better the performance achieved.

3.2. Fitness landscape probing techniques

The two fitness landscape probing techniques described below are proposed to estimate the performance of indi-
vidual operator.
Evolvability: The notion of evolvability loosely refers to the capacity of an individual or population to evolve. The
first formalisation of this notion is attributed to [1] who defined evolvability as “the ability of the genetic opera-
tor/representation scheme to produce offspring that are fitter than their parents.” We are interested in measuring the
evolvability of specific search operators. In a previous study [40] used three evolvability metrics to determine the
credit of operators while solving a given problem instance. Here, we use the best performing metric in that study,
termed Ea, which was originally proposed by [38]. This metric represents the probability that the fitness of neigh-
bouring solutions is better than or equal to the fitness of the incumbent solution. It is simply measured as the ratio
between the number of neighbours with improved or equal fitness as compared to the incumbent solution, and the
size of the whole neighbourhood (when sampling this is the sample size). In order to estimate the evolvability of a

3

given operator on a given problem, we use a sampling procedure considering the whole set of available instances.
The estimated operator’s evolvability is the average evolvabilities across the instance set. On a given instance, the
procedure for estimating the the evolvability of operator (heuristic) hi is as follows.

1. Generate an initial solution, s0, uniformly at random
2. Generate 100 representative neighbours of s0 by single applications of hi. The representative neighbours are

sampled with a Metropolis-Hastings approach which gives prevalence to best points (i.e. those with higher
fitness) [44]

3. Count, c, how many of these 100 representative neighbours have better or equal fitness than that of s0

4. Calculate the evolvability as the ratio Ea = c
100

The procedure above is repeated 500 times from different initial solutions, and the evolvability of the operator hi

on the given instance is the average of these 500 measures. The number of representative neighbours was set to 100
in order to achieve statistical significance.
Landmarking: As a second metric, we consider the performance of the simplest possible search algorithm using a
single operator hi as a probing technique. This corresponds to a first-improvement hill-climbing method, outlined in
Algorithm 1. The stopping condition is set to 100 iterations in order to have similar computational budget as that
used in the evolvability probing technique. The result of a run is summarised by the fitness difference between the
initial and the final solution. On each instance, the hill-climbing algorithm is run 500 times from different initial
randomly generated solutions, and the quality of the operator hi is the average of these 500 fitness difference values.
The estimated operator’s quality is the average of qualities across the whole instance set.

Algorithm 1 First-improvement Hill-climbing
Require: InitialS olution s0,Heuristic hi, FitnessFunction f

1: s← s0
2: while !S topCriteria() do
3: s∗ = apply(hi, s)
4: if f (s∗) < f (s) then
5: s = s∗

6: end if
7: end while
8: return ls

3.3. Alternative ranking of low-level heuristics

In order to test the benefits of the proposed statistical ranking of low-level heuristics (first step of the methodology),
we used ParamILS (see section 2.2) as an alternative approach to rank the heuristics. The idea is to learn a selection
probability for each heuristics in the pool using all the benchmark instances as the training set. The experiment is,
therefore, very computationally expensive (running times are reported in the case studies below). Each ParamILS
iteration executes the hyper-heuristic under consideration with the complete heuristic pool on the whole training set.
The fixed heuristic selection probabilities are thus evolved by the ParamILS search process, which runs for 1000
iterations. To achieve statistical significance, 35 times runs are considered. The outcome of the experiment is a list of
selection probabilities for the heuristics in pool. Thereafter, heuristics are ranked in decreasing order of their selection
probabilities.

4. Dynamic multi-armed bandit hyper-heuristic

This section describes the proposed hyper-heuristic variant, which extends our recent proposal [43]. A selection
hyper-heuristic algorithm has three main components: the high-level search strategy, the pool of operators, and the
adaptive or control mechanism to dynamically select the operator to apply at each search step. We describe below
the high-level strategy and adaptive operator selection mechanism used. The pool of operators is normally problem-
specific. Sections 5.1 and 5.2 describe the operators used for the two selected problem domains, respectively.

4

4.1. High-level strategy
An iterated local search framework is used as the high-level strategy (Algorithm 2). We choose Iterated Local

Search (ILS) as it is a simple yet powerful search strategy that has produced outstanding results in practice [25]. ILS
operates by iteratively alternating between applying a move (perturbation) operator to the incumbent solution and
restarting local search from the perturbed solution. Moreover, a number of adaptive variants of multi-neighbourhood
iterated local search (also called iterated local search hyper-heuristics) have been recently proposed [30, 45, 43] with
encouraging results in various problem domains.

In our implementation (outlined in Algorithm Algorithm 2), the adaptive control mechanism is applied to the
improvement stage, in which a local search heuristic is selected from the available pool and then applied to the
incumbent solution (line 5). The perturbation stage uses a fixed randomised operator, and the acceptance condition
simply accepts all improvements. This implementation differs from our previous ILS hyper-heuristic [43] in the
operator control mechanism for selecting heuristics, which is detailed in Section 4.2.

Algorithm 2 High-level strategy: Iterated local search
1: s0 = GenerateInitialS olution
2: s∗ = ImprovementS tage(s0)
3: while !S topCriteria() do
4: s′ = S impleRandomPerturbation(s∗)
5: s∗

′

= ImprovementS tage(s′)
6: if f (s∗

′

) < f (s∗) then
7: s∗ = s∗

′

8: end if
9: end while

10: return s∗

4.2. Operator selection
We borrow ideas from adaptive operator selection (AOS) in evolutionary algorithms [17, 16]. Two cooperating

mechanisms are required in this process: A selection rule, which defines how the next operator or low-lever heuristic to
be applied next should be chosen according to its estimated quality; and a credit assignment mechanism, which defines
how to estimate operators quality based on the impact brought by their most recent application. For the selection rule,
we used dynamic multi-armed bandits (DMAB) proposed by [13]. The multi-armed bandit framework is commonly
used in game theory for studying the exploration vs. exploitation dilemma. It involves N arms and a decision making-
algorithm for selecting one arm at each time step with the goal of maximising the cumulative reward gathered along
time. The exploration vs. exploitation balance is relevant for heuristic search. Indeed, adaptive operator selection
can be formulated using multi-armed bandits with arms corresponding to search operators [13, 16]. Specifically, the
upper confidence bound multi-armed bandit [2] was used as it provides optimal maximisation of cumulative rewards.
The use of DMAB as an operator selection rule has reported encouraging results within selection hyper-heuristics
[43, 40, 36]. For credit assignemnt, we use an extreme value criterion, as it has produced better results than other
criteria in both evolutionary algorithms [17, 16] and hyper-heuristics [40]. These mechanisms are described in detail
below. The most common way of assigning credit is to account for the fitness improvement brought by the operators.
That is, the fitness difference of the generated offspring with respect to a reference value, which is generally taken as
the parent.

DMAB selection rule: Each operator is viewed as an arm. Let ni,t denote the number of times the ith arm has been
played, and p̂i,t the average empirical reward it has received up to time t. At each time step t, from K alternative
arms, the algorithm selects the arm maximising the quantity computed by equation 1.

p̂ j,t + C

√
2log(

∑K
i=1 ni,t)

n j,t
(1)

Two considerations were required to use this framework for adaptive operator selection. First, a scaling factor C
is needed, in order to properly balance the trade-off between selecting the operator with best empirical behaviour

5

(exploitation, first term in Eq.1) and giving other operators the opportunity to be selected (exploration, second
term in Eq.1). Second, The multi-armed bandit framework is combined with the Page-Hinkley statistical test for
detecting changes in the operator selection dynamic. This hybridisation introduces two additional parameters
associated to the Page-Hinkley test: γ, which controls the trade-off between false alarms and unnoticed changes;
and δ, which enforces the robustness of the test when dealing with slowly varying environments. Parameters C
and γ need to be tuned for every problem. We found in preliminary experiments that C = 10, γ = 100 for course
timetabling, and C = 8, γ = 105 for vehicle routing produced consistently good results. For the parameter δ, we
used the value suggested in [16] (δ = 0.15) for all the experiments. We selected DMAB as the selection rule due
its hybridisation with the Page-Hinkle test, and its good performance achieved in previous works. [16, 17, 43]

Extreme value credit assignment: Rewards are updated as follows, when a heuristic h is selected, it is applied to
the current solution. The fitness of this new solution is computed and the change in fitness ∆ f is added to
a FIFO list of size W. A separate list is kept for each operator. Thereafter, the operator reward is updated
to the maximal fitness improvement in the list. More formally, let t be the current step and ∆ f (t) the fitness
improvement observed at time t, the expected reward for heuristic h is computed using equation 2.

r̂t = argmax{∆ f (ti), i = 1...W} (2)

5. Test problems

Hyper-heuristics are intended to be general approaches with good performance across several domains. However,
many hyper-heuristic articles in the literature consider a single problem domain. We therefore, tested our approach on
two challenging real-world problems with available benchmark instances: course timetabling and vehicle routing.

5.1. Course timetabling

Course timetabling requires the assignment of a fixed number of subjects into a number of time-slots. The main
objective is to obtain a timetable minimising the number of student conflicts. Our formulation uses a generic modelling
approach where solutions are represented as vectors of integer numbers of length equal to the number of events
(courses). Positions in the vector represent events, and their integer values are indices in a set of data structures
encoding pairs of valid time-slots and classrooms for each event [43].

Many approaches have been proposed for solving variants of educational timetabling using metaheuristics, [5, 26,
11, 24] and hyper-heuristics [8, 34, 42, 41]. Recent surveys have also been published [35, 32, 33, 3].

Our implementation considers the set of 9 low-level heuristics proposed in our recent state-of-the-art hyper-
heuristic for course timetabling [43]. They range from simple randomised exchange or swap neighbourhoods to
greedy and more informed procedures. Table 1 provides a brief description of these heuristics, more details can be
found in [43].

5.2. Vehicle routing

Vehicle routing problems (VRP) require that a fleet of vehicles serves a number of request in order to minimise
costs. A number of variants have been proposed. Our formulation follows that implemented by [45], for the HyFlex
hyper-heuristic framework [29]. Specifically, we consider the vehicle routing problem with time windows, whereby a
customer must be served between two time points for a solution to be valid. The objective function balances the dual
objectives of minimising the number of vehicles needed and minimising the total distance travelled. It is defined as
follows:

VrpFitness = c × numVehicles + distance

where c is a constant empirically set to 1000 to give higher importance to the number of vehicles in a solution.
Several heuristic search approaches have been successfully applied to vehicle routing, surveys have also been

published [21, 31].
Our implementation uses the HyFlex hyper-heuristic framework [29], which includes low-level heuristics of dif-

ferent types: mutational, ruin-recreate, improvement and crossover. Improvement heuristics refer to greedy local
search procedures that guarantee an improvement of the incumbent solution. The vehicle routing implementation [30]

6

Table 1: Course timetabling low-level heuristics.

Operator Description

MLC Locates the variable producing the most conflicts and changes its value
to the that causing the minimum possible conflict.

BSP Chooses a variable following a sequential order and changes its value
to that producing the minimum conflict.

WMLC Locates the variable producing the worst conflict and changes its value
to that causing the minimum possible conflict.

MLS Changes the value of a given variable to that causing the event to move
to the less occupied time-slot.

Swap Selects two variables uniformly at random and interchanges their values
if possible. Otherwise leaves the solution unchanged.

Simple Mut Chooses uniformly at random a variable and changes its value for an-
other one inside its feasible domain.

SDP Chooses a variable following a probability distribution based on the fre-
quency of variable selection in the last k iterations.

DDP Similarly to SDP Selects a new variable with a probability inversely
proportional to its frequency of selection in the last k iterations. It differs
from SDP in that it internally maintains an additional solution (which is
a copy of the first initialised solution) and makes random changes to it
following the same distribution.

Two Points Selects uniformly at random two indexes in the integer string represen-
tation and modifies all variables between the indexes randomly.

provides a total of 12 low level heuristics across the four categories. From these, we selected 8 that were relevant
to our implementation. These correspond to the all the mutational and ruin-recreate heuristics avialable (4 and 2,
respectively) and 2 of the improvement heuristics available. The four heuristics left out, correspond to 2 crossover
operators, and 2 local search heuristics that implement iterative versions of two of the already included mutational
heuristcis (specifically, shift and interchange). A short description of these heuristics is provided in Table 2, more
details can be found in [30].

6. Course timetabling: results and discussion

We first apply the proposed methodology and hyper-heuristic variant to the post-enrolment course timetabling
problem. The experimental conditions resemble those of the International timetabling competition (ITC) 2007 track
2 (post-enrolment course timetabling) [23]. A total of 24 instances are available. The objective function minimises
the sum of hard and soft constraint violations. The number of hard constraints violations is termed the distance to
feasibility metric, and it is defined as the number of students that are affected by unplaced events.

Table 3 reports the statistical rankings of the 9 low-level heuristics according to the two landscape probing metrics
discussed in section 3.2, and the alternative ranking using ParamILS as described in section 3.3 in the last column.
Heuristics are ordered according to the Quade rank and the hill-climbing landmarking metric, LndHill. The Quade test
was selected as it considers both algorithm performance and the dispersion of results as evidence of their robustness
(algorithms with higher dispersion are considered worse). The hill-climbing landmarking metric was selected as it
is more informative. This is illustrated in Figures 1 and 2, showing the distribution of evolvability and hill-climbing
landmarking metrics, respectively. Both metrics give an indication of the heuristics comparative performance. How-
ever, evolvability represents the heuristics’ quality in the range from 0 to 1, in consequence, heuristics with high
evolvability have similar values near to 1. Hill-climbing landmarking, instead, measures differences in fitness values,

7

Table 2: Vehicle routing low-level heuristics.

Operator Description

Two-opt Swaps two adjacent locations within a single route.
Or-opt Moves two adjacent locations to a different place, within a single route.
Shift Moves a single location from one route to another.
Interchange Swaps two locations from different routes.
LocRR Removes a number of locations based on location proximity, reinserting

into the best route possible.
TimeRR Removes a number of locations based on time window proximity, rein-

serting into the best route possible.
Two-opt∗ Takes the end sections of two routes, and swaps them to create two new

routes.
GENI A location is taken from one route, and placed into another route,

between the two locations of that route which are closest to it. Re-
optimisation is then performed on the route.

Table 3: Course timetabling: non-parametric ranking of low-level heuristics (columns 2 - 6), and selection probabilities as tuned by ParamILS
(last column). Ea stands for evolvability and LndHill for hill-climbing landmarking. Rankings are ordered according to the Quade test and LndHill
metric.

Heuristic Friedman Aligned Friedman Quade ParamILS
Ea LndHill Ea LndHill Ea LndHill Prob.(%)

MLC 2.7 1.09 42.4 20.52 2.51 1.16 30.3%
MLS 2.9 2.59 44.3 40.26 2.88 2.53 18.1%
BSP 3.04 2.73 42.71 48.21 3.36 2.70 22.7%
MWLC 1.14 4.23 40.57 73.90 1.233 3.99 12.1%
Two Points 5.19 4.38 100.61 83.85 5.33 4.67 6.0%
DDP 7.04 6.90 137.42 139.95 6.92 7.05 1.5%
SDP 6.09 7.04 133.42 139.95 6.88 7.05 3.0%
Simple Mut 6.08 7.28 134.53 142.19 6.85 7.24 4.5%
Swap 9.0 8.71 178.9 166.14 9.0 8.54 1.5%
p − value (Ea) 1.10E-10 0.0168 1.94E-37
p − value (Hill) 1.28E-75 0.0161 6.77E-36

and thus is not restricted to a specific interval. This property of Hill-climbing landmarking is important for the non-
parametric ranking since this ranking is determined by performance differences between operators. This evidence
suggest that Hill-climbing landmarking produces most suitable information to carry out the operator ranking. Another
disadvantage of evolvability is that it uses the Metropolis-Hastings inner sample validation, which incurs in around
30% more fitness evaluations than those required to calculate the hill-climbing landmarking metric.

The computational time required by the heuristic subset selection methodology is detailed in Table 4 measured as
CPU hours in Core i7 processor with 8 Gigabytes of RAM. Using ParamILS for ranking heuristics requires about ten
times more computational effort than using the landscape probing metrics followed by statistical ranking.

Table 5 summarises the second step of the proposed methodology. It shows the results of executing the proposed
hyper-heuristic considering heuristic subsets of increasing size, where the heuristics are ordered according to Table 3.
The cost of a solution is denoted with a pair of values, (hv, sv), where hv and sv are the sum of hard and soft constraint
violations, respectively. In order to compare two or more solutions, the pairs (hc, sc) are ranked in a lexicographical
ascending order. Following the ITC-2007 rules, 10 independent runs per instance were conducted, and results are
reported as the average and standard deviation of the pair (hc, sc). The stopping condition for each run is is set to
300 CPU seconds, which is half of the alloted running time in the competition, as this is a pre-processing stage. Bold

8

Table 4: Course timetabling. Computational time in CPU hours required by the heuristic sub-set selection methodology.

Statistical Ranking Grouping Heuristics
Landmarking Evolvability ParamILS

20 hrs 25 hrs 195 hrs 120 hrs

Table 5: Course timetabling. Hyper-heuristic performance, as average of 10 independent runs, with heuristic subsets of increasing size. hc accounts
for hard constraint and sc for soft constraint violations, which are to be minimised. Decimals are rounded due to space limitations. Bold fonts
highlight best performance, which consistently occurs with the subsets of 4 and 5 heuristics.

2 3 4 5 6 7 8 9
hc sc hc sc hc sc hc sc hc sc hc sc hc sc hc sc

1 387 2484 117 2252 104 2132 131 2209 113 2257 121 2311 104 2259 159 2361
2 425 2340 135 2408 108 2496 140 2360 123 2088 126 2318 192 2268 165 2278
3 82 2766 19 1835 20 1866 14 1898 29 2079 26 2060 19 2032 44 1985
4 134 2459 44 2134 47 2555 29 2010 36 2497 38 2515 26 2162 60 2444
5 171 1349 82 1225 55 1242 80 1277 58 1270 77 1304 71 1273 85 1440
6 184 1401 78 1298 62 1270 71 1235 74 1155 39 1228 46 1267 76 1294
7 74 1478 22 1189 17 1067 22 1020 23 1170 25 1276 25 1129 28 1116
8 63 1335 12 1075 13 1168 17 1301 20 1115 16 1008 20 1168 14 1108
9 371 2369 111 2362 95 2270 116 2364 102 2332 99 2417 97 2248 114 2378

10 402 2417 125 2190 109 2261 158 2526 122 2281 137 2184 147 2322 185 221
11 104 2690 36 1993 30 2039 17 2079 24 1965 38 2194 24 2169 43 2437
12 132 2671 32 2396 27 2218 30 2316 42 2323 31 2294 55 2179 54 2442
13 241 1458 105 1291 94 1356 91 1374 92 1235 104 1340 98 1423 128 1357
14 208 1377 71 1266 74 1344 65 1270 83 1273 78 1272 92 1325 88 1334
15 54 1259 12 1108 18 1176 8 1070 11 971 11 1092 16 1283 14 1041
16 48 1201 8 1026 3 922 0 859 5 955 1 963 1 938 6 931
17 28 1957 0 1115 0 805 0 775 0 990 0 1150 2 1183 2 1048
18 52 141 48 97 42 85 36 73 39 79 44 102 49 83 49 98
19 28 921 16 915 15 805 12 475 25 490 30 650 38 883 22 848
20 130 2769 17 1956 13 1954 9 1893 11 1936 21 1892 16 1934 23 1941
21 29 57 32 45 7 35 0 23 0 50 5 42 12 43 15 48
22 476 2311 239 2365 249 2149 223 2228 235 2231 236 2235 272 2192 292 2301
23 1011 5014 320 4951 306 4697 417 5003 387 4910 374 5276 268 4906 555 4770
24 197 2627 41 1987 38 1889 29 1933 48 2029 47 2033 44 1841 43 1871

fonts highlight the best results obtained, which indicate that the groups of 4 and of 5 heuristics produce consistently
the best performance for all the instances. As the most effective subset, we select the group of 5 heuristics as it has
slightly better performance and provides more options for the adaptive search strategy. Specifically, the 5 heuristic
selected are: MLC, MLS, BSP, MWLC and Two Points. Table 3 orders the heuristic according to the Quade rank and
the hill-climbing landmarking metric. However, the 5 heuristics selected correspond to the top performing according
to all the rankings in Table 3, which gives strong evidence of the effectiveness of the subset selection.

6.1. Contrasting operator selection strategies

In order to assess whether adapting selection probabilities while searching is the best performing strategy, this
section compares it with two alternative strategies, namely, selecting heuristics uniformly at random, and learning
selection probabilities offline, which can be seen as a form of parameter tuning. The random strategy serves as a
baseline; it simply selects uniformly at random a heuristic from the pool at each iteration. The off-line or tuning
approach considers the operator selection probabilities as static parameters that can be tuned using existing tuning
tools. As described in section 2.2, we use ParamILS as a tuning tool. The heuristic subset selected corresponds to the
top 5 heuristic identified above, namely, MLC, MLS, BSP, MWLC, and Two Points. For the strategy using parameter
tuning, Table 6 reports the static operator selection probabilities obtained using ParamILS, expressed as percentages.

Table 6: Course timetabling: Static operator selection probabilities (expressed as percentages) obtained with parameter tuning.

MLC MLS BSP MWLC TwoP
33.1% 17.5% 21.3 % 18.6% 9.5%

9

SimpleMTwoP SDPDDP SwapMLSMLC MWLCBSP

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Heuristics

E
vo
lv
a
b
ili
ty

Figure 1: Distribution of evolvability Ea values for each heuristic across 500 experiments. Course timetabling instance ITC-2007-4.

SimpleMTwoP SDPDDP SwapMLSMLC MWLCBSP

0
2

0
0

4
0

0
6

0
0

8
0

0
1

0
0

0
1

2
0

0
1

4
0

0

Heuristics

H
ill

 C
lim

b
in

g

Figure 2: Distribution of hill-climbing landmarking values for each heuristic across 500 experiments. Course timetabling instance ITC-2007-4.

Following the ITC-2007 rules, each hyper-heuristic variant is run 10 times, and the stopping condition corresponds
to a time limit of about 10 minutes following the benchmark algorithm provided in the competition website1. Table
7 compares the three operator selection strategies: random, tuned and adaptive within the proposed hyper-heuristic
using the effective subset of 5 low-level heuristics. Values correspond to averages of 10 runs. The best results are
achieved consistently using the proposed adaptive strategy, which attains the minimum possible cost for the hard

1http://www.cs.qub.ac.uk/itc2007/

10

Iterations

variable

Pr
ob

ab
ili

ty

0

0.25

0.50

0.75

1

200

400

600

800

Fitness

Fitness (hv)

0 1500 3000 4500

MLS
MLC
MWLC

BSP

Swap

Figure 3: Course timetabling, ITC-2007 instance 1: Operator selection dynamic with the selected sub-set of 5 heuristics. Curves show probabilities
over time. The fitness over time is also displayed (black line)

constraint violation in all instances. We argue that this method successfully adjusts operator selection probabilities for
each instance under consideration. An example of adaptation can be seen in Figure 3, where the selection probabilities
of each operator over time are visualised. The curves reveal a fast adaptation to changes in the operator capacities to
guide the search process. The spikes in the curves are evidence of the change detection mechanism at work within the
dynamic multi-armed bandit strategy.

6.2. Contrasting against the state-of-the-art

This section compares the proposed hyper-heuristic, which we now term HHDMAB, with state-of-the-art meth-
ods on the course timetabling problem. The comparison includes both recent hyper-heuristics and problem specific
approaches in the literature. Specifically, the contenders are:

Cambazard: the winner of the ICT-2007 competition [10], a multi-stage local search algorithm considering several
neighbourhoods.

Ceschia: a single-step meta-heuristic approach based on simulated annealing, with a neighbourhood composed of
moves that reschedule one event or swap two events [11].

Lewis: a 3-stage local search algorithm, in which a constructive phase is followed by two separate simulated anneal-
ing phases [22].

Jat & Yang: a hybrid approach, which applies a guided genetic algorithm integrating local search techniques [20].

AdapExAP: the previous version of our adaptive iterated local search hyper-heuristics [43], which uses the full set
of 9 neighbourhoods described in Table 1 coupled with an adaptive mechanism based on the adaptive pursuit
selection rule.

HHADL: an iterated local search hyper-heuristic with Add-Delete list, this algorithm generate heuristics based on a
fixed number of add and delete operations [41].

11

Table 7: Course timetabling: Contrasting operator selection strategies: Random, Tuned and Adaptive, using the effective subset of heuristics.
hc accounts for hard constraint and sc for soft constraint violations, which are to be minimised. The Adaptive strategy clearly outperforms its
counterparts.

ITC-2007 Random Tuned Adaptive
Instance hc sc hc sc hc sc

1 129 2439.12 35.18 1773.12 0 860.12
2 142.3 2213.56 29.77 1856.14 0 530.15
3 22.11 2174.55 7.43 762.83 0 315.12
4 49.12 2504.75 27.45 562.88 0 559.12
5 62.31 1285.15 0 635.32 0 0
6 81.22 1301.52 0 350.65 0 4.6
7 23.91 1106.73 0 456.23 0 5.2
8 11.1 1085.27 0 441.93 0 0
9 127.52 2268.65 35.13 1674.75 0 854.3

10 171.66 2408.8 15.93 954.25 0 615.12
11 25.78 2515.72 17.1 775.14 0 355.12
12 43.75 2190.52 12.65 1208.14 0 278.43
13 98.15 1263.93 0 588.14 0 15.2
14 93 1309.15 0 516.34 0 25.12
15 19.53 1128.32 0 788.37 0 44.16
16 6.3 822.15 2.14 598.15 0 73.76
17 0 1365.12 0 332.9 0 3
18 35 1365.12 0 162.9 0 28.4
19 35 485.12 15 231.5 0 183.12
20 38.43 2229.15 15.34 1298.45 0 311.07
21 75 161.12 5 62.9 0 12.09
22 277.36 2301.55 0 1190.34 0 354.4
23 436.15 4809.76 42.15 2766.14 0 515.23
24 46.33 2128.69 37.44 692.49 0 337.34

Table 8 shows the best achieved results as well as the average and standard deviation of our experiments, our algo-
rithm HHDMAB presents consistently better results than AdapExAP who is the initial approach from which HHDMAB
was developed, also HHDMAB algorithm presents also new best-know solutions for instances 3, 9,12,20 and 22 from
Course Timetabling state of art.

7. Vehicle routing: results and discussion

The second case study considers the well known vehicle routing problem. The formulation and experimental
setting follow the rules of the Cross-Domain Heuristic Search Competition (CHeSC) 2011 competition [29]. CHeSC
Instances were taken from [37] and include 5 from the Solomon data set and 5 from the Gehring and Homberger data
set. Both data sets include three types of instances: Random, Clustered, and mixed Random-Clustered; according to
the way in which the customers’ locations are determined, more details can be found in the Appendix.

Table 9 summarises the first step of the proposed methodology, that is, the statistical rankings of the 8 low-level
heuristics according to the two landscape probing metrics discussed in section 3.2, and the alternative ranking using
ParamILS (section 3.3) in the last column. Rankings are ordered following the Quade test and the hill-climbing
landmarking metric, LndHill, as discussed in the previous case study.

The computational time required by the heuristic subset selection methodology is detailed in Table 10 measured
as CPU hours in Core i7 processor with 8 Gigabytes of RAM. As for the course timetabling study, using ParamILS
for ranking heuristics requires about ten times more computational effort than using the landscape probing metrics.

Figures 4 and Figure 5, show the distribution of evolvability and hill-climbing landmarking metrics, respectively.
As in the previous case study, both metrics give a similar indication of the heuristics comparative performance. How-

12

Table 8: Course Timetabling. Comparison against state-of-the-art. Values indicate the best soft constraint results , in all cases solutions are feasible,
i.e. the hard constraints are 0. Average and standard deviation results are also reported in brackets in the form (s̄σ) for the two hyper-heuristic
approaches. Bold font indicates the best result per instance.

ITC-2007 Cambazard Ceschia Lewis Jat & Yang AdapExAP HHADL HHDMAB
1 571 59 1166 501 650(780.45148.5) 630 630 (860.12110.7)
2 993 0 1665 342 470(960.7270.4) 450 380 (530.15130.6)
3 164 148 251 3770 290(33788.7) 300 137 (315.1257.15)
4 310 25 424 234 600(81542.6) 602 75 (559.12)
5 5 0 47 0 35(39.169.3) 6 0(00)
6 0 0 412 0 20(29.47.3) 0 0 (4.61.4)
7 6 0 6 0 30(33.742.1) 0 0 (5.21.1)
8 0 0 65 0 0(00) 0 0 (00)
9 1560 0 1819 989 630(861.1127.4) 640 602 (854.3.15)

10 2163 3 2091 499 2349(2458.2185.2) 663 482(615.1272.14)
11 178 142 288 246 350(405.757.3) 344 159(355.1249.12)
12 146 267 474 172 480 (506.427.4) 198 140 (278.4325.9)
13 0 1 298 0 46(77.3749.2) 0 0 (15.212.7)
14 1 0 127 0 80(108.333.5) 35 20(25.1217.4)
15 0 0 108 0 0 (5.759.4) 0 12 (44.1616.0)
16 2 0 138 0 0(2.224.1) 140 0(73.7633.4)
17 0 0 0 0 0(00) 0 0(31.5)
18 0 0 25 0 20(25.166) 0 0 (5.32.1)
19 1824 0 2146 84 360(404.5139.1) 400 133(214.633.6)
20 445 543 625 297 150(177.1237.1) 150 106 (311.0731.5)
21 0 5 308 0 0 (3.785.7) 0 0(2.52.3)
22 29 5 x 1142 33(45.7112.7) 32 25 (35418.5)
23 238 1292 3101 963 1007(1378.45319.4) 238 267.4(515.2389.4)
24 21 0 841 274 0(45.8860.0) 640 76(337.3451.9)

Table 9: Vehicle routing. Non-parametric ranking of low-level heuristics (columns 2 to 6), and selection probabilities as tuned by ParamILS (last
column) Ea stands evolvability and LndHill for hill-climbing landmarking. Rankings are ordered according to the Quade test and LndHill metric.

Heuristic Friedman Aligned Friedman Quade ParamILS
Ea LndHill Ea LndHill Ea LndHill Prob(%)

TimeRR 3.9 1.40 26.1 15.2 3.76 1.52 19.4%
TwoOptStar 1.1 2.59 16.9 21.1 1.10 2.70 14.5 %
locRR 2.8 2.6 22.6 19.1 2.98 2.65 18.1%
ShiftMutate 2.3 3.4 18.79 28.59 2.23 3.10 14.5 %
GENI 5.3 5.0 40.0 58.50 5.42 5.0 1.9 %
Interchange 5.9 6.5 51.79 59.99 5.8 6.45 9.7%
TwoOpt 6.85 6.64 65.85 60.15 6.93 6.75 14.5 %
OrOpt 7.75 7.85 72.85 61.34 7.7 7.79 5.8 %
p − value (Ea) 1.67E-30 0.27 6.68E-17
p − value (Hill) 6.13E-11 0.026 5.22E-16

ever, hill-climbing landmarking gives more information in terms of the difference between heuristics, which is a
desired property for the next stage of the proposed methodology.

Table 11 summarises the second step in the selection methodology. It shows the performance of the proposed
hyper-heuristic variant considering heuristic subsets of increasing size. Notice that the best results are mostly achieved
when using the group of 4 heuristics. Therefore this group is selected as the best pool for the vehicle routing domain.
The running time in this pre-processing state is set as use half the time prescribed by CHeSC rules (300 CPU seconds
validated trough a benchmark program [28].)

13

Table 10: Vehicle routing. Computational time in CPU hours required by the heuristic sub-set selection methodology.

Statistical Ranking Grouping Heuristics
Landmarking Evolvability ParamILS

15hrs 16.5 hrs 137 hrs 95 hrs

TwoOptInterchange OrOptShiftMutateTimeRR TwoOptStar locRR GENI

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Heuristics

E
vo
lv
a
b
ili
ty

Figure 4: Distribution of evolvability Ea values for each heuristic across 500 experiments. Vehicle routing instance 3.

TwoOptInterchange OrOptShiftMutateTimeRR TwoOptStar locRR GENI

0
2

0
0

0
4

0
0

0
6

0
0

0
8

0
0

0
1

0
0

0
0

1
2

0
0

0

Heuristics

H
ill

 C
lim

b
in

g

Figure 5: Distribution of hill-climbing landmarking values for each heuristic across 500 experiments. Vehicle routing instance 3.

14

Table 11: Vehicle routing. Hyper-heuristic performance, as average of 31 independent runs, 300 CPU seconds per run, with heuristic subsets of
increasing size. Bold fonts highlight best performance, which mostly occurs with the subset of 4 heuristics.

Instance 2 3 4 5 6 7 8

0 5571.76 5294.29 5249.89 5233.23 5276.42 5313.06 5366.26
1 22519.96 21972.70 21775.03 21871.82 21959.49 21985.76 21989.71
2 14747.22 14408.75 14190.83 14228.91 14385.65 14343.09 14461.58
3 6550.24 5739.74 5616.24 5722.01 5939.19 6070.90 6092.82
4 15423.92 15214.17 14995.28 15063.98 15099.32 15101.64 15136.26
5 160453.599 160673.41 160903.68 160156.86 160119.81 161336.22 160516.81
6 70613.13 70522.17 70033.93 70047.44 70124.60 71063.20 70615.11
7 172858.89 170666.18 170207.01 170344.21 171124.51 171387.77 171407.28
8 167524.63 167241.77 165473.22 165868.30 165598.62 167967.05 169647.40
9 154978.08 154924.18 155362.17 154453.02 154580.84 155794.78 155196.08

Table 12: Vehicle routing: Static operator selection probabilities (expressed as percentages) obtained with parameter tuning.

TimeRR TwoOptStar locRR ShiftMutate
35.8% 25.6% 23.2% 14.4%

15

7.1. Contrasting operator selection strategies

The proposed adaptive hyper-heuristic is compared against their counterparts with both uniformly at random
selection of operators, and tuned operator probabilities. Table 12 reports the static operator probabilities (expressed
as percentages) obtained using ParamILS (as discussed in section 2.2). The tuning process considered the whole set
of 10 instances.

Table 13 compares the three operator selection strategies: random, adaptive and tuned, within the proposed hyper-
heuristic using the effective subset of 4 low-level heuristic. Values correspond to averages of 31 runs, where each
run lasted 10 minutes according to the benchmark algorithm provided in the competition website [28]. The adaptive
strategy consistently produces the best (smallest) fitness values.

Table 13: Vehicle routing: Contrasting operator selection strategies. Values account for average best fitness at the end of the run, which are to be
minimised. The Adaptive strategy clearly outperforms its counterparts.

Instance Random Tuned Adaptive
0 5331.78 5295.16 5166.38
1 21708.60 21632.78 21031.87
2 14488.76 13873.78 13325.16
3 5471.77 5452.12 5421.25
4 14336.96 14329.71 14302.21
5 169142.68 161336.12 157824.57
6 77747.04 76052.12 73166.96
7 170575.26 166397.15 162402.47
8 171693.95 159373.13 154662.08
9 152699.63 152587.32 152395.76

Figure 6 shows the the dynamics of operator selection achieved by the adaptive strategy in a selected vehicle
routing instance (number 9). In this case, 3 of the 4 heuristics dominate the search process, with TwoOptStar having
the highest selection probability.

7.2. Contrasting against the state-of-art

This section contrasts the proposed hyper-heuristic with the effective low-level heuristics subset against both state-
of-the-art hyper-heuristics and problem specific approaches.

For the hyper-heuristic comparison, we consider the contestants in the Cross-Domain Heuristic Search Competi-
tion (CHeSC) 2011 [28], and follow the competition rules. For each testing instance (5 out of the 10 available instances
are used for test), 31 runs each lasting 600 CPU seconds according to benchmark tool provided, are conducted. Table
14 reports the mean and standard deviation raw values obtained by our Hyper-heuristic in the 5 CHeSC test instances.
The algorithms are ranked according to their median performance, and receive points according to a system inspired
by the Formula-1 [29]. The top eight preforming algorithms receive 10, 8, 6, 5, 4, 3, 2, and 1 points, respectively. In
case of ties, the points of the concerned positions are summed and equally shared. Following this system, our method
achieves 25 points (see Table 15(a)) which means an overall rank of 3rd when compared against the CHeSC contestant
HyFlex hyper heuristics as reported by [27]. These are encouraging results as our proposed hyper-heuristic was not
designed specifically for HyFlex and the CHeSC competition.

For comparing against problem-specific approaches, we consider the best-known solutions for the Solomon and
Homberger instances, as reported in the Transportation Optimization Portal - TOP [37], maintained by SINTEF Ap-
plied Mathematics. SINTEF is the largest independent research organisation in Scandinavia. Table 15(b) reports com-
parative results in terms of number of Vehicles and Distance travelled. Results suggest that HHDMAB is competitive,
specially in instances R101 and R201. This evidence supports the idea that algorithms with increased autonomy and
generality can be competitive against human designed problem-specific algorithms.

16

Iterations

P
ro
ba
bi
lit
y

variable

155000

160000

165000

170000

0

0.2

0.4

0.6

0 700 1400 2100 2900

F
itness

Fitness

ShifM
TimeRR

TwoOPST

locRR

Figure 6: Vehicle routing, instance 9: Operator selection dynamics with the selected sub-set of 4 heuristics. Curves show probabilities over time.
The fitness over time is also displayed (black line).

Table 14: Vehicle routing raw results on the CHeSC competition instances. Values account for the average and standard deviation of objective
function values (out 31 runs) in form x̄, σ

Test 1 Test 2 Test 3 Test 4 Test 5
x̄ 60773.4 13121.6 148378.4 20654.5 148678.5
σ 58033.1 12277.4 144005.3 20651.1 146053.1
Points 8 6 4 4 3

17

Table 15: Comparing the proposed approach HHDMAB against CHeSC 2011 hyper-heuristic entries (a), problem specific approaches (b).

(a) Comparison with CHeSC 2011 contestants.

Rank Algorithm Score
1 PHUNTER 33
2 HAEA 28
3 HHDMAB 25
4 KSATS-HH 23
5 ML 22
6 AdapHH 16
6 HAHA 16
8 EPH 12
9 AVEG-Nep 10
10 GISS 6
10 GenHive 6
10 VNS-TW 6
13 ISEA 5
13 XCJ 5
15 SA-ILS 5
16 ACO-HH 2
17 DynILS 1
18 NA-SLS 0
18 SelfSearch 0
18 Ant-Q 0
18 MCHH-S 0

(b) Comparison with best-known solutions as reported in [37]

Instance HHDMAB Best Know
RC207 4 1094.14 3 1061.14
R101 19 1655.98 19 1650.80
RC103 12 1395.01 11 1261.67
R201 4 1275.30 4 1252.37
R106 13 1296.86 11 1424.73
C1-10-1 107 43956.7 100 424478.9
RC2-10-1 22 31163.6 20 30278.5
R1-10-1 101 55345.7 100 53501.3
C1-10-8 113 49366.4 92 44092.7
RC1-10-5 98 49154.5 90 45564.8

18

8. Conclusions

We proposed a generic empirical methodology for selecting an effective heuristic pool in selection hyper-heuristics
using non-parametric statistics and fitness landscape probing techniques. From the two probing landscape metrics
studied, hill-climbing landmarking proved more informative and computationally efficient. However, operators’
evolvability seems to be a reliable metric to quickly distinguish good from bad heuristics in a given domain; and
can be used as a pre-processing step to chose a sub-set. The selection methodology proposed outperforms in both
efficiency and solution quality, the use of off-the-shelf tuning tools. Our case studies consider improvement heuristics
also known as move operators, but in principle the methodology can be applied to selection hyper-heuristics with
constructive heuristics, as long as their individual performance can be estimated.

A new variant of iterated local search hyper-heuristics was also proposed, which incorporates dynamic multi-
armed bandits. Both the heuristic pool selection method and the hyper-heuristic variant were successfully tested on
two complex optimisation problems: course timetabling and vehicle routing, which offers some evidence of generality.
Our results on well studied benchmark instances, indicate that the proposed approach outperforms state-of-the-art
hyper-heuristics on both domains. Moreover, on the course timetabling domain, it also successfully competes with
state-of-the-art problem specific approaches, producing 5 new best-known solutions.

Future work will explore rigorous ways to not only determine the size of the heuristic pool, but importantly, if
the pool is effective for the underlying domain, considering for example the complementarity and cooperation among
the constituent heuristics. We also foresee the application of the methodology to selection hyper-heuristics with
constructive heuristics and new problem domains.

19

[1] Altenberg, L., 1994. The evolution of evolvability in genetic programming. In: Advances in Genetic Programming. MIT Press, Cambridge,
MA, USA, pp. 47–74.

[2] Auer, P., Cesa-Bianchi, N., Fischer, P., 2002. Finite-time analysis of the multiarmed bandit problem. Machine Learning 47 (2-3), 235–256.
[3] Babaei, H., Karimpour, J., Hadidi, A., 2015. A survey of approaches for university course timetabling problem. Computers & Industrial

Engineering 86, 43 – 59, applications of Computational Intelligence and Fuzzy Logic to Manufacturing and Service Systems.
[4] Birattari, M., 2009. Tuning Metaheuristics: A Machine Learning Perspective. Springer.
[5] Burke, E., Eckersley, A., McCollum, B., Petrovic, S., Qu, R., 2010. Hybrid variable neighbourhood approaches to university exam timetabling.

European Journal of Operational Research 206 (1), 46 – 53.
[6] Burke, E. K., Gendreau, M., Hyde, M., Kendall, G., Ochoa, G., Ozcan, E., Qu, R., Dec 2013. Hyper-heuristics: A survey of the state of the

art. Journal of the Operational Research Society 64 (12), 1695–1724.
[7] Burke, E. K., Hyde, M., Kendall, G., Ochoa, G., Özcan, E., Woodward, J., 2010. Handbook of Metaheuristics. Vol. 146 of International Series

in Operations Research & Management Science. Springer, Ch. A Classification of Hyper-heuristic Approaches, pp. 449–468, chapter 15.
[8] Burke, E. K., McCollum, B., Meisels, A., Petrovic, S., Qu, R., 2007. A graph-based hyper-heuristic for educational timetabling problems.

European Journal of Operational Research 176 (1), 177–192.
[9] Burke, E. K., Qu, R., Soghier, A., 2014. Adaptive selection of heuristics for improving exam timetables. Annals of Operations Research

218 (1), 129–145.
[10] Cambazard, H., Hebrard, E., O¢¢Sullivan, B., Papadopoulos, A., 2012. Local search and constraint programming for the post enrolment-based

course timetabling problem. Annals of Operations Research 194, 111–135.
[11] Ceschia, S., Di Gaspero, L., Schaerf, A., 2012. Design, engineering, and experimental analysis of a simulated annealing approach to the

post-enrolment course timetabling problem. Computers & Operations Research 39 (7), 1615 – 1624.
[12] Chakhlevitch, K., Cowling, P., 2005. Choosing the fittest subset of low level heuristics in a hyperheuristic framework. In: Evolutionary

Computation in Combinatorial Optimization. Vol. 3448 of Lecture Notes in Computer Science. Springer Berlin Heidelberg, pp. 23–33.
[13] Costa, L. D., Fialho, A., Schoenauer, M., Sebag, M., 2008. Adaptative operator selection with dynamic multi-armed bandits. In: Proceedings

of the Genetic and Evolutionary Computation Conference (GECCO 2008). ACM, pp. 913–920.
[14] Derrac, J., Garcia, S., Molina, D., Herrera, F., 2011. A practical tutorial on the use of nonparametric statistical tests as a methodology for

comparing evolutionary and swarm intelligence algorithms. Swarm and Evolutionary Computation 1 (1), 3 – 18.
[15] Eiben, A., Smit, S., mar 2011. Parameter tuning for configuring and analyzing evolutionary algorithms. Swarm and Evolutionary Computation

1 (1), 19–31.
[16] Fialho, A., Costa, L., Schoenauer, M., Sebag, M., 2009. Dynamic multi-armed bandits and extreme value-based rewards for adaptive operator

selection in evolutionary algorithms. In: Learning and Intelligent Optimization. Vol. 5851 of Lecture Notes in Computer Science. Springer
Berlin Heidelberg, pp. 176–190.

[17] Fialho, A., Costa, L. D., , Sebag, M., 2010. Analyzing bandit-based adaptive operator selection mechanisms. Ann. Math. Artif. Intell. 60 (1-2),
25–64.

[18] Hoos, H. H., 2012. Automated Algorithm Configuration and Parameter Tuning. In Autonomous Search. Springer Berlin Heidelberg, Ch. 3,
pp. 37–71.

[19] Hutter, F., Hoos, H. H., Leyton-Brown, K., Stützle, T., 2009. Paramils: an automatic algorithm configuration framework. Journal of Artificial
Intelligence Research 36 (1), 267–306.

[20] Jat, S. N., Yang, S., 2011. A hybrid genetic algorithm and tabu search approach for post enrolment course timetabling. Journal of Scheduling
14(6), 617–637.

[21] Kumar, S. N., 2012. A Survey on the Vehicle Routing Problem and Its Variants. Intelligent Information Management 04 (03), 66–74.
[22] Lewis, R., 2012. A time-dependent metaheuristic algorithm for post enrolment-based course timetabling. Annals of Operations Research 194,

273–289.
[23] Lewis, R., Paechter, B., McCollum, B., et al., 2007. Post enrolment based course timetabling: A description of the problem model used for

track two of the second international timetabling competition. Cardiff Business School.
[24] Lewis, R., Thompson, J., 2015. Analysing the effects of solution space connectivity with an effective metaheuristic for the course timetabling

problem. European Journal of Operational Research 240 (3), 637 – 648.
[25] Lourenço, H., Martin, O., Stützle, T., 2003. Iterated local search. In: Glover, F., Kochenberger, G., Hillier, F. S. (Eds.), Handbook of

Metaheuristics. Vol. 57 of International Series in Operations Research & Management Science. Springer New York, pp. 320–353.
[26] Lu, Z., Hao, J.-K., 2010. Adaptive tabu search for course timetabling. European Journal of Operational Research 200 (1), 235 – 244.
[27] Mascia, F., Stützle, T., 2012. A Non-adaptive Stochastic Local Search Algorithm for the CHeSC 2011 Competition. Springer Berlin Heidel-

berg, Ch. 1, pp. 101–114.
[28] Ochoa, G., Hyde, M., 2011. The Cross-domain Heuristic Search Challenge (CHeSC 2011). Website, http://www.asap.cs.nott.ac.uk/

chesc2011/.
[29] Ochoa, G., Hyde, M., Curtois, T., Vazquez-Rodriguez, J. A., Walker, J., Gendreau, M., Kendall, G., Parkes, A. J., Petrovic, S., Burke, E. K.,

2012. Hyflex: a benchmark framework for cross-domain heuristic search. In: Proceedings of the 12th European conference on Evolutionary
Computation in Combinatorial Optimization, EvoCOP’12. Vol. 7245 of Lecture Notes in Computer Science. Springer-Verlag, pp. 136–147.

[30] Ochoa, G., Walker, J., Hyde, M., Curtois, T., 2012. Adaptive evolutionary algorithms and extensions to the hyflex hyper-heuristic framework.
In: Parallel Problem Solving from Nature - PPSN 2012. Vol. 7492 of Lecture Notes in Computer Science. Springer, Berlin, pp. 418–427.

[31] Pillac, V., Gendreau, M., Guaret, C., Medaglia, A. L., 2013. A review of dynamic vehicle routing problems. European Journal of Operational
Research 225 (1), 1 – 11.

[32] Pillay, N., 2013. A survey of school timetabling research. Annals of Operations Research 218 (1), 261–293.
[33] Pillay, N., 2014. A review of hyper-heuristics for educational timetabling. Annals of Operations Research, 1–36.
[34] Qu, R., Burke, E. K., McCollum, B., 2009. Adaptive automated construction of hybrid heuristics for exam timetabling and graph colouring

problems. European Journal of Operational Research 198 (2), 392 – 404.
[35] Qu, R., Burke, E. K., McCollum, B., Merlot, L. T. G., Lee, S. Y., 2008. A survey of search methodologies and automated system development

20

for examination timetabling. Journal of Scheduling 12 (1), 55–89.
[36] Sabar, N. R., Ayob, M., Kendall, G., Qu, R., Feb 2015. A dynamic multiarmed bandit-gene expression programming hyper-heuristic for

combinatorial optimization problems. IEEE Transactions on Cybernetics 45 (2), 217–228.
[37] SINTEF, 2008. Transportation optimization portal - TOP: Vehicle routing problem with time windows. Website, https://www.sintef.

no/vrptw.
[38] Smith, T., Husbands, P., Layzell, P., O’Shea, M., 2002. Fitness landscapes and evolvability. Evolutionary Computation 10 (1), 1–34.
[39] Smith-Miles, K., Lopes, L., May 2012. Measuring instance difficulty for combinatorial optimization problems. Computers & Operations

Research 39 (5), 875–889.
[40] Soria-Alcaraz, J., Ochoa, G., Carpio, J. M., Puga, H., 2014. Evolvability metrics in adaptive operator selection. In: Genetic and Evolutionary

Computation Conference, GECCO ’14, Vancouver, BC, Canada, July 12-16, 2014. pp. 1327–1334.
[41] Soria-Alcaraz, J., Ozcan, E., Swan, J., Kendall, G., Carpio, M., 2016. Iterated local search using an add and delete hyper-heuristic for

university course timetabling. Applied Soft Computing 40, 581 – 593.
[42] Soria-Alcaraz, J., Terashima-Marin, H., Carpio, M., 2010. Academic timetabling design using hyper-heuristics. Advances in Soft Computing,

ITT Springer-Verlag 1, 158–164.
[43] Soria-Alcaraz, J. A., Ochoa, G., Swan, J., Carpio, M., Puga, H., Burke, E. K., 2014. Effective learning hyper-heuristics for the course

timetabling problem. European Journal of Operational Research 238 (1), 77 – 86.
[44] Vanneschi, L., Clergue, M., Collard, P., Tomassini, M., Verel, S., 2004. Fitness clouds and problem hardness in genetic programming. In:

Proceedings of the Genetic and Evolutionary Computation (GECCO 2004). Vol. 3103 of Lecture Notes in Computer Science. Springer Berlin
Heidelberg, pp. 690–701.

[45] Walker, J., Ochoa, G., Gendreau, M., Burke, E. K., 2012. Vehicle routing and adaptive iterated local search within the hyflex hyper-heuristic
framework. In: Hamadi, Y., Schoenauer, M. (Eds.), Learning and Intelligent Optimization. Lecture Notes in Computer Science. Springer
Berlin Heidelberg, pp. 265–276.

21

Appendix

This appendix give more details on the formulation and instance data of the two selected test domains.
Course timetabling: is an educational timetabling problem which requires to scheduling of a set of events using
limited resources subject to a set of constraints. This study is focusses on the post-enrollment course timetabling
problem in which the student enrollment is available before the timetabling process, in this variant is necessary to
assign a set of courses into timeslots looking for the minimum number on conflicts i.e. Two courses or lectures
assigned at the same time to a student. There are two main types of constraints in a timetabling problem: hard and
so f t constraints. The hard constraints have to be satisfied in order to obtain a feasible solution, while violations
of soft constraints are allowed, since they represent preferences.The main constraints of the post-enrolment course
timetabling problem instances of the International timetabling competition (ITC) 2007 track 2 are as follows:

• A set of n events that are scheduled into 45 time-slots.

• A set of r rooms, each which has a specific seating capacity.

• A set of room-features that are satisfied by rooms and required by events.

• A set of s students who attend various different combinations of events.

The hard constraints are:

• No student should be required to attend more that one event at the same time.

• In each case the room should satisfy the class requirements (be big enough for all the attending students and/or
required class features).

• Only one event is put into each room in any timeslot.

• Events should only be assigned to timeslots that are pre-defined as available.

• Where specified, events should be scheduled to occur in the correct order.

The soft constraints are:

• Students should not be scheduled to attend an event in the last timeslot of a day.

• Students should not have to attend three or more events in successive timeslots.

• Student should not be required to attend only one event in a particular day.

Vehicle routing: The vehicle routing problem can be described as the task of meeting the demand of all customers,
using as few vehicles as possible, and satisfying all constraints, such as vehicle capacity. Furthermore, the variant of
the vehicle routing problem which is modelled here is the vehicle routing problem with time windows. This variant
includes extra time window constraints, whereby a customer must be served between two time points for a solution to
be valid. There is a base location, or depot, from where each vehicle must start and end its route. A route is a series of
location visits for a single vehicle. The objective function for this domain balances the dual objectives of minimising
the number of vehicles needed and minimising the total distance travelled. It was defined as follows:

ob jective f unction = c × numVehicles + distance

where c is a constant that we empirically set to 1000 to give higher importance to the number of vehicles in a solution.
Instances are taken from two sources: the Solomon data set of 100 customer problems, and the Homberger data
set of 1000 customer problems. These instances are available from the Transportation Optimization Portal - TOP
[37], maintained by SINTEF Applied Mathematics. SINTEF is the largest independent research organisation in
Scandinavia. For both data sets, there are three types of instances. Namely:

R: Random. The customers locations are determined in a uniformly random way.

C: Clustered. The customers locations are grouped in a number of clusters.

CR: Clustered Random. The customers locations are in a mix of random and clustered locations.

A total of 10 instances were chosen, 5 from each data set (Table 16). These are the instances available in the
current version of the HyFlex hyper-heuristic framework [29]

22

Table 16: Used Instances in Vehicle Routing Domain

Instance name no-vehicles vehicle capacity
0 Solomon/RC/RC207 25 1000
1 Solomon/R/R101 25 200
2 Solomon/RC/RC103 25 200
3 Solomon/R/R201 25 1000
4 Solomon/R/R106 25 200
5 Homberger/C/C1-10-1 250 200
6 Homberger/RC/RC2-10-1 250 1000
7 Homberger/R/R1-10-1 250 200
8 Homberger/C/C1-10-8 250 200
9 Homberger/RC/RC1-10-5 250 200

23

