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Abstract

This thesis is concerned with finding solutions to discrete NP-hard problems. Such problems occur in a

wide range of real-world applications, such as bin packing, industrial flow shop problems, determining

Boolean satisfiability, the traveling salesman and vehicle routing problems, course timetabling, person-

nel scheduling, and the optimisation of water distribution networks. They are typically represented

as optimisation problems where the goal is to find a “best” solution from a given space of feasible

solutions. As no known polynomial-time algorithmic solution exists for NP-hard problems, they are

usually solved by applying heuristic methods.

Selection hyper-heuristics are algorithms that organise and combine a number of individual low

level heuristics into a higher level framework with the objective of improving optimisation perfor-

mance. Many selection hyper-heuristics employ learning algorithms in order to enhance optimisation

performance by improving the selection of single heuristics, and this learning may be classified as either

online or offline. This thesis presents a novel statistical framework for the offline learning of subse-

quences of low level heuristics in order to improve the optimisation performance of sequenced-based

selection hyper-heuristics.

A selection hyper-heuristic is used to optimise the HyFlex set of discrete benchmark problems.

The resulting sequences of low level heuristic selections and objective function values are used to

generate an offline learning database of heuristic selections. The sequences in the database are broken

down into subsequences and the mathematical concept of a logarithmic return is used to discriminate

between “effective” subsequences, that tend to lead to improvements in optimisation performance,

and “disruptive” subsequences that tend to lead to worsening performance. Effective subsequences are

used to improve hyper-heuristics performance directly, by embedding them in a simple hyper-heuristic

design, and indirectly as the inputs to an appropriate hyper-heuristic learning algorithm. Furthermore,

by comparing effective subsequences across different problem domains it is possible to investigate the

potential for cross-domain learning.

The results presented here demonstrates that the use of well chosen subsequences of heuristics can

lead to small, but statistically significant, improvements in optimisation performance.
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Chapter 1

Introduction

1.1 Overview

This thesis is concerned with finding solutions to discrete NP-hard problems. Such problems occur in a

wide range of real-world applications, such as bin packing, industrial flow shop problems, determining

Boolean satisfiability, the traveling salesman and vehicle routing problems, course timetabling, per-

sonnel scheduling, and the optimisation of water distribution networks. These problems are typically

expressed as optimisation problems where the goal is to find a “best” solution from a given space

of feasible solutions. As no known polynomial-time algorithmic solution exists for NP-hard problems,

they are usually solved by applying heuristics. Heuristics are processes or methods that learn to employ

loosely defined rules of thumb or trial and error in order to resolve a given problem.

Hyper-heuristics

In their seminal work on the job scheduling problem [46] and [27] demonstrate that an unbiased random

combination of job scheduling heuristics outperforms any individual job scheduling heuristic and that

it is possible to employ “probabilistic learning” to improve performance further. The idea of applying

a combination or permutation of heuristics to a problem to find a better solution gives rise to the

concept of higher level heuristics such as metaheuristics [10] [8] [12] and more recently hyper-heuristics

[22] [15] [14] [16].

Higher level heuristics are algorithms that organise and combine a number of individual low level

heuristics into a higher level framework with the objective of improving optimisation performance.

Metaheuristics and hyper-heuristics differ in a number of respects. For example, metaheuristics can

access problem specific knowledge, while a hyper-heuristic which is subject to the limitations of the

domain barrier cannot. As a result, metaheuristic approaches tend to be rich in domain knowledge,

requiring significant expertise in both the problem and the available heuristics, and so they can be
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CHAPTER 1. INTRODUCTION 1.1

expensive to implement and maintain. Furthermore, a metaheuristic approach developed for one

particular problem may not be applicable to other problem domains, or even other instances of the

same or similar problems [25]. The domain barrier requires a hyper-heuristic to perform well in the

absence of problem specific knowledge and therefore, it is hoped, to be “re-useable” across different

problems and problem domains with minimal changes. This places hyper-heuristics at a higher level

of abstraction than many metaheuristics.

Hyper-heuristics may be classified according to a number of criteria. In general, hyper-heuristics

can be used to either generate or select low level heuristics [15]. A generation hyper-heuristic generates

new heuristics from primitive components or observed search trails of existing heuristics. Most of the

approaches to heuristics generation in the literature employ genetic programming [72] to discover new

heuristics by modifying or combining existing low level heuristics [16]. A selection hyper-heuristic

selects and applies a heuristic chosen from a set of low level heuristics. The goal of both types of

hyper-heuristic is to improve the search process through learning and/or optimisation. This thesis is

concerned with selection hyper-heuristics.

Learning Algorithms

Most hyper-heuristics (and some metaheuristics) employ learning algorithms [8]. Typically, the learn-

ing algorithm optimises a hyper-heuristic’s internal structure and parameters in order to improve the

selection or generation of heuristics. Such learning algorithms can be categorised as either online or

offline. Online learning is performed during the execution of a hyper-heuristic on a particular prob-

lem, while offline learning is performed on a number of benchmark training problems. The objective

of online learning is to improve optimisation performance on the problem at hand. In contrast, a

successful offline learning algorithm must generalise across the benchmark training problems leading

to improvements in optimisation performance on unseen test problems. Offline learning can be further

classified as either intra-domain or cross-domain. In intra-domain learning, the training sequences and

the test optimisation problem are drawn from the same problem domain. In cross-domain learning,

the training sequences and test problem can be drawn from different domains.

In both the online and offline cases, a learning algorithm will attempt to identify effective heuristics

that tend to lead to improvements in optimisation performance, and disruptive heuristics that tend

to lead to worsening performance. A hyper-heuristic uses this learnt knowledge to favour effective

heuristics over disruptive ones during the optimisation process. Typically, such learning algorithms

are trained to produce single heuristic selections (or in some cases heuristic pairs), with little regard

for any synergies that may occur between a set of individual heuristics.

10



CHAPTER 1. INTRODUCTION 1.1

A Sequence-based Approach

Hyper-heuristics and metaheuristics move through a search space by applying sequences of perturba-

tions to a set of existing solutions. Although the mechanisms for selecting a solution to perturb, and

the frequency with which perturbation operations are applied can vary greatly between algorithms,

there exists an identifiable sequence of perturbations for a single solution or population of solutions.

For some algorithms, the perturbations and therefore the sequence is fixed. For example, an evolu-

tionary algorithm will execute a mutation operation and crossover operation at a given rate for every

iteration of the algorithm. In this case, there is little to be said about the sequences of perturbations

which are generated by these types of algorithm. However, in the case of a selection hyper-heuristic

which can select from a wide range of potential perturbations in any order it chooses, the issue of

context and the notion of sequence becomes important. For example, a disruptive perturbation such

as a partial randomisation of a solution when paired with an exploitative perturbation such as a lo-

cal search in that order might yield improved solutions. The randomisation moves the solution to a

new, unexplored region of space and the local search finds the best solution in that neighbourhood.

However, the reverse (local search followed by randomisation) is likely to be a poor strategy, with the

majority, if not all, of the work carried out by the local search being discarded. Furthermore, it is well

known that the effectiveness of heuristics can vary during the optimisation process. For example, in

[97] the authors observe that some heuristics are more effective at the beginning of the optimisation

problems, and less effective at the end, and vice versa, while others heuristics are mainly used at the

beginning, middle or end of the process.

From these two small examples it becomes clear that the correct ordering of a sequence of heuristics

is imperative if search efficacy is to be achieved. The idea that the order in which a set of heuristics

are applied is important leads naturally to the study of sequences (and subsequences) of heuristics.

Adopting a sequence-based approach can also reduce the number of objective function evaluations

required- in the first example given above, there is no need to evaluate the result of the randomisation.

This is beneficial because, for many real world problem domains and problem sizes, evaluating the

objective function is computationally expensive.

A Framework for Offline Learning

This thesis introduces a novel statistical framework for the offline analysis of heuristic selections.

An offline learning database of heuristic selections, and their associated objective function values,

is generated by repeatedly executing an unbiased selection hyper-heuristic on a number of problem

instances and problem domains. The problem instances and domains are drawn from the HyFlex

benchmark set [84], which is a well known set of discrete optimisation problems that has been used in

a number of studies.

The proposed framework is intended to be independent of the problem domain, the number or

11
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type of heuristics, or the process used to generate the heuristic selections. The framework employs

logarithmic returns which are used widely in finance where they are employed to compare two or more

variables when the originating price series consist of highly unequal values [61]. Here, logarithmic

returns are used to normalise subsequences of objective function values.

The framework is used to quantify the behaviour of heuristic selections such as

1. individual heuristics,

2. subsets of heuristics, and

3. subsequences of heuristics.

Statistics are calculated over the sets of heuristic selections that occur in the database, and these

statistics are used to quantify heuristic behaviours such as optimisation performance, the effect of

heuristic order on performance, and the changes in performance that occur during the optimisation

process. A number of performance measures based on logarithmic returns are proposed and evaluated,

such as the mean log return α of a heuristic, the mean unit log return β and the γ-ratio of a subset

or subsequence of heuristics, and the order sensitivity δ of a subset of heuristics. In general, when the

goal of optimisation is to minimise a given objective function, heuristic selections can be categorised

as either effective when they tend to decrease the objective function value, or disruptive when they

tend to increase the objective function value.

By quantifying heuristic behaviour both within and between problem domains, it becomes possible

to employ visualisation techniques as an aid to the analysis of heuristics selections.

Although the framework can be applied to a wide range of discrete and continuous optimisation

problems, it should be noted that a candidate problem must have at least two low level heuristics,

and these heuristics must have different performance characteristics; otherwise there is nothing to be

learnt from the heuristic selections. Furthermore, the framework has only been applied to deterministic

problems, static problems (rather than dynamic ones) which are fixed during the optimisation process,

and problems with “noiseless” objective functions. An appraisal of the framework when applied to

stochastic, dynamic or “noisy” optimisation problems could form the basis for future research.

Effective Subsequences

It is hoped that by investigating the effect of order on subsets and subsequences of heuristics, it will

be possible to demonstrate that subsequences are useful structural components of the optimisation

process. Effective subsequences of heuristics could be used to improve the optimisation performance

of sequence-based hyper-heuristics either directly, by embedding them in a suitable hyper-heuristic

design, or indirectly as the inputs to an appropriate offline learning algorithm. This thesis presents

examples of both subsequence embedding, and offline subsequence learning. Specifically, subsequences
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are chosen from an offline learning database using the γ-ratio and embedded in an unbiased, sequence-

based hyper-heuristic, denoted EvalHH, in order to evaluate the subsequences, and by extension the

framework. Here the objective is to demonstrate that offline subsequence learning can achieve results

that are comparable to online subsequence learning. With this in mind, the optimisation performance of

EvalHH is compared with results produced by the SSHH hyper-heuristic [67]. The SSHH hyper-heuristic

is a published, sequenced-based hyper-heuristic with online learning capabilities that is known to

perform well on the HyFlex problems. Effective subsequences can also be used to offline train the

SSHH hyper-heuristic using the Baum-Welch learning algorithm [95]. In this case, the framework is

used to investigate the potential for hybrid subsequence learning which is a mixture of online and offline

learning.

1.2 Research Contributions

The framework presented here is intended to contribute to research in the fields of hyper-heuristic

offline learning, and the role of heuristic subsequences in optimisation. The primary objectives are to

1. quantify the performance of heuristic selections in order to identify effective subsequences of

heuristics in an offline learning database,

2. quantify the effect of order on heuristic subsets and subsequences,

3. demonstrate that subsequences of heuristics are useful structural components of the optimisation

process,

4. quantify the scope and limits of offline subsequence learning,

5. determine the existence of effective cross-domain subsequences of heuristic classes in order to

investigate the potential for cross-domain learning and generalisation,

6. investigate hybrid subsequence learning, and

7. investigate the potential for scalable learning where effective subsequences learned from small

problems are applied to larger, computationally expensive problems.

These innovations advance the field of hyper-heuristics in terms of performance, and their potential

for application to problem instances and domains that could not have been considered previously due

to their size or complexity.

1.3 Published Work

A number of papers have been written based on the work described in this thesis. These are:
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[123] Yates, W. B., and Keedwell, E. C. Clustering of hyper-heuristic selections using the

Smith-Waterman algorithm for offline learning. In Proceedings of the Genetic and Evolutionary

Computation Conference (2017), GECCO, ACM, pp. 119–120.

In this paper, the similarities and dissimilarities that occur between sequences of heuristics in an

offline learning database are identified and analysed algorithmically. The sequences of heuristics are

generated by an individual hyper-heuristic run on a given problem instance, and constitute a trace of

the optimisation process. By employing a suitable measure of similarity, the sequences of the database

can be grouped or clustered according to the view of the similarity algorithm. It can be shown that by

using a well-known algorithm from bioinformatics more commonly used to explore the conserved regions

of DNA sequences, the Smith-Waterman algorithm [106], it is possible to characterise problems using

only the sequence of heuristic choices made by the hyper-heuristic. The Smith-Waterman algorithm is

able to provide a measure of the level of similarity between two strings operating over any alphabet,

and is used in [123] to define a distance function between sequences of heuristics which is then used

to perform a cluster analysis. The results presented show that the Smith-Waterman algorithm is able

separate the offline database into distinct problem domains.

The automatic separation and identification of problem domains from sequences of heuristics is

useful because it demonstrates that there are subsequences of heuristics that are common to each

problem domain, and that these subsequences vary between domains. This strengthens the thesis

that subsequences of heuristics play an important role in the optimisation process. In addition, the

identification of a (similar) problem domain can improve the choice of learning algorithm, learning

algorithm parameterisation, and training data. For example, in [113] a k-nearest neighbour classifier

is used to identify problems in an offline database that are similar to a target problem based on a set

of measurable problem characteristics. This metaknowledge is then used to retrieve further problem

specific information which is used to optimise the performance of a planning algorithm. The method

described here differs from conventional metalearning approaches to algorithm selection in that, as

only sequences of low level heuristic classes are employed, no problem specific information is required,

preserving the domain barrier.

[124] Yates, W. B., and Keedwell, E. C. Offline learning for selection hyper-heuristics with Elman

networks. In Artificial Evolution (2018), E. Lutton, P. Legrand, P. Parrend, N. Monmarché, and

M. Schoenauer, Eds., vol. 10764 of Lecture Notes in Computer Science, Springer, pp. 217–230.

In this paper, an Elman network is trained on sequences of heuristic selections chosen from an

offline learning database, and its ability to learn and generalise from these sequences is evaluated.

Elman networks are recurrent neural networks that learn from, process and produce sequences of data.

They are typically applied to problems which express themselves naturally as temporal sequences such

as natural language processing applications [40] [41].

14



CHAPTER 1. INTRODUCTION 1.4

The networks are trained using a leave-one-out cross-validation methodology and the sequences of

heuristic selections they produce are tested on unseen problems drawn from the HyFlex benchmark set.

The results demonstrate that the Elman network is capable of intra-domain learning and generalisation

with 99% confidence. In this context, generalisation means that the network is able to produce a

sequence of heuristic selections which, when evaluated on unseen examples, outperform the training

sequence. When the network was trained using a cross-domain training set, the Elman network did

not exhibit generalisation indicating that cross-domain generalisation is a more difficult problem and

that strategies learned on one domain cannot necessarily be transferred to another.

The work in [123] and [124] has been omitted from the main body of this thesis because it was

felt that these studies, which focus on sequences, were peripheral to the general study of subsets

and subsequences. For completeness, the published texts have been included in Appendix A and

Appendix B, respectively. It should be noted that following the publication of [123] the suitability of

the parametric paired t-test that is used to validate the results came into question. Although the t-test

is quite robust, the assumption of normality is not generally met in machine learning applications, and

as a consequence all the statistical significance tests have been repeated, successfully, using the non-

parametric Wilcoxon signed rank test employed throughout the remainder of this study (see Chapter

3, Section 3.5).

[126] Yates, W. B., and Keedwell, E. C. An analysis of heuristic subsequences for offline hyper-

heuristic learning. Journal of Heuristics 25, 3 (2019), 399–430.

This paper contains the essential elements of the framework which is presented in Chapter 3 and

the results of applying this framework to subsequences in Chapter 4.

[127] Yates, W. B., and Keedwell, E. C. Combining online and offline learning for a sequence-

based selection hyper-heuristic. In preparation (2020)

This paper describes the results of combining offline and online subsequence learning contained in

Chapter 5.

[125] Yates, W. B., and Keedwell, E. C. Analysing heuristic performance for optimising water

distribution networks. In 17th International Computing and Control for the Water Industry

Conference (CCWI) (2019), Extended Abstract.

[128] Yates, W. B., and Keedwell, E. C. Offline learning with a selection hyper-heuristic: An

application to water distribution network optimisation. Evolutionary Computation, accepted

(2020).

These papers present the results of applying the framework to the optimisation of water distribution

networks, and form the basis for Chapter 6.
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1.4 Thesis Structure

This thesis presents a novel statistical framework for the offline learning of effective subsequences of

low level heuristics in order to improve the optimisation performance of sequenced-based selection

hyper-heuristics.

The structure of this thesis is as follows. Chapter 2 contains a general description of the optimisation

problem together with a number of real world examples. It also presents a classification of metaheuris-

tic and hyper-heuristic methods in general, and selection hyper-heuristics in particular. Chapter 3,

presents a framework for offline learning, based on the mathematical concept of logarithmic returns.

This framework is used to construct and analyse an offline learning database generated by repeatedly

executing a selection hyper-heuristic on the HyFlex benchmark set. In Chapter 4 this framework is

used to identify and analyse subsequences of heuristic selections. Specifically, the γ-ratio is introduced,

and used to select sets of subsequences of heuristics from a number of offline learning databases. These

subsequence sets are used to parameterise a sequenced-based, selection hyper-heuristic which is exe-

cuted on a number of unseen HyFlex problem. In Chapter 5 the framework is applied to mixed or

hybrid learning which is a combination of offline and online learning. Specifically, the SSHH hyper-

heuristic, is trained offline with the Baum-Welch learning algorithm. The offline trained SSHH is then

evaluated on unseen HyFlex problem instances. In Chapter 6 the methodology developed and eval-

uated on the HyFlex problems is applied to a novel, real-world problem domain; the optimisation of

water distribution networks, and the potential for scalable learning, where knowledge learned from

a small problem is usefully transferred to a second larger problem, is explored. Finally, Chapter 7

presents the conclusions of this thesis.

Appendices A and B contain the published texts of [123] and [124] respectively. Appendix C

contains an overview of the relational schema used to implement an offline learning database.
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Chapter 2

Background

Heuristics are processes or methods that learn to employ loosely defined rules of thumb or trial and

error in order to solve a given problem. They are usually applied to computationally NP-hard problems

where no known effective algorithmic solution exists. Such problems occur in a wide range of real-world

applications, such as bin packing, industrial flow shop problems, determining Boolean satisfiability,

the traveling salesman and vehicle routing problems, course timetabling, personnel scheduling, and

the optimisation of water distribution networks. Typically, the problems are expressed as optimisation

problems where the goal is to find a “best” solution from a given space of feasible solutions, and such

problems arise in a wide variety of real world applications.

Higher level heuristic approaches such as metaheuristics and hyper-heuristics are algorithms that

organise and combine a number of individual heuristics into a higher level framework with the objective

of improving optimisation performance.

Most hyper-heuristics (and some metaheuristics) employ learning algorithms. This learning can

be categorised as either online or offline. Online learning is performed during the execution of a high

level heuristic on a particular problem, while offline learning is performed on a number of benchmark

training problems. In each case, a learning algorithm will attempt to identify effective heuristics that

tend to lead to improvements in optimisation performance, and disruptive heuristics that tend to

lead to worsening performance. A high level heuristic uses this learnt knowledge to favour effective

heuristics over disruptive ones during the optimisation process.

Many of the learning algorithms employed by high level heuristics are trained to produce single

heuristic selections (or in some cases heuristic pairs), with little regard for any synergies that may

occur between a group of individual heuristics. Furthermore, in many problem domains there exist

large numbers of potential heuristics to choose from, and selecting an appropriate subset of heuristics

can be non-trivial. These considerations have led to interest in the construction and performance of

subsets of heuristics, and the interactions that occur between the elements of such subsets. However,
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a subset is, by definition, an unordered collection of distinct elements, and it is well known that the

order in which heuristics are applied during the optimisation process is also important if search efficacy

is to be achieved. This leads naturally to a consideration of subsequences of heuristics, that is, ordered

groups of heuristics.

This thesis examines the potential for improving hyper-heuristic optimisation performance by learn-

ing, offline from effective subsequences of heuristics.

The structure of the chapter is as follows. Section 2.1 begins with an overview of the field of opti-

misation and provides a number of examples of canonical optimisation problems. This is followed in

Section 2.2 with an introduction to the higher level heuristic approaches that are typically employed to

solve such problems. Specifically, Section 2.2.1 contains a description and classification of metaheuris-

tic methods, while Section 2.2.2 contains a description and classification of hyper-heuristic methods.

Section 2.2.3 contains a description and classification of selection hyper-heuristics which are the focus

of this study. In Section 2.3, the concept of heuristic sequence or order which is central to this thesis

is presented, and placed within the context of the wider literature. Specifically, Section 2.3.1 discusses

the construction and performance of subsets of heuristics, while Section 2.3.2 discusses subsequences

of heuristics. Section 2.4 presents a discussion of learning for hyper-heuristics, and contains examples

of the methodologies and algorithms that have been successfully employed for offline learning. Section

2.5 describes the sequence-based selection hyper-heuristic, SSHH which is employed to test the offline

subsequence learning methodology introduced in this thesis. Finally, in Section 2.6 the No Free Lunch

theorems for optimisation are summarised, and their applicability to hyper-heuristics is discussed.

2.1 Optimisation Problems

Optimisation is a branch of applied mathematics that addresses the problem of finding the best solution

from a given space of feasible solutions, and such problems arise in a wide variety of real world

applications [59]. A typical optimisation problem is the allocation of valuable resources among possible

alternative uses in order to minimise an objective function such as the total monetary cost.

In practice, optimisation is the minimisation (or maximisation) of a given real valued objective

function f : X −→ R of n decision variables x = (x1, . . . , xn) ∈ X which may be subject to a number

m of functional constraints g1, . . . , gm. Optimisation problems may be classified as discrete when the

decision variables are drawn from a discrete set, often a subset of integers, or continuous when the

decision variables are real valued. The functional constraints are usually expressed as equalities of the

form gi(x) = 0 for i ∈ E, and inequalities of the form gi(x) ≥ 0 for i ∈ I. Constraints can be classified

as either hard constraints that cannot be violated under any circumstances, or soft constraints which

should be satisfied as much as is possible. Problems that have constraints are termed constrained

optimisation problems, while problems without constraints are termed unconstrained. Some optimisa-

tion problems have no natural objective function and consist solely of constraints. Such optimisation
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problems are termed constraint satisfaction or feasibility problems. In contrast, other optimisation

problems have multiple objective functions f1, . . . , fN . Here the task is to minimise (or maximise) all

N objective functions simultaneously. Thus, a general optimisation problem can be specified as:

min
x∈X

f1(x), . . . , fN (x) such that (∀i ∈ E) gi(x) = 0 and (∀i ∈ I) gi(x) ≥ 0.

There are a number of canonical optimisation problems that have received a large amount of

attention in the literature. The optimisation problems considered in this thesis are summarised below.

Bin Packing

The Bin Packing problem (BP) concerns the packing of items into a finite number of bins or containers

in such a way so as to minimises the number of bins used [64]. In the one dimensional bin packing

problem (1D BP), each item j has a weight wj , and each bin has capacity c. The objective is to

minimise the number of bins used, where each item is assigned to exactly one bin, and the weight of

the items in each bin does not exceed c. Mathematically, let

yi =




1 if bin i contains items,

0 otherwise

and

xi,j =




1 if bin i contains item j,

0 otherwise.

Then, the function to be minimised is

N(y) =

n∑

i=1

yi

with hard constraints

(i = 1, . . . , n)

n∑

j=1

wjxi,j ≤ cyi

(j = 1, . . . , n)

n∑

i=1

xi,j = 1.

The first constraint ensures that each bin’s capacity is not exceeded, while the second constraint ensures

that each item is assigned to exactly one bin.

A practical application of the 1D BP problem is cutting lengths of stock material that has fixed

width, such as pipes, or metal beams. When the number of bins is restricted to 1 and each item is

characterised by a volume and a monetary value, the problem of maximising the value of items that

can fit in the bin is known as the Knapsack problem.
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Permutation Flow Shop

The Permutation Flow Shop (PFS) problem concerns the scheduling of n jobs on m machines [115].

Each job i consists of m operations where the j-th operation is to be performed, in order, by machine j

for a specified time pi,j . Intuitively, for each job, the first operations is processed by the first machine,

then as the first operation is finished, the second operation is processed by the second machine, and

so on, until the m-th operation, when the job is considered complete. The problem definition implies

that the order in which each machine processes the jobs is identical for all machines. Mathematically,

consider a permutation π = π(1), π(2), . . . , π(m) where π(q) is the index of the operation in the q-th

position. Given π, a unique schedule can be obtained by calculating the start and completion times of

each operation on each machine. The start time sπ(q),j of the q-th operation on machine j is

(q, j = 1, . . . ,m) sπ(q),j = max{ sπ(q),j−1, sπ(q−1),j }

where

sπ(q),0 = sπ(0),j = 0.

The completion time Cπ(q),j of the qth operation on machine j is

(q, j = 1, . . . ,m) Cπ(q),j = sπ(q),j + pπ(q),j .

Given a schedule, let Ci be the time when job i completes its processing on the last machine m. A

solution to the PFS problem is a processing order that minimises the completion time of the last job

to exit the shop, that is, a processing order π that minimises the function

T (π) =
n

max
i=1

Ci.

A related problem to the PFS is the Job Shop Scheduling problem (JSP) which again concerns the

scheduling of n jobs on m machines. Each job i has a duration Di and consists of a sequence of ni

operations that must be completed in that order. Each operation has a specific machine that it needs

to be processed on and only one operation in a job can be processed at a given time. The objective is

to minimise the duration or makespan which is the time that elapses between the start of a job and its

finish. A common variant of the JSP is the Flexible Job Shop where each operation can be processed

on any machine, that is, the machines are considered identical.

Boolean Satisfiability

The Boolean Satisfiability problem (SAT) concerns Boolean formulae expressed in conjunctive normal

form, such as

(x1 ∨ ¬x2) ∧ (¬x1 ∨ x2 ∨ x3) ∧ ¬x1

where ∧, ∨, and ¬ denote the logical operations AND, OR, and NOT respectively. A Boolean expression

is said to be satisfiable if it can be made TRUE by assigning appropriate logical values (TRUE or FALSE)
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to its variables, which in the example above are x1, x2, and x3. The objective of the SAT problem

is to decide if some given Boolean expression is satisfiable. The SAT problem can be generalised to

the Maximum Satisfiability problem (MAX-SAT) where the objective is to determine the maximum

number of clauses that can be made true by a suitable assignment of truth values [63].

The Traveling Salesman Problem

The Traveling Salesman problem (TSP) concerns a salesman based at a city 1 who must visit cities

2, 3, . . . , n and then return to city 1. The distance from city i to city j is denoted ci,j . The objective

is to visit each city exactly once, in a sequence that minimises the distance travelled. In symbols, let

the elements of an n× n matrix x represent a tour of the n cities where

xi,j =




1 if there is a path from city i to city j,

0 otherwise

and define the distance travelled to be minimised as

D(x) = min

n∑

i=1

n∑

j=1,j 6=i

ci,jxi,j

with hard constraints

(j = 1, . . . , n)

n∑

i=1,i6=j

xi,j = 1

(i = 1, . . . , n)

n∑

j=1,j 6=i

xi,j = 1

(∀Q ⊆ {1, . . . , n}, |Q| ≥ 2)
∑

i∈Q

∑

j∈Q

xi,j < |Q| − 1.

The first constraint ensures that each city is arrived at from exactly one other city, while the second

constraint ensures that from each city there is a departure to exactly one other city. The last constraint

ensures that there is only a single tour covering all the cities, and not two or more disjoint subtours.

The TSP can be generalised to the Vehicle Routing Problem (VRP). Here, the objective is to find a

set of optimal routes for a fleet of m vehicles to traverse in order to make deliveries to a given set of

customers.

Course Timetabling

The Course Timetabling problem (CTP) consists of a set of time periods, a set of events to run in those

periods, a set of agents that attend the events, and a set of places where the events take place [108]. The

agents are groups or classes of students and teachers, while the places represent the classrooms. Agents

and places have hard and soft constraints associated with them, such as limits on the number of classes
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students are required to take in one day, teacher workload or room capacity. Events can be single lessons

or a set of lessons, and have a number of properties that influence the allocation of agents to them.

These properties are expressed as constraints or other optimality criteria. Examples of event properties

include the event’s duration, restrictions that some events must take place in certain classrooms, the

contribution of the event to workload, and pre-assigned time slots. The objective is to ensure that a

number of additional constraints such as avoiding event clashes, limiting the “idle-time” of students or

classrooms, or limiting teacher workloads, are met. Mathematically, the CTP can be represented as a

constraint satisfaction problem where the decision variables are events. Specifically, consider a set of

events (courses or subjects) E = {e1, e2, . . . , en}, a set of time-periods T = {t1, t2, ..., ts}, a set of places

(classrooms) P = {p1, p2, ..., pm}, and a set of agents (teachers and students) A = {a1, a2, ..., ao}. Each
element e ∈ E is a unique event that requires the assignment of a time period t ∈ T , a place p ∈ P ,

and a set of agents S ⊆ A. An assignment is thus a quadruple (e, t, p, S), and a solution to the problem

is a complete set of n assignments (one for each event) that satisfies the set of constraints.

Personnel Scheduling

The Personnel Scheduling problem (PS) concerns the allocation of a number of employees to a number

of tasks over a specific planning period [29]. This involves deciding at which times and on which days

the employees should work over the planning period. Although there is no canonical representation

of the personnel scheduling problem, it constitutes an identifiable group of problems with a common

structure but which differ in their constraints and objectives. For example, for some problems there

may be a constraint on the maximum number of hours an employee can work in the planning period.

Alternatively, in another problem this constraint may be an objective, so that the employee is allowed

to exceed a certain number of hours but the excess is to be minimised. As in the CTP, the aim is to

ensure that the given constraints and objectives are met.

Optimising Water Distribution Networks

Optimising the design and rehabilitation of water distribution networks (WDN) is an important real-

world problem [120]. A WDN delivers water from reservoirs, tanks, and water treatment facilities to

consumers via a network of pipes and makes use of pumps and valves to meet consumer demand. The

optimisation of such networks aims to deliver water at an adequate pressure to all demand nodes for

the minimum monetary cost. The monetary cost to be minimised is usually expressed in millions (M)

and is defined by

C(D) =

np∑

i=1

Uc(Di)Li

where the decision variables D are the network’s pipe diameters, Uc is the unit pipe cost which

depends on the diameter Di selected, and Li is the length of pipe i = 1, . . . , np. Although cost
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minimisation is the primary objective, there are many other objectives that can also be considered

such as minimisation of water age, adherence to velocity and pressure constraints, and increasing the

robustness of the network to reduce supply outages.

2.2 High Level Heuristics

A heuristic is a process or method that learns to employ loosely defined rules of thumb or trial and

error in order to solve a given problem. The word heuristic derives from the Greek verb heuriskein

(or ευρισκειν) which means “to find”, or “to discover”. Heuristics are applied to computationally hard

problems where no known tractable algorithmic solution exists. Typically such problems are presented

as optimisation problems where the goal is to minimise an objective function f defined on a space X

of solutions.

In their seminal work on the job shop scheduling problem [46] and [27] demonstrate that an unbiased

random combination of job scheduling heuristics outperforms any individual job scheduling heuristic

and that it is possible to employ “probabilistic learning” to improve performance further. The idea

of applying a combination or permutation of heuristics to a problem to find a better solution gives

rise to the concept of higher level heuristics such as metaheuristics [10] [8] [12] and more recently

hyper-heuristics [22] [15] [14] [16].

2.2.1 Metaheuristics

Metaheuristics are algorithms that combine low level heuristic operations into a higher level framework

with the objective of efficiently searching a problem space X [10]. The Greek prefix meta (or µετά)

used in the word metaheuristic means “beyond” or “over”. Although there is no generally accepted

definition of what constitutes a metaheuristic there are a number of fundamental properties that

characterise them. Specifically:

1. they are strategies that “guide” the search process,

2. such algorithms are approximate, and usually non-deterministic,

3. they are not problem specific,

4. though they may make use of problem specific knowledge, and

5. they may use search experience and learning to improve the search.

An important concept in metaheuristic search is the trade off between diversification and intensifi-

cation. The term diversification refers to the global exploration of the search space, while intensification

refers to the exploitation of the local search space. Maintaining a dynamic balance between diversifica-

tion and intensification is crucial to metaheuristic performance [10]. This balance is necessary so that
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regions of the search space that contain high quality solutions are quickly identified without wasting

time in regions of the search space that have already been explored or do not contain high quality

solutions.

Metaheuristics can be broadly classified as to whether they operate on a single point or solu-

tion, or are population based (or multi-point), and whether they have a memory or are memoryless.

Metaheuristics can also be classified by the type of low level heuristics they employ.

Single point metaheuristics operate on a single solution, and such methods are also known as trajec-

tory methods because the search process, starting from some single initial solution can be characterised

as a trajectory in the search space. In contrast, population based metaheuristics employ a number of

solutions. In general, single point metaheuristics are more exploitation-oriented whereas population

based metaheuristics are more exploration-oriented [12].

The use of memory is recognised as one of the fundamental properties of a powerful metaheuristic.

Memory can be characterised as either short term which keeps track of recently performed operations,

solutions or, in general, decisions taken, such as a Tabu list, or long term which usually consists of

a number of internal parameters that hold information accumulated over the search process, such as

heuristic selection probabilities. Memoryless metaheuristics determine their next action solely on the

current state of the search process [10].

The low level heuristics employed by a metaheuristics are typically problem specific, and can be

broadly classified as either constructive or perturbative (also referred to as local search) operators [10].

Constructive heuristics are used to incrementally build a complete solution. A constructive meta-

heuristic, starting with an empty solution, makes selections from a pool of constructive heuristics for

different stages of the construction process. For example, in Ant Colony Optimisation (ACO) [35],

the ants incrementally build a solution to the problem by moving through the nodes of a construction

graph. It should be noted that for constructive methods there is a natural end to the construction

process, that is, when a complete solution is reached. Thus, a complete solution corresponds to a finite

sequence of constructive heuristics (in the heuristic space) whose length is determined by the size of the

underlying combinatorial problem. Constructive heuristics are typically the fastest approximate meth-

ods, but they often produce solutions of inferior quality when compared to perturbative heuristics [10].

In contrast, perturbative heuristics start with a complete solution, and try to iteratively improve the

current solution using neighbourhood structures and/or simple local searches. Perturbative heuristics,

such as mutation operators, can also allow a metaheuristic to escape from local optima by “jumping

out” of the basin of attraction of the current local optimum.

There are many well known metaheuristics in the literature. For example, Ant Colony Optimisation

algorithms (ACO) [35], Evolutionary Computation (EC) [39] including Genetic Algorithms (GA) [55],

Differential Evolution (DE) [110], Iterated Local Search (ILS) [75], Variable Neighbourhood Search

(VNS) [57], Simulated Annealing (SA) [71], and Tabu Search (TS) [54].
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Algorithm 1 An ant colony optimisation algorithm (ACO) in pseudocode.

1. initialise ants and pheromone trails

2. while termination criteria not met do

3. position each ant at a starting node

4. repeat

5. for all ants in the colony do

6. choose ant’s next node by applying state transition rule

7. apply step-by-step pheromone trail update rule

8. end

9. until every ant has constructed a solution path

10. update best path

11. apply global pheromone evaporation update rule

12. end

Ant Colony Optimisation

Ant colony optimisation algorithms [35] are a family of methods that are typically employed to solve

problems which can be reduced to finding optimal paths in some given graph, such as the TSP and

the VRP. Ant colony optimisation employs a population of artificial ants, and often a number of

local search algorithms. An artificial ant’s behaviour is modelled on the behaviour of biological ants

seeking a path between their colony and a source of food. The artificial ants explore the graph, thus

constructing a solution, by following and laying down pheromone trails which act as a memory, and use

a pheromone based communication system to control their search. Over time, the pheromone trails

evaporate and thus the pheromone density becomes higher on the more traversed, shorter paths and

lower on the less traversed, longer ones. The evaporation mechanism also helps the method escape

local optima, by allowing early solutions to be “forgotten” and replaced by newer, better solutions.

Pheromone based communication is an effective method of communication which is widely observed in

nature, and is used by social insects such as bees, ants and termites for inter-agent and agent-swarm

coordination [11]. The pseudocode for an ant colony optimisation metaheuristic is shown in listing 1.

Evolutionary Algorithms

Evolutionary and genetic algorithms [39] [55] are optimisation methods that are based on the Darwinian

principles of natural selection and survival of the fittest [30], and the concept of genetic recombination

originated in [26]. Typically, such algorithms consists of a population of chromosomes that represent

the solutions of a problem, a fitness function, a selection strategy, a replacement strategy and genetic

operators such as crossover and mutate. Given some initial, randomly generated population, the

fitness function is used to assign a fitness value to each chromosome. Parent chromosomes are selected

from the population so that chromosomes with higher fitnesses are more likely to be chosen than

chromosomes with lower fitnesses. The genetic operators are applied to these parent chromosomes in

order to produce child chromosomes. The child chromosomes are assigned fitness values and used to
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replace weaker chromosomes in the population. By applying this process iteratively, the population

evolves over time to become fitter, that is, the chromosomes in the population become better solutions

to the problem encoded in the fitness function. The pseudocode for a general evolutionary algorithm

is shown in listing 2.

Algorithm 2 An evolutionary algorithm (EA) in pseudocode.

1. randomly initialise chromosomes in population

2. evaluate chromosomes in population

3. while termination criteria not met do

4. select strong parent chromosomes

5. recombine and mutate pairs of parents to produce children

6. evaluate child chromosomes

7. replace weakest in population with child chromosomes

8. end

Differential Evolution

Differential evolution (DE) is a population based metaheuristic approach to minimising (possibly)

nonlinear and non-differentiable continuous space functions [110]. The population consists of NP

randomly generated D-dimensional solution or parameter vectors. Differential evolution generates a

new parameter vector from a some target vector by selecting three other vectors at random from the

population, and applying a mutation operation and a crossover operation. The mutation operation

adds the weighted difference between two of the selected parameter vectors to the third vector. The

crossover operation mixes this mutated vector’s parameters with the parameters of the target vector

to yield a trial vector to be evaluated. If the trial vector has a lower objective function value than

the target vector, then the trial vector replaces the target vector, and this process is repeated, in

parallel, for each of the NP parameter vectors in the population until a termination criteria is met.

The pseudocode for a differential evolution algorithm is shown in listing 3.

Algorithm 3 A differential evolution algorithm (DE) in pseudocode.

1. randomly initialise parameter vectors in population

2. while termination criteria not met do

3. for each target vector in population do

4. evaluate target vector

5. select 3 vectors at random

6. mutate and crossover with target vector to produce trial vector

7. evaluate trial vector

8. if trial is superior to target vector then

9. replace target vector with trial vector

10. end

11. end

12. end
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Iterated Local Search

Iterated local search (ILS) is a memoryless, single point metaheuristic that constructs a “sequence of

local optima” by iteratively perturbing some current solution and then applying local search (such as

steepest descent) to the modified solution [75]. If the new solution passes an acceptance test, then

it becomes the current solution; otherwise the new solution is discarded, and the process is repeated

with the current solution. The acceptance test balances intensification and diversification. For exam-

ple, accepting only improving solutions favours intensification, while accepting any solution favours

diversification. Between these two logical extremes it is possible to design intermediate strategies

such as accepting improving solutions or non-improving solutions with some small probability p. The

pseudocode for the ILS metaheuristic is shown in listing 4.

Algorithm 4 The ILS metaheuristic in pseudocode.

1. cur-sol ← initialiseSolution()

2. while termination criteria not met do

3. new-sol ← perturb(cur-sol)

4. new-sol ← localSearch(new-sol)

5. if accept(new-sol, best-sol) is TRUE then

6. cur-sol ← new-sol

7. end

8. if f(new-sol) < f(best-sol) then

9. best-sol ← new-sol

10. end

11. end

Variable Neighbourhood Search

Variable neighbourhood search (VNS) is a memoryless, single point metaheuristic that uses local search

to explore a set of neighbourhood structures [57]. Specifically, given some value k ∈ [kmin, kmax] and a

solution x ∈ X , let Nk(x) be a set of neighbourhoods of x of increasing size so that |Nk(x)| < |Nk′(x)|
when k < k′. A solution is randomly selected from a neighbourhood Nk(x) of the current solution x.

A local search procedure is then applied to the selected solution, and the new solution is accepted if

it is superior to the current solution. Thus the VNS metaheuristic, like ILS, generates a sequence of

local optima. However, the VNS metaheuristic differs from ILS in that VNS accepts only improving

solutions and employs an adaptive perturbation procedure, where the size of the neighbourhood under

consideration is governed by the parameter k. Switching between different neighbourhood structures

allows VNS to escape from local optima. The pseudocode for the VNS metaheuristic is shown in listing

5.
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Algorithm 5 The VNS metaheuristic in pseudocode.

1. cur-sol ← initialiseSolution()

2. k ← kmin

3. while termination criteria not met do

4. new-sol ← extractNeighbour(cur-sol, k)

5. new-sol ← localSearch(new-sol)

6. if f(new-sol) < f(cur-sol) then

7. cur-sol ← new-sol

8. k ← kmin

9. else

10. k← k + δk

11. end

12. if k > kmax then

13. k← kmin

14. end

15. end

Simulated Annealing

Simulated annealing (SA) is a memoryless, single point metaheuristic. It is one of the first algorithms

to have an explicit strategy for avoiding local minima [71]. The idea is to allow “uphill moves”, that

is solutions that are inferior to the current solution in order to escape from local minima. Simulated

annealing is an abstraction of the physical annealing process of metals and glass, which assume low

energy configurations when cooled with an appropriate cooling schedule. The algorithm starts by

generating an initial solution and by initialising a temperature parameter T and a cooling parameter

c ∈ (0, 1]. At each iteration, a new solution is randomly generated from the current solution and the

difference in fitness ∆f = f(new-sol)−f(cur-sol) is computed. New solutions are accepted if they

are superior, that is ∆f < 0 or with a probability exp(−∆f
T ) which follows a Boltzmann distribution.

During the search process, the temperature T is decreased, so that at the beginning of the search, the

probability of accepting uphill moves is high. As the temperature gradually decreases the algorithm

converges to a simple iterative algorithm where only improving moves are accepted. The pseudocode

for the SA metaheuristic is shown in listing 6.

Tabu Search

Tabu search (TS) is a single point metaheuristic that employs a local search algorithm, and a short

term memory [54]. The short term memory is implemented as a tabu list that records the most recently

visited solutions and forbids moves toward them. The tabu list ensures that a neighbourhood of the

current solution will not contain any of the solutions on the list. At each iteration, the best solution

from a neighbourhood around the current solution is chosen. The chosen solution is then added to

the tabu list, while another solution already in the tabu list is discarded. The use of a tabu list

prevents the algorithm returning to recently visited solutions which prevents cycling, and can, in some

circumstances, force the search to accept “uphill moves”, allowing the algorithm to escape from local
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Algorithm 6 Simulated annealing (SA) in pseudocode.

1. initialise temperature T and cooling factor c

2. cur-sol ← initialiseSolution()

3. while termination criteria not met do

4. for number of new solutions do

5. new-sol ← perturb(cur-sol)

6. ∆f ← f(new-sol) - f(cur-sol)

7. if ∆f < 0 then

8. cur-sol ← new-sol

9. else if random() < exp(−∆f
T

) then

10. cur-sol ← new-sol

11. end

12. end

13. T ← cT

14. end

minima. The pseudocode for the Tabu Search metaheuristic is shown in listing 7.

Algorithm 7 The Tabu search (TS) metaheuristic in pseudocode.

1. cur-sol ← initialiseSolution()

2. tabu-list ← ∅

3. while termination criteria not met do

4. cur-sol ← chooseBestOf(neighbourhood(cur-sol) \ tabu-list)

5. updateTabuList(tabu-list, cur-sol)

6. end

2.2.2 Hyper-heuristics

Hyper-heuristics, like metaheuristics, also combine low level heuristic operations into a higher level

framework with the objective of improving search efficiency. However, metaheuristics and hyper-

heuristics differ in that most metaheuristics search the space X of problem solutions, whereas hyper-

heuristics search the space S of heuristic selections [14]. Another difference is that metaheuristics can

access problem specific knowledge, while a hyper-heuristic which is subject to the limitations of the

domain barrier cannot. As a result, metaheuristic approaches tend to be rich in domain knowledge,

requiring significant expertise in both the problem and the available heuristics, and so they can be

expensive to implement and maintain. Furthermore, a metaheuristic approach developed for one

particular problem may not be applicable to other problem domains, or even other instances of the

same or similar problems [25]. The domain barrier requires a hyper-heuristic to perform well in the

absence of problem specific knowledge and therefore, it is hoped, to be “re-useable” across different

problems and problem domains with minimal changes. This places hyper-heuristics at a higher level

of abstraction than many metaheuristics.

Hyper-heuristics have been successfully applied to a number of real world optimisation problems

including: course timetabling [2] [20] [19] [90] [108] [68], production scheduling [46] [44], 1D bin-
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Figure 2.1: A classification of hyper-heuristic approaches, according to two dimensions (i) the nature

of the heuristic search space, and (ii) the source of feedback during learning (reproduced from [15]).

packing [99] [79], 2D cutting and packing [112], workforce scheduling [98], constraint satisfaction [111]

[85], travelling salesman [66], vehicle routing [50] [51], and optimising water distribution networks [69]

[128].

Hyper-heuristics may be classified according to a number of criteria [15] [16], and can be used to

either generate or select low level heuristics. A generation hyper-heuristic generates new heuristics

by discovery, or by modifying or combining existing low level heuristics. A selection hyper-heuristic

selects and applies a heuristic chosen from a set of low level heuristics. The goal of both types

of hyper-heuristic is to improve the search process through learning and/or optimisation. Hyper-

heuristics (like metaheuristics) can also be classified by the types of low level heuristic (constructive

or perturbative) they employ [15] [16]. Many hyper-heuristics employ learning algorithms to improve

optimisation performance, and this learning can be categorised as either online or offline. Online

learning is performed during the execution of a hyper-heuristic and is intended to improve optimisation

performance on the problem at hand. In contrast, offline learning is performed on a number of

benchmark training problems in order to to improve optimisation performance on new “unseen” test

problems.

This classification is illustrated in figure 2.1.

2.2.3 Selection Hyper-heuristics

A selection hyper-heuristic selects and applies heuristics chosen from a given set of low level heuristics

[15] [36]. A selection hyper-heuristic consists of

1. a set of low level heuristics,

2. a space of solutions to operate on,
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3. a heuristic selection strategy, and

4. a move acceptance strategy.

A single point hyper-heuristic uses a selection strategy to select a particular low level heuristic s

and its parameter set p. Given a solution x, the low level heuristic is used to compute a new solution

x′ = s(x, p). The acceptance strategy, then decides whether to accept or reject the new solution. If

the new solution is accepted, x′ becomes the current solution, and f(x′) becomes the current objective

function value, otherwise x′ is discarded and x continues as the current solution. Iterating this process,

starting from some given initial solution x0, for n selections or iterations gives rise to sequences of

1. low level heuristic selections s = s1, . . . , sn,

2. low level heuristic parameters p = p1, . . . , pn,

3. solutions x0, x1, . . . , xn, and

4. objective function values f(x0), f(x1), . . . , f(xn) also denoted o0, o1, . . . , on.

These sequences represent a trace of the hyper-heuristic’s execution on a given initial solution x0

over n iterations or time steps. Multi-point hyper-heuristics have a similar structure, but also require

a solution selection strategy. The solution selection strategy is used to choose solutions from the

population of solutions to operate on, and later, if a new solution is accepted, to choose a solution

from the population to be replaced.

Selection hyper-heuristics, like metaheuristics, and hyper-heuristics in general, can be classified

according to a number of criteria [14] [36] (see figure 2.2).

Selection hyper-heuristics can be differentiated by their use (or not) of learning algorithms. A

learning algorithm for a selection hyper-heuristic optimises the hyper-heuristic’s internal structure and

parameters in order to refine the selection of heuristics (and their parameters), and in some cases, the

acceptance of solutions. Such learning, as noted previously, may be online, offline or a mixture of the

two [36].

Selection hyper-heuristics can also be classed as either perturbative or constructive depending on

the type of low level heuristics employed. Another distinctive characteristic is how the set of low level

heuristics is used or “managed”. Specifically, a selection hyper-heuristic may be allowed to manage the

whole set of heuristics, a reduced set where poor performing heuristics or heuristics of a certain type

are excluded, or an increased set of heuristics, produced by varying the heuristics parametrisation, or

combining existing heuristics from the whole set [36].

Many selection hyper-heuristic select and apply single heuristics, one at a time, “without distinc-

tion”. In contrast, some hyper-heuristics group their low level heuristics into heuristic classes, such as

mutational, or local search heuristics, based on a heuristic’s mode of operation. These hyper-heuristics

select low level heuristics from a predefined sequence of heuristic classes, such as mutation followed by
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Figure 2.2: An extended classification of selection hyper-heuristics (reproduced from [36]).

local search, during the search process. Some other hyper-heuristic methods operate in a stage-based

manner, where the subset of low level heuristics to use is decided at distinct stages of the search

process. Such approaches can use a fixed number of stages, or switch between stages in an adaptive

manner [36].

As has been noted, population based (or multi-point) hyper-heuristics use multiple current solutions

as they perform a search, while single point based hyper-heuristics employ a single active current

solution.

Acceptance strategies can be classified as stochastic or deterministic. Deterministic acceptance

strategies can be further classified into basic methods such as Accept All Moves (AAM), Accept

Improving or Equal moves (AIE) and Accept Only Improving moves (AOI), and strategies based on

acceptance thresholds [36].

Typically, the low level heuristics, and the selection and acceptance strategies depend on param-

eters, and these parameters can be classed as static, dynamic, adaptive or self-adaptive. Static pa-

rameters are set to some fixed value which is determined prior to the search process, while dynamic

parameters are allowed to vary during the search process in some predefined manner. Adaptive pa-

rameters can change in a reactive manner due to feedback received during the search process, while

self-adaptive parameters settings are actively searched for by the hyper-heuristic [36].

There are numerous examples of selection hyper-heuristics in the literature [14] [16]. For example,

RL-GD [86], VNS-TW [60], and AdapHH [82] are three well known selection hyper-heuristics that perform
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well across a number of problem domains1, and are explained in more detail below.

The RL-GD Hyper-heuristic

The reinforcement learning, great deluge hyper-heuristic RL-GD [86] is a single point, perturbative

hyper-heuristic combining online reinforcement learning for heuristic selection and the thresholded

great deluge move acceptance strategy.

The selection strategy assigns a utility value ui to each low level heuristic i and uses these values

to choose heuristics. Specifically, heuristics with a large utility are more likely to be selected, while

heuristics with a small utility are less likely to be selected. Reinforcement learning is used to update

the utility values at each iteration, depending on the success or failure of the chosen heuristic. An

improving move is rewarded, while a worsening move is punished, using a predetermined additive

adaptation rate.

The great deluge acceptance strategy uses a dynamic threshold τ that decreases linearly in time to

determine an acceptance range for solution fitness or quality, and is defined by

τi = fopt +∆R
(
1− t

maxIter

)

where maxIter is the maximum number of iterations (or total time), t is the current iteration, ∆R is

an expected range for the maximum fitness change between the initial fitness f0, and some “optimal”

lower bound on the fitness value fopt. Improving moves are always accepted, while a worsening move

is accepted only if the fitness value of the new solution is less than the computed threshold. The

pseudocode for the RL-GD hyper-heuristic is shown in listing 8.

The VNS-TW Hyper-heuristic

The VNS-TW hyper-heuristic [60] operates on a population of solutions and is based on the Variable

Neighbourhood Search metaheuristic described in Section 2.2.1. It consists of four main stages: pertur-

bation or shaking, local search, environmental selection, and an online learning stage called periodical

adjustment (see figure 2.3).

The low level heuristics are separated into two classes: shaking S and local search L. The shaking

class S consists of heuristics such as mutation, ruin and recreate, or other exploratory heuristics that

could be used to escape from local optima, while the local search class L consists of heuristics that

search the local neighbourhood for a better, or non-worsening solution.

Given a random initial solution, a low level heuristic from the shaking class is selected and used

to perturb the current solution. A tabu mechanism is employed to prevent the frequent application

of poor shaking heuristics. This is followed by the local search stage where several heuristics in the

1The hyper-heuristics AdapHH and VNS-TW came first and second respectively in the first international Cross-

domain Heuristic Search Challenge (CHeSC 2011) (http://www.asap.cs.nott.ac.uk/external/chesc2011/index.html).
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Algorithm 8 The reinforcement learning, great-deluge hyper-heuristic (RL-GD) in pseudocode. Re-

produced from [86].

1. Generate a random solution Scurrent

2. Initialise utility values u

3. fcurrent ← f0 ← quality(Scurrent)

4. t← 0

5. while t < maxIter do

6. i← selectHeuristic(u)

7. Stemp ← applyHeuristic(i)

8. ftemp ← quality(Stemp)

9. if ftemp < fcurrent then

10. ui ← reward(ui)

11. Scurrent ← Stemp

12. else

13. ui ← punish(ui)

14. if ftemp < fopt + (f0 − fopt)(1− t/maxIter) then

15. Scurrent ← Stemp

16. end

17. end

18. t← t + 1

19. end

L class are applied to the solution iteratively, until one of the heuristic’s stopping criteria is met.

Next, environmental selection determines which old solution in the population should be replaced

and which new solution in the population should be selected for the next iteration. The replacement

strategy replaces a worse solution x′ in the population with a new solution x if f(x) < f(x′). If

no such solution exists, an alternative worse solution x′′ to be replaced is found by 2-tournament

selection. The 2-tournament selection mechanism is also used to select the next solution. Finally,

a periodical adjustment mechanism is employed to adjust two parameters c and N , each time the

algorithm consumes a portion Tb of its overall run-time budget T . The parameter c represents the

number of consecutive non-improving moves allowed in the local search stage, while the parameter

N dictates the population size. During a periodical adjustment, the parameter c is reset to some

maximum number of consecutive non-improving moves, while the population size N is reduced by one

when either of the following conditions is met:

1. half of the overall time budget T is consumed, or

2. if a new best solution is found during a time interval Tb.

The periodical adjustment stage allows the hyper-heuristic to adapt to different problem domains.

The AdaptHH Hyper-heuristic

The AdaptHH hyper-heuristic [82] consists of an adaptive dynamic heuristic set (ADHS) selection strat-

egy, and adaptive iteration limited list-based threshold accepting (AILLA) as an acceptance strategy.

In addition, AdaptHH uses relay hybridisation to discover effective pairs of heuristics.
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Figure 2.3: A flowchart for the VNS-TW hyper-heuristic (reproduced from [60]).

The adaptive dynamic heuristic set (ADHS) method assesses the performance of each heuristic over

a period of time or phase with the intention of keeping the best performing heuristics in the working

set of heuristics while excluding the others. The phase length is typically set to some predetermined

constant. For each low level heuristic i, the performance metric pi is a choice function based on the

weighted sum of a number of simple quality indicators such as solution improvement capability and

heuristic execution speed, and is used to decide which heuristics are excluded or tabued from the ADHS.
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In symbols

pi = w1

[
(Cp,best(i) + 1)2

(
tremain

tp,spent(i)

)]
× b

+w2

(
fp,imp(i)

tp,spent(i)

)
− w3

(
fp,wrs(i)

tp,spent(i)

)

+w4

(
fimp(i)

tspent(i)

)
− w5

(
fwrs(i)

tspent(i)

)

where

b =




1 if

∑n
i Cp,best(i) > 0,

0 otherwise.

The term Cp,best(i) denotes the number of new best solutions found, fimp(i) and fwrs(i) show the total

objective function improvement and worsening, fp, imp(i) and fp,wrs(i) refer to the same measurement

for phase p, tremain denotes the remaining search time, and tspent(i) and tp,spent(i) are the execution

time of each heuristic i overall, and for each phase p respectively. At each iteration, the non-tabu

heuristic with the highest ranking pi score is selected and applied to the current solution.

The AdaptHH hyper-heuristic also employs a relay hybridisation mechanism for approximately 50%

of the iterations. Relay hybridisation is intended to discover effective pairs of heuristics which can be

applied consecutively. For each low level heuristic, AdaptHH maintains a list of past heuristic selections

(see figure 2.4).

Figure 2.4: AdaptHH’s relay hybridisation mechanism (reproduced from [82]).

After selecting and applying a heuristic, if relay hybridisation is enabled, a second heuristic is

randomly chosen from that heuristic’s list and applied to the current solution. If the resulting solution

is a new best solution, then the second heuristic is added to the end of the list, while the first heuristic

in the list is discarded so that the list size remains constant.
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Some low level heuristics have parameters such as “intensity of mutation” denoting the impact of

a perturbation, or “depth of search” referring to the number of consecutive iterations to search for

an improvement. A reward-penalty strategy is employed to adapt these parameters during the search

process.

The AdaptHH hyper-heuristic uses adaptive iteration limited list-based threshold accepting (AILLA)

as an acceptance strategy. The mechanism uses the objective function values of the previously found

best solutions to dynamically calculate a threshold value which is used to determine solution accep-

tance.

2.3 A Sequenced-based Approach

Metaheuristics and hyper-heuristics move through a search space by applying sequences of low level

heuristics to a set of existing solutions. Although the mechanisms for selecting a solution, and the

heuristic operations themselves can vary greatly between algorithms, there exists an identifiable se-

quence of heuristics for a single solution or population of solutions. For some metaheuristics, the

heuristics and therefore the sequence is fixed. For example, a genetic algorithm will execute a mu-

tation operation and crossover operation at a given rate for every iteration of the algorithm. In this

case, there is little to be said about the repeated sequence of heuristics that are generated by these

types of algorithm. However, in the case of a selection hyper-heuristic which can select from a wide

range of potential heuristics, in any order it chooses, the issue of context and the notion of sequence

becomes important. For example, an exploratory heuristic such as a mutation operator that partially

randomises a solution when paired with an exploitative heuristic such as a local search in that order

might yield improved solutions. The randomisation moves the algorithm to a new, unexplored region

of the solution space and the local search finds the best solution in that neighbourhood. However,

the reverse (local search followed by mutation) is likely to be a poor strategy, with the majority, if

not all, of the work carried out by the local search being discarded. Moreover, the work of [97] on

workforce scheduling demonstrates that a low level heuristic’s effectiveness is highly variable during

the optimisation process. Some low level heuristics which are ineffective at the start of the search

process prove to be highly effective at the end, and vice versa, while others heuristics are mainly used

at the beginning, middle or end of the process. Clearly, when applying sequences of heuristic selections

to optimise a problem, knowing the point at which a particular low level heuristic is most effective

could lead to improved optimisation performance. From these two examples it becomes clear that the

choice and correct ordering of a sequence of heuristics is imperative if search efficacy is to be achieved,

and it should be noted that such sequences can be discovered automatically as shown in [67] and [68].

Adopting a sequence-based approach can also reduce the number of objective function evaluations

required; in the first example given above, when mutation is followed by local search, there is no need

to evaluate the result of the mutation. This is desirable because, for many real world problem domains
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and problem sizes, evaluating the objective function is computationally expensive.

It was noted in Section 2.2.3 that some selection hyper-heuristics employ subsets of the available low

level heuristics during the optimisation process. These subsets may be heuristic classes which contain

heuristics of a particular type, or they could be arbitrary subsets. The construction and performance

of such subsets of low level heuristics has received some attention in the literature such as [21], [89],

[90], [80], [107], and [74]. However, for subsets, the concept of order or sequence is absent. Adopting

a sequence-based approach naturally gives rise to the study of subsequences of heuristics, and there

are also several examples in the literature of studies concerning (sub-)sequences such as [92], [50], [51],

[101], and [85].

2.3.1 Subsets of Heuristics

There are several examples in the literature of empirical research concerning the optimisation per-

formance of subsets of low level heuristics such as [21], [89], [90], [80], and [107], and from a purely

theoretical perspective [74].

For example, in [21] the authors compare nine hyper-heuristics on six realistic personnel scheduling

problems The hyper-heuristics manage a large collection of 95 low level heuristics using two simple

online strategies. The strategies, “warming up approach” and “step-by-step reduction” are used to

reduce the set of low level heuristics, leaving only those most likely to produce regular optimisation

improvements for a particular problem instance. The warming up approach identifies a specified

number of the fittest low level heuristics during some initial “warm up” period specified by a given

number of iterations, while the step-by-step reduction approach gradually reduces the set of low level

heuristics during a run until some number of the fittest low level heuristics remain. The empirical

results demonstrate that the hyper-heuristics using step-by-step reduction consistently out perform

the “warming up approach”, and those approaches using the whole set of heuristics, producing high

quality solutions for the personnel scheduling problems considered.

In [89] subsets of heuristics are randomly selected from a large pool of available heuristics in order

to solve constraint satisfaction problems. The choice of an appropriate set of heuristics from the many

reported in the constraint satisfaction literature is non-trivial, and the performance of individual

heuristics can vary significantly on different problems. Randomly selected subsets of heuristics are

evaluated on a number of benchmark problems, and an offline learning algorithm is used to determine

weights for the elements of a subset. These subsets of heuristics are then used to parameterise a

hyper-heuristic where the weights guide the selection process. Each low level heuristic computes a

strength that indicates the “degree of support” for a choice of variable or value, and heuristics are

selected by voting; the heuristic with the greatest weighted strength is chosen. The experimental

results demonstrate that randomly chosen subsets of heuristics can help in the identification of an

effective mixture of low level heuristics, and that offline learning with the small, random subsets of
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heuristics performs significantly better than learning with a large set.

In [90] the authors search a space of “heuristic combinations” to solve examination timetabling

problems. A heuristic combination consists of p ≥ 2 primary heuristics, one of which is designated the

priority heuristic, and in some cases, a secondary heuristic. Each heuristic computes a specific value

for an exam such as the number of students or the number of conflicts. The heuristics are applied

simultaneously to pairs of exams, and the p heuristic values are used to compute a Pareto comparison.

The priority heuristic is used resolve conflict situations, while the secondary heuristic, when present,

is used as a tie breaker. The authors evaluate four combinations consisting of two or three low level

heuristics to order a set of exams for scheduling. The quality of the timetables generated by this

approach are close to the best quality timetables cited in the literature.

In [80] two heuristic selection strategies and seven acceptance strategies are used to construct 14

distinct hyper-heuristics. These hyper-heuristics are parameterised with nine different heuristic sets,

and are evaluated on seven patient admission scheduling problems. The heuristic subsets are generated

by varying the choice of heuristics and their parameterisation resulting in nine sets of different sizes,

with different speed and improvement capabilities. The experimental results demonstrate that different

subsets of low level heuristics produce very different optimisation performances across a number of

hyper-heuristic designs and that the “best” hyper-heuristic can change based on the heuristic set used

and the execution time limits employed.

In [107] the authors present an empirical methodology for determining the most effective subset

of low level heuristics from a given larger set. Specifically, non-parametric statistical tests and fitness

landscape measurements are used to rank and select subsets of low level heuristics according to their

performance on a set of benchmark problems. A subset of low level heuristics, selected using the

methodology, is used to parameterise a hyper-heuristic which is tested on 24 course timetabling prob-

lems and 10 vehicle routing problems. The parameterised hyper-heuristic outperforms state-of-the-art

hyper-heuristics and competes with problem-specific methods in course timetabling, producing five

new best-known solutions.

In [74] the authors present a theoretical analysis of a selection hyper-heuristic’s expected run-

time behaviour with various selection and acceptance strategies. By using fitness based partitions

which is a well known method for the runtime analysis of randomised search heuristics, they establish

upper bounds on a hyper-heuristic’s expected run-time. The results demonstrate that “mixing” two

heuristics can lead to exponentially faster search than an individual (deterministically chosen) heuristic

on some problems. The expected runtime (exponential vs polynomial) depends critically on a mixing

parameter p, which is the probability of choosing one heuristic or the other, and that the right choice

of p is problem-dependant.

In each case, the authors demonstrate (unsurprisingly) that different choices of heuristic subset

can lead to large differences in optimisation performance. Furthermore, it is possible to identify small

subsets of heuristics that can work well together, and which lead to improvements in optimisation
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performance for the problems of a particular domain.

2.3.2 Subsequences of Heuristics

There are also several examples in the literature of empirical research concerning sequences of heuristics

where the concept of order is explicit such as [92], [50], [51], [101], and [85].

In [92] the authors present a hybrid variable neighbourhood search hyper-heuristic (HVNS) for

solving exam timetabling problems. The HVNS hyper-heuristic searches for lists of low level heuristics

that are used to construct solutions, by applying each heuristic in a list, one after another. Two

neighbourhood structures are studied: “single flipped” where a small number of heuristics in the list

are randomly changed, and “block flipped” where a small number of consecutive heuristics in the list

are randomly changed. The overall results demonstrate that while Iterated Local Search outperforms

tabu search, and steepest descent search, the proposed hybrid method HVNS produces four of the best

results reported out of a set of 11 test exam timetabling problems.

In [50] and [51] variable length sequences of heuristics are used to solve the constrained vehicle

routing problem. The sequences are constructed from heuristic pairs which are applied sequentially

to some initial solution in order to derive a full solution to the problem. The heuristic pairs consist

of a constructive heuristic followed by an exploitative perturbative heuristic. The hyper-heuristic can

add, delete and replace the heuristic pairs in a sequence, and these sequence modification operators

are applied with equal probability at each step of the optimisation process. The sequence modification

operations allow the hyper-heuristic to discover new, improved sequences. By using this “collaborative”

approach, the authors of [50] are able to find effective sequences of low level heuristic pairs that produce

results that are comparable with the best reported results in the vehicle routing optimisation literature.

In [85] the authors construct and evaluate sequences of heuristics in order to solve constraint

satisfaction problems. A hyper-heuristic is constructed from two low level heuristics, and represented

as a binary strings where a ’0’ denotes the first heuristic and a ’1’ denotes the second. Each possible

permutation of the heuristics in a sequence is evaluated on a set of benchmark problems, and the best

performing permutation is selected. This permutation is then applied repeatedly to optimise unseen

test problems. The experimental results demonstrate that by combining some heuristics it is possible

to achieve a better optimisation performance than applying the heuristics in isolation. However, the

results also show that not all heuristic permutations work well, and that it is not sufficient to simply

combine the most effective heuristics. The chosen heuristics must exhibit some extra joint property

in order to achieve “heuristic synergy” [119]. Although the methodology presented can be applied

to larger sets of heuristics, in practice evaluating every permutation of a sequence is only feasible for

relatively short sequences employing a small numbers of heuristics.

In [101] the authors present a Monte Carlo tree search hyper-heuristic (MCTS-HH). Here the search

space of low level heuristics is modelled as a tree, and a Monte Carlo tree search is employed to search

40



CHAPTER 2. BACKGROUND 2.4

this tree in order to identify the best sequence of low level heuristics to be applied to the current

solution. The MCTS-HH hyper-heuristic uses a population of solutions, and a number of different

population updating rules. The generality of the proposed approach is evaluated on the six domains

of the HyFlex benchmark problems [84]. The results demonstrate that the proposed hyper-heuristic

performs well over all six domains and obtains competitive results when compared to the best known

results that have been presented in the literature, with MCTS-HH producing 17 new best solutions out

of 30 instances.

These examples demonstrate that the choice of the low level heuristics and the order in which they

are applied is important when improving optimisation performance. In this thesis, subsequences of

heuristic selections and their objective function values are analysed statistically in order to distinguish

between effective subsequences which tend to reduce the objective function value, and disruptive sub-

sequences which tend to increase the objective function value, in a manner that does not depend on

the number or type of heuristics or the length of the subsequences.

2.4 Hyper-Heuristic Learning

A learning algorithm for a selection hyper-heuristic optimises the hyper-heuristic’s internal structure

and parameters in order to refine the selection of heuristics (and their parameters), and in some cases,

the acceptance of solutions. Such learning, may be online, offline or a mixture of the two [36].

Online learning is based on the low level heuristic selections and resulting objective function values

computed during the execution of a hyper-heuristic, and is intended to improve optimisation perfor-

mance on the problem at hand. Many algorithms have been proposed and successfully employed for

online learning such as genetic algorithms [44], local search algorithms [56] [50], choice functions [25],

fuzzy systems [4], meta-heuristics [2] and [19], reinforcement learning [86], tabu search [18] [60] [82],

and adaptive selection probabilities [108]. In contrast, offline learning is performed on a database of

low level heuristic sequences and objective function values computed by a selection hyper-heuristic on

a fixed number of benchmark problems. The objective is to generalise across the benchmark training

problems leading to improvements in optimisation performance on unseen test problems. A variety

of machine learning algorithms have also been proposed for offline learning such as classifier systems

[99], case based reasoning [20], messy genetic algorithms [111], and the ILSParam parameter tuning

algorithm, first introduced in [62] and on based on the ILS metaheuristic, which is employed in [108].

In [99] a classifier system is applied to the 1D bin-packing problem. The system is trained on a

number of benchmark problems and learns a set of rules which associate characteristics of a current

problem state with specific heuristics. Rules are selected according to the problem state and the

associated heuristics are applied sequentially. When evaluated on a set of unseen problems, the evolved

rule-set was able to produce an optimal solution for over 78% of the test cases, and in the rest it

produced a solution very close to optimal.
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In [20] case based reasoning is applied to exam timetabling problems. Previous problems and

their “good” solutions (called source cases) are collected and stored. A similarity based retrieval

process compares the source cases with the problem at hand, and selects heuristics that were employed

successfully in similar situations. The results demonstrate that the “knowledge of heuristics” discovered

offline helped in selecting the “best” heuristics during the problem solving process, and yielded higher

quality solutions.

In [111] the authors present a messy genetic algorithm that produces a population of hyper-

heuristics to solve the dynamic variable ordering problem which occurs in the field of constraint

satisfaction. Each of the chromosomes of the genetic algorithm represents a selection hyper-heuristic

consisting of a set of condition-action rules that encode a problem’s state and an associated low level

heuristic. After a training phase, when evaluated on unseen examples, these hyper-heuristics solved

many of the test problems very efficiently, and in a few cases, produced better results than the best

single heuristic for the problem instance.

In [108] offline and online learning are combined to optimise an Iterated Local Search (ILS) hyper-

heuristic for the course timetabling problem. ILS uses selection probabilities to choose low level heuris-

tics, and these selection probabilities are estimated offline using the ILSParam algorithm, and then

adapted online. The best-performing hyper-heuristic produced competitive results when compared to

the state-of-the-art on the well known ITC-20072, benchmark test set, producing a new best-known

solution.

These examples demonstrate that offline learning is able to improve hyper-heuristic performance by

learning from, and generalising over the problems of a domain. However, in each case, the methodolo-

gies employed differ markedly and are dictated by the choice of learning algorithm and/or the choice

of problem state space representation. Furthermore, these learning algorithms, and those employed

by most other selection hyper-heuristics are trained to produce single heuristic selections, or heuris-

tic pairs like [25] or AdaptHH in [82]. The framework for offline learning presented here is based on

arbitrary subsequences of heuristics and does not depend on the choice of learning algorithm or the

problem space representation.

Offline learning can be further categorised as either intra-domain or cross-domain. In intra-domain

learning, the benchmark training problems and the target optimisation problem are drawn from the

same problem domain. This simplifies the learning task considerably as the low level heuristics are

identical for each problem and so the heuristics, and the effective subsequences constructed from

them, will have similar statistical characteristics across the problems of the domain. In cross-domain

learning the benchmark training problems and the target problem can be drawn from different problem

domains. In this case, the different domains can have different low level heuristics, and so the effective

subsequences obtained by optimising the benchmark problems consist of heuristic classes, and these

heuristic classes may have very different statistical characteristics in each domain. As a result, cross-

2The 2007 International Timetabling Competition (http://www.cs.qub.ac.uk/itc2007/).
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domain learning is generally a much more difficult problem than intra-domain learning. Although

there are many studies concerning cross-domain online learning such as [37] [84] [31], there are, to the

best of the author’s knowledge, no examples of offline cross-domain learning in the current literature.

Another type of learning of particular interest is scalable learning, where a model trained for one

task is re-used as the starting point of a model for a second task. In this study, the first task is a simple

problem that is smaller, and therefore more computationally tractable, than the second task. The idea

is to offline train a hyper-heuristic on small benchmark problems, and then transfer this learning to a

larger, more computationally expensive target problem in order to improve optimisation performance.

2.5 A Sequence-based Selection Hyper-heuristic

The statistical framework presented in this thesis is evaluated on the HyFlex benchmark problems,

and the results are compared with those produced by the SSHH hyper-heuristic [67] [68]. This section

contains a detailed presentation of SSHH and the associated algorithms and concepts used for learning,

and later, for the visualisation of learning.

The SSHH hyper-heuristic is a sequenced-based selection hyper-heuristic with online learning. It has

been tested on the HyFlex3 problems [84] and compared with a number of other hyper-heuristics. The

published results demonstrate that SSHH is able to outperform the then best-in-class hyper-heuristic

AdapHH [82] on these problem instances.

The SSHH hyper-heuristic uses a hidden Markov model (HMM) to generate sequences of heuristic

selections, their parameters, and acceptance check decisions. The HMM consists of a set of hidden

states, and four probability matrices:

1. a state transition matrix to determine the probability of moving from one hidden state to another,

2. a low level heuristic emission matrix to determine which low level heuristic to select,

3. a parameter emission matrix to determine the parameter for a low level heuristic, and

4. an acceptance strategy emission matrix to determine when a solution should be checked for

acceptance.

In the absence of a priori knowledge regarding a particular problem the number of hidden states

is set to be the number of low level heuristics in the domain, and the state transition, the parameter

and acceptance strategy matrices are set to be equiprobable. The low level heuristic emission matrix

is set to the identity matrix. This ensures that, initially, each equiprobable hidden state emits a single

low level heuristic together with an equiprobable choice of heuristic parameter and acceptance check

decision.

3The HyFlex Cross-domain Heuristic Search Challenge (CHeSC 2011) library chesc.jar is used throughout this study

(see http://www.asap.cs.nott.ac.uk/chesc2011/).
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At each iteration of the optimisation process, the SSHH hyper-heuristic moves from its current

state to a new state according to the probabilities of the transition matrix. Once a new state has been

chosen, the emission probability matrices are used to determine a low level heuristic, its parameters,

and whether to check for acceptance or not. The selected parametrised low level heuristic is applied

to the current solution in order to derive a new solution. If the acceptance check decision is true, the

objective function is evaluated on the new solution, and a decision is made whether to accept it or

not. Specifically, a new solution is accepted if it improves on the current solution or is within 5% of

the current best solution; otherwise it is rejected.

Hidden Markov Models

Hidden Markov models (HMM) are stochastic processes that can produce and analyse sequences of

symbols. Such models were originally applied to speech recognition problems [95].

A hidden Markov model consists of five components:

1. a set of n hidden states S = {S1, S2, . . . Sn},

2. an alphabet of m output symbols V = {v1, v2, . . . , vm},

3. an initial state vector π = (π1, π2, . . . πn) where πi is the probability of being in state Si at time

t = 0,

4. an n×n state transition matrix A = {ai,j} where ai,j is the the probability of moving from state

Si to state Sj , and

5. an n × m emission probability matrix B = {bj,k} where bj,k is the probability of producing

symbol vk when in state Sj .

At time t = 0, a HMM is assigned some initial hidden state Si according to the probabilities

π = (π1, . . . πn). For each subsequent time step, a new state Sj is determined using the state transition

probabilities ai = {ai,1, . . . ai,n} associated with the current state Si. In addition, the HMM emits

or outputs a symbol vk according to the emission probabilities bi = {bi,1, . . . bi,m} which are also

associated with state Si. Thus, over time, the model transitions from one hidden state to another

while producing a sequence of symbols drawn from V .

It should be noted that the probability ai,j of transitioning from state Si to state Sj and the

probability bi,k of emitting symbol vk at some time t depend only on the current state Si and that

previous states and emissions are irrelevant. This property is called the Markov property.

Figure 2.5 shows the general architecture of a HMM with three hidden states.
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Figure 2.5: A hidden Markov model with three states. The nodes S1, S2, and S3 represent the hidden

states while the arcs denote state transitions. An arc weight ai,j is the probability of transitioning

from state Si to state Sj. The model’s emissions have been omitted for clarity.

Online Learning

The SSHH hyper-heuristic employs online learning. During optimisation, SSHH keeps a history of

the heuristic selections, parameters, and acceptance checks produced by the HMM. If, following an

acceptance check, a new, best solution is found, the online learning algorithm steps through the

history, increasing the probabilities of the accepted state transitions and emissions that led to the

new minima. Thus the probability that the HMM produces the sequence of heuristic selections and

emissions contained in the history is now higher. After the acceptance check, the history is erased and

the optimisation process is resumed.

Offline Learning

A HMM can be trained offline using the Baum-Welch learning algorithm [95] [9]. The Baum-Welch

algorithm calculates the maximum likelihood estimates of a HMM’s parameters λ = (π,A,B) for a

given sequence of observations of symbols drawn from V . In this thesis, the observations are sequences

of low level heuristics chosen from an offline learning database.

Adopting the notation of [95] (Section III C), consider a HMM consisting of n states S1, . . . , Sn,

45



CHAPTER 2. BACKGROUND 2.5

and a sequence of training observation O = O1, O2, . . . , OT . Let the model’s parameterisation λ be

specified by an initial state distribution π, a state transition matrix A, and an emission probability

matrix B. The Baum-Welch learning algorithm estimates the model parameters λ = (π,A,B) that

maximise (locally) the probability P (O|λ) of the model producing the observation sequence O.

In what follows, the value ai,j ∈ A is the probability that the model passes from state Si to state

Sj , the value bj(Ot) ∈ B is the probability that the model emits the observation Ot while in state Sj

at time t, and the value πi is the probability that the model begins its computation in state Si.

The probability P (O|λ) can be calculated efficiently using the forward-backward procedure. The

forward variable4 αt(i) is defined recursively for each state by

α1(i) = πi bi(O1)

αt+1(j) =
[ n∑

i

αt(i) ai,j

]
bj(Ot+1)

for t = 1, . . . , T − 1. Similarly, the backward variable βt(i) is also defined recursively for each state by

βT (i) = 1

βt(i) =
n∑

j

ai,j bj(Ot+1)βt+1(j)

for t = T − 1, T − 2, . . . , 1.

The function ξt(i, j) is the probability of being in state Si at time t, and state Sj at time t + 1,

given the model parameters λ and the observation sequence O, and is defined by

ξt(i, j) =
αt(i) ai,j bj(Ot+1)βt+1(j)∑n

i

∑n
j αt(i) ai,j bj(Ot+1)βt+1(j)

for t = 1, . . . , T − 1. The function γt(i) is the probability of being in state Si at time t given the model

parameters λ and the observation sequence O, and is defined by

γt(i) =
αt(i)βt(i)∑n
j αt(j)βt(j)

for t = 1, . . . , T .

Thus, the Baum-Welch algorithm is specified by the three update equations:

πi = γ1(i)

ai,j =

∑T−1
t ξt(i, j)∑T−1
t γt(i)

bj,k =

∑T
t δ(Ot, vk)γt(j)∑T

t γt(j)

4It should be noted that P (O|λ) =
∑n

i αT (i).
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where δ(Ot, vk) is the Kronecker delta function

δ(Ot, vk) =




1 if Ot = vk,

0 otherwise

and the term δ(Ot, vk)γt(j) is the probability of being in state Sj while observing the symbol Ot = vk.

Providing the sequence of observations is long enough to learn from, applying these update equa-

tions iteratively to an initial model λ leads to an improvement in the probability of O being produced

by the model. In practice, when implementing the Baum-Welch algorithm the update equations are

modified slightly to prevent underflow issues when multiplying probabilities and to deal with multiple

sequences of observations ([95], Section V-A and Section V-B).

Probability Vectors

A probability vector is any vector with non-negative components that sum to 1. The initial state vector

π, and the state transition and emission vectors ai and bi are probability vectors. The mean of a

probability vector with n components is 1/n. The probabilistic length of such a vector is

√
nσ2 +

1

n

where σ2 is the variance of the elements of the probability vector.

The length of a probability vector measures uncertainty; the shortest vector corresponds to maxi-

mum uncertainty, while the longest vector corresponds to minimum uncertainty (or equivalently max-

imum certainty). The shortest probability vector has the value 1/n for each component, and has a

length of 1/
√
n. The longest probability vector has the value 1 for a single component, and 0 for all

the others, and has a length of 1.

The Kullback-Leibler Distance

Mathematically, a HMM encodes a stationary distribution defined on the symbols of V . The non-

symmetric Kullback-Leibler divergence D is a measure of how one probability distribution differs from

another, and it can be used to define a “distance” between HMMs [65].

The symmetric Kullback-Leibler distance DKL(λ0, λ) between two HMMs λ0 and λ is defined by

DKL(λ0, λ) =
1

2

[
D(λ0, λ) +D(λ, λ0)

]

where

D(λ0, λ) = lim
T→∞

1

T

[
logP (OT |λ0)− logP (OT |λ)

]
.

It should be noted that the Kullback-Leibler distance DKL is not a metric in the technical sense as it

does not satisfy the triangle inequality [77].
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In this study, the distance DKL is estimated over a number i = 1, . . . , S of Monte Carlo trials.

Specifically, in order to estimate D(λ0, λ), the first HMM λ0 is used to generate S = 1000 sequences

of length T = 1000. For each such sequence Oi
T , the probabilities that the HMMs λ0 and λ generate

this sequence, denoted P (Oi
T |λ0) and P (Oi

T |λ) respectively, are calculated using the forward-backward

algorithm [95]. As the sequences were generated by λ0, the difference P (Oi
T |λ0) − P (Oi

T |λ) is non-

negative. When S and T are large

D(λ0, λ) ≈
1

TS

S∑

i=1

[
logP (Oi

T |λ0)− logP (Oi
T |λ)

]
.

This process is then repeated for the second HMM λ in order to estimate D(λ, λ0) and thus calculate

DKL.

The Kullback-Leibler distance DKL can be used to quantify the “information gain” before and after

Baum-Welch learning.

2.6 The No Free Lunch Theorems

Despite the interest in general purpose optimisation algorithms there is no known algorithm that offers

the best overall performance across different problem instances and problem domains. In fact, it has

been demonstrated that under some fairly general mathematical conditions no such algorithm can

exist. Specifically, the No Free Lunch (NFL) theorems presented in [121] for optimisation algorithms

states that

“if an algorithm does particularly well on average for one class of problems then it must

do worse on average over the remaining problems.”

The NFL theorems imply that different optimisation algorithms will exhibit identical average perfor-

mance over a given set of problems and objective functions. Although the NFL theorems concern

algorithms that search some given problem space X , similar arguments can be also be applied to

algorithms that search spaces of heuristics S [91]. Mathematically, the NFL theorems apply to finite

problem spaces where the set of objective functions is closed under permutation [103]. Given a set of

objective functions F , each objective function assigns objective values to the solutions in the problem

space X . A permutation of an objective function is simply a rearrangement of the objective values

assigned to the solutions x ∈ X . If a set of objective functions for a finite problem space is closed

under permutation, then the expected performance of any search algorithm over a set of problems

defined on X is some constant c and is independent of the chosen algorithm and performance measure

[103]. In symbols, if F is a set of objective functions that is closed under permutation, then

∑

f∈F

P (f, a1) =
∑

f∈F

P (f, a2) = c
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for any pair of (non-resampling) search algorithms a1 and a2 and for any performance measure P .

Furthermore, it is also the case that if two arbitrary algorithms have identical average performance

over a set of objective functions then that set of functions is closed under permutation [91].

In these cases, a hyper-heuristic search based on a low level heuristic’s performance “makes no

sense” as each low level heuristic is, on average, as effective as every other [91]. However, in practice, a

low level heuristics’s performance may vary considerably during the optimisation process of particular

problem instances, or over a number of identifiable problem domains, and such variations can be

exploited by a hyper-heuristic search algorithm. Furthermore, the sets of objective functions that are

closed under permutation, and hence, over which the NFL theorems apply, represent a small fraction

of the set of all possible sets of functions on a particular domain. As a result, the problem sets where

the NFL theorems apply to hyper-heuristics are quite rare, although it should be noted that there is

no guarantee that NFL will not be applicable for a particular set of problems [91].
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A Framework for Offline Learning

This chapter presents a novel methodological framework for the construction and analysis of offline

learning databases.

A simple selection hyper-heuristic is repeatedly executed on a well known set of benchmark op-

timisation problems, in order to generate a database of sequences of heuristic selections, heuristic

parameters, and objective function values. The benchmark problems can be viewed as a set of training

instances, that could be expected to generalise to the process of solving unseen test instances.

The sequences of heuristic selections and objective function values are analysed using a statistical

framework which employs the mathematical concept of logarithmic returns. The framework is used

to identify and quantify the performance and behaviour of individual low level heuristics, subsets of

heuristics, and subsequences of heuristics. The framework is also used to analyse the interactions

that occur between the heuristics of a subset or subsequence, and the measurement of hyper-heuristic

performance in general.

Although the computational cost of constructing an offline learning database is significant, the

objective is not to compare optimisation performance using equivalent computational resources, but

rather it is to investigate what can be learned from a such a database.

The structure of this chapter is as follows. In Section 3.1, the set of benchmark problems is

described. Section 3.2 contains the methodology used to generate an offline learning database of

heuristic selections. In Section 3.3, a general framework for analysing an offline learning database

is introduced, and, in Section 3.3.2, the framework is applied to the quantification and analysis of

individual low level heuristic behaviour. This framework is extended to subsets, in Section 3.3.3, and

then subsequences of heuristic selections, in Section 3.3.4. In Section 3.4, the framework is also applied

to the measurement of hyper-heuristic performance. Finally, in Section 3.5, the statistical test used to

validate results throughout this thesis is presented.
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3.1 The HyFlex Problems

Offline learning requires a set of benchmark problems to train and test on. This thesis uses the Hyper-

heuristics Flexible framework (or HyFlex1) problems [84]. HyFlex is a well known set of discrete

optimisation problems that has been used in a number of studies (see for example [118], [37], [23], [82],

[38], [5], [101], [67], [31], [123], [124], [126]), and is an implementation of the six computationally hard

problem domains shown in table 3.1. The use of a preexisting benchmark set significantly reduces the

time required to develop and implement computational experiments.

Table 3.1: The HyFlex problem domains (with available references).

Dom. Description Ref.

BP 1D Bin Packing [64]

PFS Permutation Flow Shop [115]

SAT Max Boolean Satisfiability [63]

VRP Vehicle Routing

TSP Travelling Salesman

PS Personnel Scheduling [29]

HyFlex is designed to enable the development, testing, and comparison of iterative, general-purpose

heuristic search algorithms (such as hyper-heuristics). The implementation decomposes a heuristic

search problem into two parts: a general-purpose part consisting of the algorithm or hyper-heuristic

itself, and a problem-specific part provided by the HyFlex framework. In the hyper-heuristics literature,

this idea is also referred to as the domain barrier between the problem specific heuristics and the hyper-

heuristic [25]. HyFlex maintains a population of solutions in the problem domain layer, and provides

a rich variety of problem specific heuristics and search operators [84].

Each HyFlex problem domain contains a number of distinct problem instances of varying com-

plexity. HyFlex hides all problem specific information such as the solution representations, solution

construction, and the low level heuristic implementations. The low level heuristics can be divided into

four general classes of heuristic { M, C, R, L }

1. parameterised mutation (M) which perturbs a solution randomly,

2. crossover (C) which constructs a new solution from two or more existing solutions,

3. parameterised ruin and recreate (R) which destroys a given solution partially and then rebuilds

the deleted parts, and

1The HyFlex Cross-domain Heuristic Search Challenge (CHeSC 2011) library is used in this thesis

(http://www.asap.cs.nott.ac.uk/chesc2011/).
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4. parameterised hill climbing or local search (L) that incorporates an iterative improvement process

and returns a non-worsening solution.

The number and implementation of the low level heuristics in each class differs between problem

domains (see table 3.2). The parameters for the heuristics are drawn from the set {0, 1, 2, . . . , 10}.

Table 3.2: The low level heuristics for each domain.

Dom. Heuristics

BP M0, R1, R2, M3, L4, M5, L6, C7

PFS M0, M1, M2, M3, M4, R5, R6, L7, L8, L9, L10, C11, C12, C13, C14

SAT M0, M1, M2, M3, M4, M5, R6, L7, L8, C9, C10

VRP M0, M1, R2, R3, L4, C5, C6, M7, L8, L9

TSP M0, M1, M2, M3, M4, R5, L6, L7, L8, C9, C10, C11, C12

PS L0, L1, L2, L3, L4, R5, R6, R7, C8, C9, C10, M11

It should be emphasised that the heuristic M0 in the BP domain is an entirely different heuristic to

M0 in the PFS domain. However, the general underlying principles of each heuristic class should remain

similar across domains. For example, a mutation operation should make random changes, while a local

search operation will greedily search the surrounding space.

The local search heuristics differ from the other classes in two respects. Firstly, they are required

to produce a non-worsening solution, and secondly, they may perform one or more objective func-

tion evaluations. The six HyFlex domains employ “first-improvement” local search heuristics. These

heuristics iteratively apply neighbourhood functions which typically permute two or more elements of

a solution in some way. For example, in the BP domain, one of the neighbourhood functions is to

take the largest piece from the lowest filled bin, and exchange it with a smaller piece from a randomly

selected bin. During a local search, at each iteration, a neighbour is generated using the neighbourhood

function, and it is accepted immediately if it has superior or equal fitness. If the neighbour is worse,

then the change is not accepted. The number of iterations, and therefore the number of objective

function evaluations employed by these heuristics is determined by a “depth of search” parameter.

For each problem domain there is also a real valued, non-negative, objective function denoted f that

is to be minimised. The objective function induces an ordering on the solutions x ∈ X of a problem,

such that given any two solutions x1 and x2,

f(x1) < f(x2)

implies that x1 is a better solution than x2.
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3.2 Offline Learning Databases

A simple, unbiased, random, single selection hyper-heuristic, denoted DBGen, is repeatedly executed

on HyFlex problem instances, for a number of iterations n, in order to generate sequences of

1. low level heuristic selections s = s1, . . . , sn,

2. low level heuristic parameters p = p1, . . . , pn, and

3. objective function values f(x0), f(x1), . . . , f(xn) also denoted o0, o1, . . . , on.

These sequences are used to construct three separate offline learning databases, denoted DB1, DB2,

and DB3. Specifically, DBGen is executed

1. 40 times for 150 iterations on 10 problems instance in the BP, PFS, SAT and PS domains (DB1),

2. 400 times for 150 iterations on 10 problem instances in all six domains (DB2), and

3. 10 times for 10 minutes on 10 problem instances in all six domains (DB3).

The database DB1 is the smallest of the three, and is used for preliminary experiments. For DB1,

each DBGen run is seeded by a single number defined by

seed = 4000 + (40 p) + r

where p = 0, . . . , 39 is the problem index, and r = 0, . . . , 39 is the run index. The seed is used to

initialise each HyFlex problem instance, which uniquely determines a run’s initial solution x0, and is

also used to initialise DBGen’s random number generator. The DBGen hyper-heuristic is then executed

40 times on 10 problem instances in the BP, PFS, SAT and PS domains, for 150 iterations; a total of

1600 runs and 240,000 heuristic selections, heuristic parameters, and objective function values. The

number of 40 runs was chosen so as to ensure that robust statistics could be calculated for each problem

instance.

The database DB2 is essentially a larger version of DB1. For DB2, each DBGen run is parameterised

by two numbers

hseed ∈ {1, . . . , 10} and pseed ∈ {1, . . . , 40}.

The hseed is used to seed the pseudorandom number generator used by the DBGen hyper-heuristic,

while the pseed is used to randomly initialise a HyFlex problem instance. For each of the 10 hseeds,

the DBGen hyper-heuristic is run 40 times, once for each pseed, on 10 problem instances in each

HyFlex domain, for 150 iterations; a total of 24,000 runs and 3,600,000 heuristic selections, heuristic

parameters, and objective function values.

To put the size of these databases into perspective, as the set of low level heuristic classes {M, C, R, L}
contains four symbols there are 4150 ≈ 2.0370× 1090 unique sequences of length 150.
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The number of iterations or run length of 150 was chosen for computational feasibility. It was used

for each domain, regardless of low level heuristic execution times, so that the sequences generated for

each domain contained the same “amount of information”, ensuring that no domain has an “informa-

tional advantage” over the others. However, for some domains, the statistical information extracted

from such relatively short runs may not capture behaviour that occurs over longer optimisation peri-

ods. With this in mind, for database DB3, each DBGen run lasts for ten minutes, and is parameterised

by a single number

seed = 4000 + (40 p) + r

where p = 0, . . . , 59 is the problem index, and r = 0, . . . , 9 is the run index. Such runs can produce

10,000’s of heuristic selections (see table 3.3).

Table 3.3: The average number of heuristics selections in DB3 produced by the DBGen hyper-heuristic

for each domain.

Dom. BP PFS SAT VRP TSP PS

Length 611,208 95,898 228,254 1,440,252 246,833 659

The number of 10 runs was chosen because beyond this point the computational time and space

costs become prohibitive. The DB3 database is used to cross check results from DB1 and DB2 in order

to ensure that any observed behaviour also occurs over longer runs.

The structure of the resulting databases is illustrated in figure 3.1.

Database

Domainn

...

· · ·Domain2

problem10

...

· · ·problem2

runm· · ·run2run1

problem1

...

Domain1

...

Figure 3.1: The conceptual structure of the three offline learning database’s DB1, DB2, and DB3.

The DBGen algorithm [123] [124] [126] is shown in listing 9. The function ranInt() (lines 12 and 19)

returns a uniformly distributed pseudorandom number in the set {1, . . . , POOLSIZE}, while the function
ranFloat() (line 15) returns a uniformly distributed pseudorandom number in the interval (0, 1). The

function selectHeuristic() (line 11) selects a single heuristic class at random from the set { M, L, R, C }.
The function apply() (line 13) takes the heuristic class and chooses, again at random, a low level
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heuristic and its parameters, from the available heuristics of that class. The low level heuristic is then

applied to the current solution, and if the class is C, to a crossover solution which is randomly selected

from the crossover pool (lines 5–6 and lines 12–13). An objective function evaluation (line 14) and

an acceptance check (line 15) are then performed. If a new solution’s objective value is less than the

current solution’s objective value or ranFloat() < 0.5 then it is accepted, and also stored, at random,

in the crossover pool (lines 19–21). Otherwise the new solution is rejected. The random term allows

new solutions to be accepted regardless of their objective function for 50% of the cases. Accepting

states that may lead to a large increase in objective function value forces the DBGen hyper-heuristic

to explore the space of low level heuristic selections instead of optimising the problem efficiently.

When crossover heuristics are available, the choice of crossover mechanism also affects hyper-

heuristic performance [38]. The DBGen crossover mechanism (lines 12-15) is taken from the crossover

management scheme employed by the AdapHH hyper-heuristic [38]. This crossover mechanism is also

used by SSHH.

For the construction of DB1 the crossover mechanism uses a population of one solution, that is

POOLSIZE = 1, and for the construction of DB2 a population of five potential crossover solutions

including the current best solution.

Algorithm 9 The DBGen hyper-heuristic in pseudocode.

1. ITERATIONS ← MAX ITER

2. new-sol ← initialiseSolution()

3. new-obj ← f(new-sol)

4. for i = 1 to POOLSIZE do

5. cross-sol[i] ← initialiseSolution()

6. cross-obj[i] ← f(cross-sol[i])

7. end

8. while (ITERATIONS > 0) do

9. cur-sol ← new-sol

10. cur-obj ← new-obj

11. Heuristic h ← selectHeuristic()

12. i ← ranInt()

13. new-sol ← apply(h, new-sol, cross-sol[i])

14. new-obj ← f(new-sol)

15. if (new-obj ≥ cur-obj and ranFloat() ≥ 0.5) then /∗ reject new solution ∗/

16. new-sol ← cur-sol

17. new-obj ← cur-obj

18. else

19. i ← ranInt()

20. cross-sol[i] ← new-sol

21. cross-obj[i] ← new-obj

22. end

23. ITERATIONS ← ITERATIONS − 1

24. end
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Each DBGen run is seeded by a unique number (pair), and thus starts from a unique initial solution

x0. After execution, the resulting sequences of heuristic selections, heuristic parameters, and objective

function values are broken down into consecutive subsequences of length n = 2, 3, . . ., and so on. For

example, given a sequence of heuristics { M0C7L4L6R1 } of length five, the sets of subsequences of lengths

two, three, and four are

{M0C7, C7L4, L4L6, L6R1}, {M0C7L4, C7L4L6, L4L6R1}, and {M0C7L4L6, C7L4L6R1}

respectively.

The set of all such subsequences is denoted S. A subsequence s ∈ S may occur a number of

times in the database and each occurrence can have a different subsequence of objective function

values depending on the run, and the position in a run where s arises. The objective values also

vary depending on the problem, and the initial solution x0. Define si to be the ith occurrence of

subsequence s so that

si = (si1, s
i
2, . . . , s

i
n)

with objective function values

(oi0, o
i
1, . . . , o

i
n)

for i = 1, . . . , Ns, where Ns is the number of occurrences of each s in S.

It should be noted that some heuristics are parameterised by a variable p ∈ {0, 1, 2, . . . , 10}, and that

these heuristic parameters are not directly employed in the following framework. The framework uses

sets of heuristic occurrences sij to calculate a number of performance estimates. When parametrised

occurrences sij,p are considered, these sets become very small, and the performance estimates become

unreliable. Grouping all parametrised occurrences together results in estimates that are averaged over

all choices of p.

3.3 Estimating Heuristic Performance

In this section, a statistical framework for analysing the offline learning databases described in Section

3.2 is introduced. The framework is used to quantify the effectiveness and behaviour of

1. individual heuristics,

2. subsets of heuristics, and

3. subsequences of heuristics.

The framework is also used to analyse the interactions that occur between the low level heuristics of

a subset or subsequence.
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The framework employs the mathematical concept of logarithmic returns. Logarithmic returns are

used widely in finance where they are employed to compare two or more variables when the originating

price series consist of highly unequal values [61]. In this thesis, logarithmic returns are used to normalise

subsequences of objective function values.

.

3.3.1 Logarithmic Returns

Each problem domain has its own objective function f , and the range of f may differ between problem

instances and problem domains. Without a priori knowledge of the objective functions, the objective

function values from different instances or domains cannot be compared directly. Instead, subsequences

of normalised objective function values are compared. Consider a subsequence of objective function

values o0, o1, . . . , on observed after applying a subsequence s ∈ S of n low level heuristics to some

initial solution x0. The log objective values2 are

log(o0), log(o1), . . . , log(on).

The log returns [61] of this series are simply the sequential differences of the log objective values

log(o1)− log(o0), log(o2)− log(o1), . . . , log(on)− log(on−1)

or equivalently

log

(
o1
o0

)
, log

(
o2
o1

)
, . . . , log

(
on

on−1

)
.

Such subsequences are invariant to scaling. For example, the log10 returns for the objective value

subsequences

(6, 5, 4, 3, 2, 1) and (120, 100, 80, 60, 40, 20)

are

(−0.0792,−0.0969,−0.1249,−0.1761,−0.3010).

Figure 3.2 illustrates the log10 returns for a given percentage change in the objective function value.

Each low level heuristic selection si in s = s1, . . . , sn is associated with a log return

log

(
oi

oi−1

)
.

The sum of the n log returns is equal to the log return over the whole subsequence, since all but the

first and last log objective values cancel out. In symbols

n∑

i=1

log

(
oi

oi−1

)
= log(on)− log(o0) = log

(
on
o0

)
.

2Objective functions that can produce 0 values must be suitably transformed so as to remove them.
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Figure 3.2: The log10 return scale and the equivalent percentage change.

This is not the case for subsequences of decimal returns where each return has the form

(
oi − oi−1

oi−1

)
.

Although subsequences of decimal returns are scale invariant, they cannot be easily added or subtracted

because the denominators of each return may differ. Furthermore, decimal returns are not symmetric,

that is, a change r of x, followed by a change −r of x does not return the original value x. For example,

if o0 = 100, a decimal increase of 0.1 is 10 and so o1 = 110. A decimal decrease of 0.1 yields 11 and so

o2 = 99. The formulae to convert between log10 returns r and decimal returns d, are

r = log10(d+ 1) and d = 10r − 1.

The log return α of a subsequence s of length n is defined by

α(s) = log10

(
on
o0

)
.

Notice that the objective function is only evaluated at the start, and at the end of a subsequence;

intermediate objective function values are not required. The unit log return β of a subsequence s of

length n is defined by

β(s) =
1

n
α(s).
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The length of a subsequence is important because for many real world optimisation applications the

execution times of the low level heuristics and objective function evaluations can be non-trivial. The

unit log return β induces an ordering on the subsequences s ∈ S. Given two subsequences s1 and s2,

β(s1) < β(s2)

implies that s1 is a better subsequence than s2.

3.3.2 Low Level Heuristics

The effectiveness of a low level heuristic can be measured by the mean log return α. The mean log

return of a set of N occurrences of a given low level heuristic s is

α({s1, . . . , sN}) = 1

N

N∑

i=1

α(si).

Negative values of α indicate an effective heuristic, that tends to reduce the objective function value,

while positive values of α indicate a disruptive heuristic, that tends to increase the objective function

value (see figure 3.2). In this classification, heuristics that have a α that is zero, or close to zero, can

be regarded as neutral.

The function α is the mean of log values. In general, the mean of the logs is not equal to the log

of the mean3. That is

1

N

N∑

i=1

log(xi) 6= log
( 1

N

N∑

i=1

xi

)
.

If the values xi are all positive (or have the same sign), then the anti-log of the mean of the logs is

equivalent to the geometric mean. In symbols

log−1
(

1

N

N∑

i=1

log(xi)

)
= N

√
x1 · x2 · · ·xN

assuming the values xi are positive, or

(−1)m log−1
(

1

N

N∑

i=1

log( |xi| )
)

otherwise, where m is the number of negative values. The geometric mean normalises the ranges,

so that no range dominates the average, and is always less than, or equal to the arithmetic mean.

Although the use of sequences of log returns normalises the ranges of different objective functions, the

log return values can still differ significantly, as some problem instances are more difficult to optimise

than others. For this reason, α is used in preference to the arithmetic mean of the decimal returns.

The mean log return α of the low level heuristics in each HyFlex domain is shown in figure 3.3.

The results are calculated over DB2, and averaged over 4000 runs of 150 heuristic selections.

3The median of logs is equal to the log of the median.
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Figure 3.3: The mean log returns α for each low level heuristic in DB2 for each domain.
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The figures demonstrate that, unsurprisingly, some low level heuristics are more effective than

others. Furthermore, the effectiveness of the heuristic classes {M, C, R, L} varies by domain. For example,

the mutation heuristic class M is highly disruptive in the TSP and PFS domains, while it is amongst

the most effective classes in the SAT domain. Similarly, the ruin and recreate class R is disruptive in

SAT and VRP, and effective in the BP, PFS and TSP domains.

Figure 3.3 illustrates the low level heuristic performance over the entire optimisation process.

However, it is well known that some heuristics are better suited to certain stages or phases of the

optimisation process. For example, the work of [97] on workforce scheduling, and that of [108] on

course timetabling, demonstrates that some low level heuristics which are ineffective at the start of

the search process prove to be highly effective at the end, and vice versa, while others heuristics are

mainly used at the beginning, middle or end of the process. The mean log return α can also be used

to characterise the changes in heuristics performance that occur during the optimisation process.

Let the current objective function value for a low level heuristic s be ot, where ot is the objective

function value at iteration t, before applying the low level heuristic s at iteration t+ 1. The set HIGH

consists of all those instances of a heuristic s which have current objective function values

ot > P r
90

where P r
90 is the 90th percentile, so that the set HIGH contains the 10% of heuristic instances with

the highest current objective function values. The set LOW consists of those instances of a heuristic s

which have current objective function values

ot < P r
10

where P r
10 is the 10th percentile, and so the set LOW contains the 10% of heuristics with the lowest

current objective function values. These sets contain heuristic occurrences that occur at the “begin-

ning” of the optimisation process, when objective function values are relatively high, and at the “end”

of the optimisation process, when objective function values are relatively low.

Calculating the percentile values over the runs or sequences in each domain can lead to heuristic

occurrences from a few problem instances dominating the sets; those that produce very high or very low

objective function values. Here the percentiles P r are calculated locally over the objective function

values of each sequence r = 1, . . . , 4000 in DB2. This ensures that heuristic instances from all the

problems in a domain are included in the sets.

The low level heuristic selections in the HIGH and LOW sets can be ranked by their α values. The

differences in these rankings demonstrate the changes in heuristic effectiveness that occur during the

optimisation process. The heuristic selections in the HIGH and LOW sets, ranked by their α value in

increasing order from left to right, are shown in table 3.4. The change in α-order can be quantified

by calculating the Spearman’s Footrule distance [33]. The Footrule distance is calculated by taking

the sum of the absolute values of the difference between two ranks. In symbols, if σ and π denote two
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Table 3.4: The low level heuristics in the HIGH and LOW subsets in DB2 for each domain ordered by

ascending mean log return ᾱ from left to right, the Spearman’s Footrule distance d, and the normalised

Footrule distance d′ = d
m .

Dom. Set Order d d′

BP
HIGH R2, R1, M3, C7, L4, L6, M0, M5

8 0.2500
LOW R2, M3, L4, C7, L6, R1, M0, M5

PFS
HIGH L7, L8, M4, R6, L9, R5, L10, C13, C11, C14, C12, M1, M0, M3, M2

46 0.4107
LOW L7, L8, L9, L10, C14, C12, M0, R6, C13, M1, C11, R5, M4, M3, M2

SAT
HIGH L7, M0, M1, L8, C10, C9, M2, M5, M3, M4, R6

10 0.1667
LOW M0, M1, L7, L8, M2, C10, M5, C9, M3, M4, R6

VRP
HIGH R3, R2, C6, L8, L4, M7, C5, L9, M0, M1

42 0.8400
LOW L4, L8, L9, M1, M0, C6, C5, M7, R2, R3

TSP
HIGH L6, L7, L8, R5, C9, C10, C12, C11, M2, M3, M1, M4, M0

38 0.4524
LOW L8, L6, L7, M0, C10, C12, C9, M1, M4, C11, R5, M3, M2

PS
HIGH L4, L3, L0, C9, R7, R6, R5, L2, L1, M11, C10, C8

30 0.4167
LOW L3, L4, L2, L1, L0, R5, C9, C10, R6, R7, M11, C8

permutations of n elements such that σ(i) and π(i) denote the rank of an element i = 1, . . . , n in the

permutation, then Spearman’s Footrule is defined by

d(σ, π) =

n∑

i=1

|σ(i)− π(i)|

and has a maximum integer value of m = ⌊ 1
2n

2⌋ where ⌊·⌋ is the floor function. The greater the

Footrule distance, the greater the difference between the two orders.

The rankings show that some heuristics are indeed better suited to some phases of the optimisation

process than others, and that these changes in order vary by domain. For example, the VRP domain

has a high d′ value indicating that the effective heuristics at the start of the optimisation perform

poorly later on and vice versa. This can be seen in the heuristic orderings, with ruin and recreate

performing well when objective function values are high, but poorly when they are low. The SAT

domain has the lowest d′ value, and shows a much more consistent order with the same mutation and

local search operators appearing in the top four positions, regardless of the optimisation state.

The heuristic instances can be further separated by their current objective function values into 10

sets

P1 = [P r
0 , P

r
10], P2 = [P r

10, P
r
20], . . . , P10 = [P r

90, P
r
100]

where P1 = [P r
0 , P

r
10] and P10 = [P r

90, P
r
100] correspond to the LOW and HIGH sets defined previously.

The α values are calculated over these 10 sets, and the results of plotting α, calculated over DB3,

against each interval are shown in figure 3.4 and figure 3.5.
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(a) The BP domain.
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(b) The PFS domain.
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(c) The SAT domain.
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Figure 3.4: The mean log return α of the low level heuristics in DB3 for the BP, PFS, and SAT

domains, averaged over the 10 local percentiles.
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(a) The VRP domain.
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(b) The TSP domain.
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(c) The PS domain.
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Figure 3.5: The mean log return α of the low level heuristics in DB3 for the VRP, TSP and PS domains

domain, averaged over the 10 local percentiles.
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The figures illustrate that the low level heuristics tend to be more effective early on in the opti-

misation process when the objective function is relatively high as one would expect. However, the

heuristics not only vary in effectiveness during the optimisation process, but the relationship between

them also changes.

3.3.3 Subsets

As noted in Chapter 2, a number of studies have examined the selection and performance of subsets

of low level heuristics. In this section, the methodology developed for individual low level heuristics in

Section 3.3.2 is applied to subsets of heuristics.

Consider a subset of k low level heuristics chosen from the heuristics of a given domain (see table

3.2). The (unordered) subset can be also be viewed as k! ordered subsequences; the subsequences

constructed from the permutations without repetition of the k low level heuristics. For example, the

permutations of the BP heuristic subset {M0, R1, R2} are

M0R1R2, R1M0R2, M0R2R1, R2M0R1, R1R2M0, and R2R1M0.

In general, the mean unit log return of a set of N subsequences si is

β({s1, . . . , sN}) = 1

N

N∑

i=1

β(si).

The performance of a subset of k heuristics is estimated from the online learning database by calculating

the mean unit log return β over the k! permutations of that subset. For example, the performance

of the subset {M0, R1, R2} in DB2 is −0.0031 (see table 3.5). Using k! permutations without repetition

reduces the number of possible subsequences that are required to calculate a subset’s performance

while, it is hoped, still producing a reliable estimate4.

Consider the set C of all combinations of k elements constructed from the heuristics in each domain.

The elements of C are subsets of k heuristics. The number of k-element subsets that can be constructed

from a given set of n > k heuristics is

Cn
k =

n!

k!(n− k)!
.

Following Section 3.3.2, the Cn
k subsets c ∈ C can be ordered by their β and divided into effective

subsets, where β < 0, and disruptive subsets, where β > 0.

The sets LOW and HIGH can also be defined for subsets of heuristics. In this case, the sets LOW

and HIGH consist of all those instances of a heuristic subset c which have a current objective function

value

ot < P r
10 and ot > P r

90

4There are nk subsequences with repetition.
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Table 3.5: The mean unit log return β(s), the standard deviation SD, and the numberNs of occurrences

of the permutations of {M0, R1, R2} in DB2 for the BP domain.

s β(s) SD Ns

M0R1R2 -0.0186 0.0410 812

M0R2R1 -0.0142 0.0337 920

R1M0R2 -0.0128 0.0461 893

R2M0R1 -0.0090 0.0390 1539

R2R1M0 0.0156 0.0449 1229

R1R2M0 0.0214 0.0603 719

{M0, R1, R2} -0.0031 0.0462 6112

respectively, where P r
10 is the 10th and P r

90 is the 90th percentile. The set LOW contains the 10%

of heuristic subsets with the lowest current objective function values while the set HIGH contains the

10% of heuristic subsets with the highest current objective function values. Ranking the subsets by

their β value, calculated over DB2, in increasing order from left to right demonstrates the change in

effectiveness between the HIGH and LOW sets (see table 3.6).

The results demonstrate that some heuristic subsets, like individual heuristics, are better suited to

some phases of the optimisation process than others, and that these changes in order vary by domain.

Many of the best subsets in the HIGH and LOW subsets are made up of the best performing

heuristics. For example, in the BP domain, which has the smallest change in subset order, the effective

subsets consist of the same four best heuristics (see table 3.4).

However, this is not always the case. In the PFS domain the M0 heuristic occurs in both the best

HIGH and LOW subsets despite being a relatively poor performer. Similarly, in the TSP domain the

heuristics M0 occurs in the best HIGH subsets despite being the worst performing heuristic in that

set. In the VRP domain, which exhibits the largest change in subset order, the C7 heuristic occurs

in the best HIGH subset while, again, being a poor performer individually. These results, strengthen

the argument that the optimisation performance of a subset is not solely due to individual low level

heuristic performance, but also a function of the interaction between individual heuristics [119].

As the performance of a k element heuristic subset is estimated from k! subsequences of those

heuristics, the question naturally arises as to the effect of (subsequence) order on optimisation perfor-

mance. The effect of order on a subset c is estimated by the order sensitivity δ(c) which is calculated

by subtracting the mean unit log return of the best performing subsequence smin from the mean unit

log return of the worst performing subsequence smax. For the example given in table 3.5 this is

δ(c) = β(smax)− β(smin) = 0.0214−−0.0142 = 0.0356.
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Table 3.6: The best and worst performing subsets in the HIGH and LOW sets in DB2 for each domain

ordered by ascending mean log return β̄ from left to right, the Spearman’s Footrule distance d, and

the normalised Footrule distance d′ = d
m .

Dom. Set Best Worst d d′

BP
HIGH {R1, R2} {R2, M3} {R2, C7} {M0, L4, M5} {L4, M5} {M0, M5}

1056 0.2993
LOW {R2, C7} {R2, M3, C7} {R2, M3} {M0, L4} {M0, L4, M5} {M0, M5}

PFS
HIGH {L7, L10} {L8, C12} {M0, L7} {M3, C12, C14} {M2, L7, C14} {M2, R6, C12}

86176 0.5496
LOW {M0, L8, C13} {L7, L9, L10} {L7, L10, C11} {M2, L10} {M2, M3} {M2, C11}

SAT
HIGH {L7, C10} {M1, L7} {M0, L7} {M4, R6, C10} {R6, C9, C10} {R6, C10}

8118 0.3355
LOW {M0, M1, L7} {M0, M1} {M0, L7} {M3, R6} {M4, R6} {R6, L7}

VRP
HIGH {R3, C5} {R2, R3} {R3, L8} {M0, L9} {M1, L9} {M0, M1}

12752 0.9368
LOW {L4, L8} {M1, L4, L8} {L4, L8, L9} {R3, M7} {R2, R3} {M1, R3}

TSP
HIGH {L6, C10} {M0, L6} {L8, C12} {M2, M4, C11} {M2, M3, C9} {M0, M2, M4}

28840 0.4353
LOW {R5, L6, C12} {L7, L8, C11} {M1, R5, C10} {M2, C9} {M2, M4} {M2, M3}

PS
HIGH {L3, L4} {L4, C9} {L2, L4} {L0, L1, C8} {L1, C8, C10} {L0, C8, C10}

15786 0.3860
LOW {L3, L4, R5} {L3, L4} {L2, L3} {L1, C8} {C8, M11} {C8, C10}

The mean of the order sensitivities over all Cn
k subsets is termed the mean order sensitivity and

is denoted δk. The mean order sensitivity of the subsets of size k = 2 and k = 3, denoted δ, and the

heuristics with the minimum and maximum order sensitivity, calculated over DB2, for each domain

are shown in table 3.7.

Table 3.7: The mean order sensitivity δ, the standard deviation SD, and the subsets of heuristics with

the minimum and maximum order sensitivity δ(s) in DB2 for each domain.

Dom. δ SD Min. s Min. Max. s Max. Cn
2 + Cn

3

BP 0.0410 0.0399 {L6, L4} 0.0000 {M5, R2} 0.1432 84

PFS 0.0037 0.0054 {M0, M1} 0.0000 {M2, M4} 0.0344 560

SAT 0.0059 0.0079 {M5, L8} 0.0000 {R6, C10, M0} 0.0365 220

VRP 0.0017 0.0015 {M0, M1} 0.0000 {R3, C6, L4} 0.0065 165

TSP 0.0780 0.1123 {M4, M0} 0.0000 {M2, L6} 0.4878 364

PS 0.4271 0.3052 {R5, L0} 0.0022 {C8, M11, L4} 1.5150 286

The results demonstrate that some subsets of heuristics are more order sensitive than others, and

that the causes for this sensitivity, or lack thereof, are varied. For example, in the BP domain the

subset {L6, L4} is the least sensitive. This is because the heuristics L6 and L4 are the most ineffectual

heuristics (see figure 3.3a) and so changing their ordering has little effect on the performance. The
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subset {M0, M5} also has a low order sensitivity of δ = 0.0007. In this case, M0 and M5 are the most

disruptive heuristics in the BP domain, and so again, changing their ordering has little effect. In

contrast, the M5 and R2 heuristics are the most disruptive and effective heuristics respectively in the

BP domain, and changing their ordering produces the largest change in performance. The magnitude

of order sensitivity also varies significantly across domains with a maximum of 0.0065 in VRP up to a

maximum of 1.5150 in PS; a difference of three orders of magnitude.

Figure 3.6 shows the effective and disruptive subsets of C in DB3, for each domain, ordered by

their β, and plotted against a subset’s order sensitivity δ. The red crosses indicate subsets that

contain subsequences that can be reordered so that a disruptive subsequence can be transformed into

an effective one, and vice versa. These subsets are termed order sensitive subsets. The figure illustrates

that the number of order sensitive subsets also varies significantly by domain. Although these subsets

tend to have the largest sensitivities, in general they exhibit poor performance as their mean log return

β is already close to zero. For example, the SAT domain contains two order sensitive subsets; the least

number of any domain. The two subsets are

{M0, M3, C9} with δ = 0.0012−−0.0002 = 0.0014

and

{M3, M5, R6} with δ = 0.0018−−0.0003 = 0.0021

and these subsets are ranked 144th and 145th out of 220 when the subsets are ordered by β.

The effective subset (ranked 65th) with the largest sensitivity

δ = −0.0116−−0.0178 = 0.0062

in SAT is {L8, C9, C10}. The existence of such subsets demonstrates that order sensitivity can also be

exploited in some of the better performing subsets.

In contrast, the PS domain has the largest proportion of order sensitive and effective order sensitive

subsets, and the changes in mean log return can be quite large. For example, the subset {L2, R5, M11}
is the effective subset (ranked 112th out of 286) with the largest

δ = 0.3578−−0.6468 = 1.0046.
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Figure 3.6: Subset sensitivity δ versus the β-order in DB3 for each domain. The red crosses denote

subsets that contain subsequences that can be transformed from a disruptive subsequence to an effective

one (and vice versa) by reordering.
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3.3.4 Subsequences

It is clear from Section 3.3.3 that the choice and order of the low level heuristics in a subsequence of

heuristic selections is crucial to optimisation efficacy.

The unit log return of a set of N subsequences is

β({s1, . . . , sN}) =
N∑

i=1

β(si).

The function β is a signed measure. The Hahn decomposition theorem states that if β is a signed

measure there exist disjoint subsets S+ and S− of S such that S+ is the set of positive values of β, S−

is the set of negative values of β, and S = S+ ∪ S−. Application of Jordan’s decomposition theorem

separates out the positive and negative parts of β. In symbols β = β+ − β− where

β+(U) = β(U ∩ S+) and β−(U) = −β(U ∩ S−)

for every subset U of S. The functions β+ and β− are measures [24].

A subsequence s may occur a number of times in the database and each occurrence will have a

different subsequence of objective function values depending on the problem, the run, and the position

in a run where s arises. The set

Us = {s1, . . . , sNs}

is the set of all occurrences of a subsequence, where Ns is the number of occurrences of s. The

function β+(Us) measures the propensity of subsequence s to increase the objective value, while β−(Us)

measures the propensity of subsequence s to decrease the objective value. The larger the measure, the

larger the propensity for change in the objective value. The word propensity is used deliberately in

order to emphasise that applying a subsequence with a large β+ (or β−) could still lead to a decrease

(or increase) in the objective function value. Indeed, it is quite possible for a subsequence to have

a large (or small) measure under both β+ and β− and still produce a small (or large) change. The

probability (estimate) that s produces a negative (unit) log return is

P (α(s) ≤ 0) =
N−s
Ns

where N−s is the number of occurrences of s where α(s) ≤ 0.

The functions β, β+, β−, and P (α(s) ≤ 0) can be used to categorise and select subsequences from

S. In this thesis, the γ-ratio, defined by

γ(Us) =
β−(Us)

β+(Us) + 1
(3.1)

is used to select subsequences from the offline database. Large values of γ(Us) > 1 indicate an effective

subsequence. Small values of γ(Us) < 1 indicate a disruptive subsequence.
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The γ-ratio, and the mean unit log return β produce different orderings over the subsets and

subsequences of the HyFlex domains. Table 3.8 shows the normalised Footrule distance d′ between the

γ-ordering and the β-ordering of the subsets C, and the subsequences S of length two and three. The

results show that the orderings are similar with a maximum distance of 0.2946 for the subsequences

in PFS. Although the γ-ratio and the mean unit log return β produce similar orderings over the

subsets and subsequences of the HyFlex domains, the γ-ratio is used in preference to β for selecting

subsequences because, in practice, it produces consistently better results.

Table 3.8: The normalised Footrule distance d′ between the γ-ordering and β-ordering of the subsets

and subsequence in DB2 for each domain.

Dom. Subsets Subseqs.

BP 0.1395 0.1472

PFS 0.1826 0.2946

SAT 0.1050 0.1925

VRP 0.1956 0.2747

TSP 0.1610 0.2267

PS 0.1284 0.1687

For notational convenience γ(Us), β(Us), and P (α(s) ≤ 0) are abbreviated to γ(s), β(s), and

P (s ≤ 0) in the following sections.

3.4 Hyper-heuristic Performance

The performance of a hyper-heuristic is measured against the five criteria shown in table 3.9.

Table 3.9: Hyper-heuristic performance criteria.

Name Description

αf Overall mean change in objective function value.

Min. Sel. Heuristic selections required to find xmin.

Obj. Eval. Objective function evaluations required to find xmin.

Min. T Time required to find xmin (ms).

Total T Overall run time (ms).

The change in objective function is measured by the final log return αf . The final log return of a

hyper-heuristic run or sequence s is the log return between the initial solution of the sequence x0 and
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the final best solution xmin found during the run, which has objective value omin. In symbols

αf (s) = log10

(
omin

o0

)
.

The mean final log return of a set of N sequences is

αf ({s1, . . . , sN}) = 1

N

N∑

i=1

αf (si).

The number of objective function evaluations are important because, for certain problem sizes and

problem domains, evaluating the objective function is computationally expensive. In addition, each

objective function evaluation provides the hyper-heuristic with information regarding the progress of

the optimisation process. More objective function evaluations provide more information which often

leads to improved performance.

The number of selections and the time required to find the best solution are correlated. However,

as the low level heuristics have different time complexities, a larger number of selections does not

necessarily imply a longer time to best solution.

The overall run time provides a simple measure of a hyper-heuristic’s time complexity over an entire

run. The overall run time combines low level heuristic execution time, objective function evaluations

time, and the time necessary to perform other computations such as selection, acceptance or online

learning.

3.5 Statistical Validation

In the evolutionary computation literature statistical tests are widely used to compare and rank the

performance of algorithms that have been evaluated on a number of benchmark problems (see for

example [48], [49], [32], and [116]). Such test are usually non-parametric. Although non-parametric

tests tend to be less powerful than parametric tests they are more robust as they require less statistical

assumptions.

The non-parametric, one tailed Wilcoxon signed-rank test is used to validate the proposed method-

ology by establishing a stochastic ordering on two hyper-heuristics A and B. The null hypotheses of

the Wilcoxon test is that the median difference between pairs of observations is zero, and this is tested

at a significance level of 0.01. The null hypothesis is rejected if the p-value is less than 0.01, and in

this case, the alternative hypothesis, that the median difference between pairs of observations is less

than zero, is accepted with 99% confidence. This implies that the random variable αf (A) is “smaller”

than the random variable αf (B), and thus hyper-heuristic A is more effective than hyper-heuristic B.

In symbols

αf (A) < αf (B)
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with 99% confidence.

The αf (A) and αf (B) values can be paired because the initial seed (pair) and therefore the initial

solution x0 for each problem instance p in a domain, and each run r is the same for both hyper-

heuristics.

The Wilcoxon test assumes that the paired values of αf (A) and αf (B) are independently drawn.

The use of cross-validation to determine generalisation violates this assumption as the training sets

overlap. This overlap may prevent the statistical test from obtaining a good estimate of the amount of

variation that would be observed if the training sets were completely independent. As a consequence,

when cross-validation is used, the results of the statistical tests must be viewed as approximate rather

than rigorously correct [34].

The null hypotheses of the Wilcoxon test is that the median difference between pairs of observations

is zero. As the differences between the αf (A) and αf (B) values are not symmetrically distributed

around the median, the Hodges-Lehmann estimate of the median is used instead [58].

All statistical tests were performed using the R language for statistical computing [93].

3.6 Conclusions

This chapter has presented a methodological framework for the construction and analysis of a number

of offline learning databases. Specifically, a simple, random, selection hyper-heuristic DBGen is repeat-

edly executed on the HyFlex set of benchmark problems, in order to generate sequences of heuristic

selections, heuristic parameters, and objective function values.

A novel statistical framework is used to analyse the selections of low level heuristics, based on the

concept of logarithmic returns. Logarithmic returns are used for the categorisation of

1. individual heuristics,

2. subsets of heuristics, and

3. subsequences of heuristics,

based on their associated objective function values. Heuristic selections can be classed as either effective

when they tend to reduce the objective function value, or disruptive when they tend to increase the

objective function value. Logarithmic returns can also be applied to the measurement and analysis of

hyper-heuristic performance in general.

The proposed framework is able to identify, and quantify, well known heuristic behaviours, such

as the effect of the choice and order of heuristics on optimisation performance, and the differences in

heuristic performance that occur during the optimisation process. Furthermore, it should be noted

that this framework does not depend on the problem domain, the number or type of heuristics, or the

process used to generate the heuristic selections.
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Chapter 4

An Analysis of Heuristic

Subsequences

In this chapter, the framework for offline learning developed in Chapter 3 is used to identify and analyse

subsequences of heuristic selections. The mean unit log return β and the γ-ratio, introduced in Section

3.3.4, measure the propensity of a subsequence s to increase or decrease the objective function value.

The larger the measure, the larger the propensity for change. Here, the γ-ratio is used to select sets

of effective and disruptive subsequences of heuristics from the offline database DB1. Although β and

γ produce similar orderings over the subsets and subsequences of the HyFlex domains, γ is used in

preference to β for selecting subsequences because, in practice, it produces consistently better results.

The selected subsequence sets are used to parameterise a selection hyper-heuristic, denoted EvalHH,

which is executed on a number of unseen HyFlex problem instances in order to evaluate the subse-

quences, and by extension the framework. The EvalHH results are then compared with results produced

by the SSHH hyper-heuristic described in Chapter 2.

The six experiments presented here (five of which have been published in [126]) are designed to

explore the effect of calculating the γ-ratio for subsequences of low level heuristics, heuristic classes

within a domain, and heuristic classes across a number of domains.

The identification of effective subsequences of low level heuristics is useful because they can be

used to improve optimisation performance either directly by using them to construct a sequence-

based selection hyper-heuristic, or indirectly as training patterns for some offline learning algorithm.

Effective subsequences of heuristic classes can, in some cases, also be useful in constructing optimisers

for problems from novel or unseen domains.

The experiments in this chapter only asses the performance of the selected subsequences. Their

suitability for use as the training patterns for a learning algorithm is investigated in Chapter 5.

Of the six HyFlex domains, only the BP, PFS, SAT and PS domains are used. The TSP and VRP
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domains are not used, and are reserved for future experiments.

The structure of this chapter is as follows. Section 4.1, presents the selection hyper-heuristic

EvalHH which is used to evaluate a given set of heuristic subsequences. In Section 4.2, an effective

subsequence set of low level heuristics is selected using a γ-ratio that is calculated over each domain,

and evaluated with EvalHH on “unseen” HyFlex problem instances. In Section 4.3 this experiment is

repeated for subsequences of heuristic classes. The objective of these two experiments is to assess the

scope and limitations of the proposed framework, and demonstrate empirically its predictive capability.

Another objective of this chapter is to determine the existence of effective cross-domain subsequences

of heuristic classes. With this in mind, in Section 4.4, an effective and a disruptive subsequence set

of heuristic classes are selected using a γ-ratio that is calculated over the whole database. Section 4.5

presents a detailed analysis of these results for the Bin Packing domain, which leads in Section 4.6 to

the development of a method for improving the performance of cross-domain subsequences. In each

case, the EvalHH hyper-heuristic results are compared with the results produced by the SSHH hyper-

heuristic. The SSHH hyper-heuristic has been tested on the HyFlex problems and compared with a

number of other well known hyper-heuristics [67]. The published results demonstrate that SSHH is

able to outperform the then best-in-class hyper-heuristic AdapHH [82] on these problems.

The preceding experiments all employ short subsequences of length two and three. In Section

4.7 the issue of subsequence length is examined by selecting and evaluating an effective cross-domain

subsequence set, where the subsequences have unrestricted length.

Section 4.8 presents an analysis of the performance of the subsequence sets employed so far, using

the concept of Pareto rank which allows comparisons to be made across the four criteria of mean

number of selections to a minimum, mean number of objective function evaluations to a minimum,

mean time to a minimum, and mean overall time.

Finally, all of the preceding experiments employ a run length of 150 heuristic selections, and for

some problems this can be considered to be a small number over which to evaluate a hyper-heuristic.

The experiment in Section 4.9 addresses the issue of run length by evaluating two subsequence sets for

10 minutes of wall clock time which produces a more realistic number of selections.

For clarity, the experiments are labeled according to the following convention. The results of

selecting subsequences using a γ-ratio calculated over the low level heuristics of a particular domain

have a suffix -DH where the D denotes domain statistics and the H denotes low level heuristics. When

γ is calculated for the heuristic classes of a particular domain the suffix is -DC. Finally, when γ is

calculated “globally” across all domains in the database the suffix is always -GC as it is not possible

to to calculate cross domain statistics for individual low level heuristics, only classes.

The abbreviations used throughout the following sections together with their descriptions are sum-

marised in table 4.1.
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Table 4.1: Experimental abbreviations, descriptions, and sections.

Abbr. Description Sec.

DBGen Hyper-heuristic used to generate the learning database. C2–2.5

SSHH Sequenced-based hyper-heuristic used for comparisons. C3–3.2

EvalHH Hyper-heuristic used to evaluate subsequence sets. 4.1

TOP-DH Subsequences of low level heuristics with the largest γ (by domain). 4.2

TOP-DC Subsequences of heuristic classes with the largest γ (by domain). 4.3

TOP-GC Subsequences of heuristic classes with the largest γ (all domains). 4.4

BOT-GC Subsequences of heuristic classes with the smallest γ (all domains). 4.4

SINGLE The individual heuristic classes { L, C, R, M }. 4.4

RAND Randomly generated subsequences of heuristic classes. 4.4

WXYZ Subsequences of reordered heuristic classes with the largest γ (unseen domains). 4.6

CLMR Subsequences of heuristic classes with the largest γ (unseen domains). 4.6

LONG-GC Arbitrary length subsequences of heuristic classes. 4.7

{L} Singleton heuristic class. 4.7

{LL} Singleton heuristic class subsequence. 4.7

4.1 The EvalHH Hyper-heuristic

The EvalHH selection hyper-heuristic, shown in listing (10), is used to evaluate a set of subsequences. It

is a sequence-based hyper-heuristic which employs a fixed set of k heuristic subsequences of arbitrary

lengths. The function selectSubsequence() (line 10) selects a subsequence at random from this set.

The function apply() (line 13) is then called for each heuristic class in the subsequence in order to

choose, again at random, a low level heuristic and its parameters from the available heuristics of that

class. This low level heuristic is then applied to the current solution, and if the class is C, to the

current crossover solution. At the end of a subsequence, an objective function evaluation (line 16)

and an acceptance check are performed (lines 17–31). If a new solution’s objective value is less than

the current solution’s objective value or the current solution’s objective value multiplied by THRESHOLD,

then it is accepted (lines 17-27). Otherwise the new solution is rejected (lines 28–31). The threshold

allows solutions with a small increase in objective function value (up to 5%) to be accepted. A low

threshold forces the EvalHH hyper-heuristic to optimise the problem instead of exploring the space of

low level heuristic selections. The acceptance mechanism employed here is adapted from SSHH.

In this chapter, the crossover mechanism used in the EvalHH and SSHH hyper-heuristics is similar

to the mechanism used by DBGen and operates on a population of one solution. As a result, any bias

due to the crossover mechanism should be similar for all three hyper-heuristics.

The EvalHH hyper-heuristic is employed for evaluation purposes in order to ensure that any ob-

served differences in performance are not dependant on the structure of DBGen which generated the
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Algorithm 10 The EvalHH hyper-heuristic in pseudocode.
1. ITERATIONS ← MAX ITER

2. THRESHOLD ← 1.05

3. new-sol ← initialiseSolution()

4. new-obj ← f(new-sol)

5. cross-sol ← initialiseSolution()

6. cross-obj ← f(cross-sol)

7. while (ITERATIONS > 0) do

8. cur-sol ← new-sol

9. cur-obj ← new-obj

10. Subsequence ss ← selectSubsequence()

11. for (i← 0 to length(ss)) do

12. Heuristic h ← ss[i]

13. new-sol ← apply(h, new-sol, cross-sol)

14. ITERATIONS ← ITERATIONS − 1

15. end

16. new-obj ← f(new-sol)

17. if (new-obj < cross-obj * THRESHOLD) then

18. cross-sol ← new-sol

19. cross-obj ← new-obj

20. end

21. if (new-obj < cur-obj) then

22. THRESHOLD ← 1.05

23. else if (new-obj < cur-obj * THRESHOLD) then

24. THRESHOLD ← THRESHOLD − 0.01

25. if (THRESHOLD < 1) then

26. THRESHOLD ← 1

27. end

28. else /∗ reject the new solution ∗/

29. new-sol ← cur-sol

30. new-obj ← cur-obj

31. end

32. end

subsequences. It should be emphasised that the EvalHH hyper-heuristic is not an attempt to produce

a superior or novel hyper-heuristic algorithm. Rather EvalHH is intended to serve as a test bed and a

“level playing field”, in order to evaluate the performance of a number of subsequence sets which are

selected using the γ-ratio.

4.2 Low Level Heuristics

In this experiment, the γ-ratio is used to extract subsequences of low level heuristics from the DB1

offline learning database (see Chapter 3, Sections 3.3.4 and 3.2 respectively). The subsequences are

chosen to be effective, that is they are assumed to reduce the objective function value, and this

assumption is verified experimentally using EvalHH. An examination of the selected subsequences will

also allow the principle that “exploration followed by exploitation” is an effective strategy to be tested

[67].
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For each problem instance in a domain, the 10 subsequences with the largest γ-ratio are selected

using the query

select s from subsequence where length ≤ 3 order by γ(s) descend limit 10

where

γ(s) =
β−(s)

β+(s) + 1
.

The γ-ratio is calculated using a leave-one-out cross-validation methodology [9]. Recall that there

are 10 problem instances of interest in each of the four HyFlex domains. For each target problem in a

domain, γ is calculated from the sequences of the remaining nine problems. The chosen subsequences

are then evaluated on the target problem. This ensures that the subsequences are always evaluated

on a problem that is “unseen”. This methodology is illustrated in figure 4.1.

Figure 4.1: A flow chart of the leave-one-out cross-validation methodology used to evaluate the per-

formance of subsequences of low level heuristics in a given domain.

This methodology gives rise to 40 subsequence sets, one for each problem instance in each HyFlex

domain. As the γ statistics are quite stable, the selected subsequences for the problems in a domain

are very similar, usually differing by at most one or two subsequences. This subsequence set is denoted
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Table 4.2: The TOP-DH subsequences of low level heuristics for each domain.

BP γ(s) PFS γ(s) SAT γ(s) PS γ(s)

R2R2 43.8493 M4L7 4.0900 M1M0 16.2481 L4L4 295.7140

M3R2 28.9555 M4L8 3.6249 M1M1 16.1602 L4L3 271.2990

R2L4 28.6750 M4L10 3.2020 L7M1 16.0079 L4L2 269.6110

L4R2 26.1469 R6R6 3.0929 M0M1 15.7271 L3L4 262.8780

R1R2 24.3380 M4L9 3.0856 L7M0 15.4519 L2L4 225.9580

R2L6 19.7258 R5M4 3.0016 M0M0 15.1376 L3L3 224.4890

C7R2 19.6726 M4R6 2.9105 M0L7 14.9501 L1L4 214.2970

R2C7 19.5043 R6M4 2.8195 L7L7 14.9351 L0L2 205.0780

R2M3 19.3604 R5R5 2.6015 M1L7 14.3604 L2L3 201.9660

L6R2 18.4136 R5R6 2.5843 L8M0 11.3984 L0L3 200.1810

TOP-DH. The subsequence sets and their γ-ratios (calculated over all the problem instances) for each

domain are shown in table 4.2.

As might be expected, the best performing subsequences differ markedly by domain. The PS

subsequences consist exclusively of local search heuristics whereas the SAT subsequences combine

mutation and local search. The PFS and BP subsequences both utilise ruin and recreate, mutation,

and local search. The underlined subsequences in table 4.2 violate the principle of exploration followed

by exploitation. Interestingly, this principle does not appear to be preserved for the BP or PS domains.

In the BP domain, local search is followed by the ruin and recreate heuristic R2. The BP ruin and

recreate heuristics are destroy x highest bins and destroy x lowest bins [64]. These heuristics remove all

the pieces from the x highest or lowest filled bins where x is an integer determined by the “intensity

of mutation” parameter. They then repack the pieces using the best-fit heuristic. For low values of

x these heuristics preserve most of the existing solution and, as the number of bins increases, their

effect becomes more exploitative than exploratory. In fact, on the BP domain, the ruin and recreate

heuristics produce, on average, a larger improvement in objective function value than the local search

heuristics (see figure 4.2).

The overall γ-ratio of each subsequence set shown in table 4.2 is shown in table 4.3 for each domain.

As the γ-ratios are greater than 1 each set has a negative mean unit log return β ≤ 0. These values

suggest that these subsequences will be effective on the HyFlex problems.

Table 4.4 shows the results of the EvalHH hyper-heuristic using the subsequence set TOP-DH (with

a leave-one-out methodology) and the SSHH hyper-heuristic, averaged over 40 runs of each HyFlex

problem; a total of 1600 runs. Each run of MAX ITER = 150 selections is seeded by a single unique

number

seed = 401 + (40 p) + r
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Table 4.3: The mean unit log return β(s), the negative β−(s) and positive β+(s) component sums,

the probability of a negative log return P (s ≤ 0), the γ-ratio, and the number Ns of occurrences of

the subsequence set TOP-DH of low level heuristics for each domain.

Dom. β(s) β−(s) β+(s) P (s ≤ 0) γ-ratio Ns

BP -0.0283 257.4574 0.3608 0.9876 189.1929 9098

PFS -0.0109 33.4832 0.8420 0.8379 18.1776 2986

SAT -0.0238 150.3768 0.0000 1.0000 150.3768 6314

PS -0.4848 2371.4710 0.0000 1.0000 2371.4710 4892

where p = 0, . . . , 39 is the problem index and r = 0, . . . , 39 is the run index. These seeds are distinct

to the seeds used to generate the offline database DB1. For EvalHH, the low level heuristic parameters

are chosen at random.

Table 4.4: The mean final log return αf for EvalHH (using the subsequence sets TOP-DH), and SSHH.

The domain statistics are calculated over 400 runs. Winning scores are shown in bold.

Dom. TOP-DH SSHH

BP -0.3565 -0.3009

PFS -0.0074 -0.0049

SAT -0.9509 -0.6908

PS -1.7708 -1.7770

All -0.7714 -0.6934

The results demonstrate that the hyper-heuristic EvalHH, using the subsequence set TOP-DH, out-

performs SSHH overall, and on the BP, PFS and SAT domains (see table 4.4). The results of the

Wilcoxon signed-rank test (see Chapter 3, Section 3.5) are shown in table 4.5.

For each domain, the null hypothesis is rejected as the p-value is less than 0.01 (shown in bold)

and the alternative hypothesis αf (TOP-DH) < αf (SSHH) is accepted with 99% confidence. Overall the

median difference is significant and the hyper-heuristics can be stochastically ordered so that

αf (TOP-DH) < αf (SSHH)

with 99% confidence.

The result that a simple hyper-heuristic such as EvalHH using fixed sets of subsequences (specifically

the TOP-DH subsequences) is able to outperform SSHH, a published hyper-heuristic which employs on-

line learning, demonstrates the utility of the subsequence-based approach and the statistical framework

proposed in this thesis. Of course, the online method must learn which heuristics and parameters to
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Table 4.5: The Wilcoxon test results for αf (TOP-DH) and αf (SSHH). The sample median difference d̂,

the sample mean difference d, the standard deviation SD, the standard error of the mean SEM, the

p-value, and the interval within which the population median difference falls with 99% confidence.

Dom. d̂ d SD SEM p-value Conf. Int

BP -0.0405 -0.0556 0.1231 0.0062 0.0000 [−∞,−0.0253]

PFS -0.0024 -0.0026 0.0021 0.0001 0.0000 [−∞,−0.0022]

SAT -0.2584 -0.2601 0.1032 0.0052 0.0000 [−∞,−0.2457]

PS -0.0013 0.0063 0.1848 0.0092 0.0032 [−∞,−0.0013]

All -0.0685 -0.0780 0.1631 0.0041 0.0000 [−∞,−0.0555]

select during execution, which is not required of the offline method, but it shows that there is scope

to improve the performance of the SSHH hyper-heuristic using offline learning techniques.

4.3 Heuristic Classes

As noted in Chapter 3, Section 3.1, the number and implementation of the low level heuristics varies

between domains. As a result, γ-ratios for subsequences of low level heuristics can only be calculated

for a particular domain. For the case where there are several domains under consideration the γ-ratio

must be calculated for the heuristic classes { M, C, R, L }. Before examining the cross-domain case, in

this section, the γ-ratio is used to select effective subsequences of heuristic classes within each domain.

For each domain, the top 10 subsequences of length two and three with the largest γ-ratio are

selected using a γ that is calculated over the subsequences of heuristic classes of that domain, using

the leave-one-out methodology illustrated in figure 4.1.

This methodology gives rise to 40 subsequence sets, one for each problem instance in each HyFlex

domain. The subsequence sets TOP-DC, calculated over all the problem instances for each domain, are

shown in table 4.6.

Table 4.6: The TOP-DC subsequences of heuristics classes ordered by descending γ-ratio from left to

right.

Dom. Subsequences

BP {RR, RL, LR, RRR, CR, RLR, RC, RRL, LRR, RLL}
PFS {RR, RL, LR, CR, RC, MR, RRL, MRR, RLR, CRR}
SAT {LL, ML, LM, MML, MLM, LMM, MMM, LML, MLL, LLM}
PS {LL, LLL, RLL, LRL, RL, RRL, CLL, MLL, LLR, RLR}
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Notice that some of the subsequences of heuristic classes shown in table 4.6 can also be observed in

the subsequences of low level heuristics shown in table 4.2. For example, the most effective subsequence

of low level heuristics in the BP domain is R2R2 while the most effective subsequence of heuristic classes

in the BP domain is RR. The γ-ratio of each subsequence set shown in table 4.6 is shown in table 4.7.

As the γ-ratios are greater than 1 each set has a negative mean unit log return β ≤ 0.

Table 4.7: The mean unit log return β(s), the negative β−(s) and positive β+(s) component sums,

the probability of a negative log return P (s ≤ 0), the γ-ratio, and the number Ns of occurrences of

the subsequence set TOP-DC of heuristics classes for each domain.

Dom. β(s) β−(s) β+(s) P (s ≤ 0) γ-ratio Ns

BP -0.0241 452.5768 6.3965 0.8915 61.1881 18495

PFS -0.0057 72.7367 9.4039 0.7724 6.9913 11076

SAT -0.0140 556.9779 12.6391 0.9580 40.8369 38922

PS -0.2766 9897.0400 927.9030 0.8820 10.6545 32429

Each set of subsequences is evaluated using the EvalHH hyper-heuristic on the HyFlex problems

of that domain. The low level heuristics and heuristic parameters are chosen at random. Table 4.8

shows the results of the EvalHH hyper-heuristics using the subsequence set TOP-DC, and the SSHH

hyper-heuristic, over 40 runs of MAX ITER = 150 selections for each HyFlex problem.

Table 4.8: The mean final log return αf for the hyper-heuristic EvalHH using the subsequence set

TOP-DC, and the hyper-heuristic SSHH. The domain statistics are calculated over 400 runs. Winning

scores are shown in bold.

Dom. TOP-DC SSHH

BP -0.2896 -0.3009

PFS -0.0053 -0.0049

SAT -0.8275 -0.6908

PS -1.8378 -1.7770

All -0.7109 -0.6934

The subsequence set TOP-DH outperforms the subsequence set TOP-DC overall, and on the BP, PFS

and SAT domains (see tables 4.4 and 4.8). This is unsurprising as information regarding specific low

level heuristics is lost when using heuristic classes. However, on the PS domain the TOP-DC subse-

quences outperform the TOP-DH subsequences. One reason for this is that the TOP-DH subsequences

for PS contain only L class heuristics while the TOP-DC subsequences for PS contain several heuristic

types. A lack of heuristic diversity, that is, the lack of other heuristic classes in a set, can impair
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performance as noted in [46] and [27].

The hyper-heuristic EvalHH using the subsequence set TOP-DC outperforms the SSHH hyper-heuristic

overall, and on the PFS, SAT and PS domains (see table 4.8). The Wilcoxon test is used to establish

whether the median differences are statistically significant. The results are shown in table 4.9.

Table 4.9: The Wilcoxon test results for αf (TOP-DC) and αf (SSHH). The sample median difference d̂,

the sample mean difference d, the standard deviation SD, the standard error of the mean SEM, the

p-value, and the interval within which the population median difference falls with 99% confidence.

Dom. d̂ d SD SEM p-value Conf. Int

BP 0.0097 0.0113 0.0027 0.0054 0.9845 [−∞, 0.0223]

PFS -0.0004 -0.0004 0.0020 0.0001 0.0000 [−∞,−0.0002]

SAT -0.1384 -0.1367 0.0968 0.0048 0.0000 [−∞,−0.1273]

PS -0.0413 -0.0608 0.1231 0.0062 0.0000 [−∞,−0.0318]

All -0.0357 -0.0467 0.0003 0.0028 0.0000 [−∞,−0.0291]

For the PFS, SAT, and PS domains the null hypothesis is rejected as the p-value is less than

0.01 (shown in bold) and the alternative hypothesis αf (TOP-DC) < αf (SSHH) is accepted with 99%

confidence. For the BP domain the αf (TOP-DC) and αf (SSHH) hyper-heuristics are not statistically

comparable. Overall the median difference is significant and the hyper-heuristics can be ordered

stochastically so that

αf (TOP-DC) < αf (SSHH)

with 99% confidence.

This result is notable because even though information regarding specific heuristics is lost when

using subsequences of heuristic classes, the offline methodology is still superior to SSHH which performs

online learning on low level heuristics and parameters.

4.4 Cross-domain Heuristic Classes

A primary objective of this thesis is to explore the potential of subsequences of heuristic classes to be

effective across a number of problem domains thus demonstrating cross-domain generalisation. In this

section four sets of heuristic classes are evaluated:

1. the top 10 subsequences of length two and three with the largest γ-ratios denoted TOP-GC,

2. the bottom 10 subsequences of length two and three with the smallest γ-ratios denoted BOT-GC,

3. the set RAND consisting of subsequences of length two and three that are randomly generated at

each iteration of the optimisation process, and
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4. the set SINGLE containing the individual heuristic classes { L, C, R, M }.

The TOP-GC, and BOT-GC sets are selected using a γ that is calculated “globally” across all four

domains in the database. The RAND and SINGLE subsequence sets are included to provide results

for direct comparison with TOP-GC and BOT-GC. The random subsequences RAND act as a control

variable in order to assess the relationship between the TOP-GC and BOT-GC subsequences. The

individual heuristic set SINGLE causes the EvalHH hyper-heuristic to behave as a single selection hyper-

heuristic, and allows for a comparison between single selection and sequenced-based methods. The

results for the DBGen and SSHH hyper-heuristics are also included to provide baseline comparisons.

The effective set of subsequences TOP-GC contains the 10 subsequences shown in table 4.10. As

the γ-ratio is greater than 1 the subsequence set TOP-GC has a negative mean unit log return β ≤ 0.

Table 4.10: The mean unit log return β(s), the negative β−(s) and positive β+(s) component sums,

the probability of a negative log return P (s ≤ 0), the γ-ratio, and the number Ns of occurrences for

the TOP-GC subsequences.

s β(s) β−(s) β+(s) P (s ≤ 0) γ-ratio Ns

LL -0.2276 4075.5700 0.0000 1.0000 4075.5701 17904

LLL -0.2241 1580.0700 0.0000 1.0000 1580.0699 7052

RLL -0.1710 752.5980 43.9964 0.8477 16.7257 4144

LRL -0.1350 642.1100 97.3733 0.8014 6.5273 4034

RRL -0.0915 290.9380 56.0398 0.8083 5.1006 2566

RL -0.1142 1554.8600 311.9620 0.7968 4.9682 10881

CLL -0.1059 451.3630 144.7040 0.8488 3.0978 2897

MLL -0.0265 155.1060 59.1046 0.7131 2.5806 3628

LLR -0.0744 462.8090 183.5720 0.7569 2.5075 3751

MMM -0.0057 122.1290 52.1236 0.7982 2.2990 12262

All -0.1322 10087.5530 948.8757 0.8698 10.6199 69119

Notice that all but the last two of the subsequences ends in an L. This is to be expected for

two reasons. Firstly, this result supports discussions earlier in this thesis and in the literature that

exploration followed by the exploitation of a local search operation is the preferable ordering of these

heuristics [67]. Secondly, the fact that the local search heuristic is only able to improve the log return

of a sequence is important. If the solution is already optimal with regard to the local search landscape,

the local search will return the initial solution. Therefore, by ending with local search, progress made

by the subsequence can be exploited with no potential for generating a worse solution.

In contrast, the disruptive set of subsequences BOT-GC contains the 10 subsequences with the
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Table 4.11: The mean unit log return β(s), the negative β−(s) and positive β+(s) component sums,

the probability of a negative log return P (s ≤ 0), the γ-ratio, and the number Ns of occurrences for

the BOT-GC subsequences.

s β(s) β−(s) β+(s) P (s ≤ 0) γ-ratio Ns

RCM 0.0380 7.0709 56.0581 0.3980 0.1239 1289

CR 0.1734 114.3490 1009.3100 0.6072 0.1132 5160

CCM 0.0325 5.1919 46.1179 0.4861 0.1102 1259

RC 0.1555 83.3491 861.3660 0.6283 0.0967 5002

CRM 0.0556 6.8256 75.1029 0.4083 0.0897 1227

RCC 0.1364 8.4616 125.7910 0.5977 0.0667 860

CC 0.1642 50.1554 779.8570 0.7531 0.0642 4443

CCR 0.1611 9.5609 150.3600 0.5400 0.0632 874

CRC 0.1709 9.7718 161.3600 0.5411 0.0602 887

CCC 0.1323 7.0897 120.7200 0.6845 0.0582 859

All 0.1411 301.8259 3386.0429 0.6085 0.0891 21860

smallest γ-ratios in the database, and are shown in table 4.11. As the γ-ratio is less than 1 the

subsequence set has a positive mean unit log return β > 0.

Notice that no subsequence contains an L class heuristic. The BOT-GC subsequences contain a large

number of crossover operations and again confirms what might be expected in that crossover operations

are likely to be disruptive to existing good solutions (particularly when executed repeatedly) and are

unlikely to deliver significant performance improvements. These operations are frequently combined

with the ruin and recreate operation which would make for a highly disruptive pairing that would

eliminate any information gained from a search of the local space.

The table 4.12 shows the results of the DBGen and SSHH hyper-heuristics and the EvalHH hyper-

heuristic using the subsequence sets TOP-GC, SINGLE, RAND, and BOT-GC, over 40 runs of 150 selec-

tions on each of the HyFlex problems. During evaluation the low level heuristics and their parameters

are chosen at random. The Wilcoxon test is used to establish whether the median differences observed

are statistically significant. The results are shown in table 4.13.

For each pair of hyper-heuristics the null hypothesis is rejected as the p-value is less than 0.01

and the alternative hypothesis αf (A) < αf (B) is accepted with 99% confidence. Thus the median

differences are significant and the hyper-heuristics can be stochastically ordered so that

αf (TOP-GC) < αf (SINGLE) < αf (RAND) < αf (BOT-GC)

with 99% confidence (for each comparison).
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Table 4.12: The mean final log return αf , the mean percent return, the mean number of selections to

a minimum, the mean number of objective function evaluations, the mean time to a minimum (ms),

and the mean run time (ms), for the hyper-heuristics DBGen and SSHH, and the hyper-heuristic EvalHH

using the subsequence sets TOP-GC, SINGLE, RAND and BOT-GC. The statistics are calculated over

1600 runs.

αf Percent % Min. Sel. Obj. Eval. Min. T Total T

DBGen -0.6243 -49.0924 92.8738 93.8513 24873 43998

SSHH -0.6934 -55.4024 111.8219 55.7438 36824 51643

TOP-GC -0.6868 -53.0720 110.5556 39.1931 40241 58633

SINGLE -0.6643 -52.9842 107.0994 107.0994 18608 30507

RAND -0.6328 -51.5645 108.1688 40.3231 20781 30931

BOT-GC -0.1781 -26.4057 86.6506 31.8488 5862 12404

Table 4.13: The hyper-heuristic pair, the sample median difference d̂, the sample mean difference d,

the standard deviation SD, the standard error of the mean SEM, the p-value, and the interval within

which the population median difference falls with 99% confidence.

Hyper-heuristics d̂ d̄ SD SEM p-value Conf. Int.

TOP-GC - SINGLE -0.0075 -0.0226 0.1166 0.0029 0.0000 [∞,−0.0040]

SINGLE - RAND -0.0173 -0.0385 0.1439 0.0036 0.0000 [∞,−0.0111]

RAND - BOT-GC -0.2714 -0.4547 0.7050 0.0176 0.0000 [∞,−0.2387]

TOP-GC - RAND -0.0393 -0.0540 0.1252 0.0031 0.0000 [∞,−0.0307]

TOP-GC- BOT-GC -0.3300 -0.5087 0.7433 0.0186 0.0000 [∞,−0.3030]

Table 4.12 and this statistical comparison illustrates the differences in the various selection mech-

anisms. The SSHH hyper-heuristic provides the best performance here, which is understandable given

that it is the only online learning technique and so is able to adapt itself to the different requirements

of each of the problem domains. Interestingly, the TOP-GC subsequences are the next best performing

approach and are better than both SINGLE and RAND. This is notable because it demonstrates the

increased performance available from using well-chosen subsequences over single heuristic selections or

random subsequences. Predictably, the BOT-GC subsequences perform badly on this set of test runs.

The mean number of heuristic selections to find a minimum are similar for SSHH, SINGLE, TOP-GC,

and RAND (see table 4.12). However when the mean number of objective evaluations to a minimum

is considered, TOP-GC and RAND use less evaluations than SSHH and SINGLE. In particular, when

EvalHH is parameterised with the set SINGLE it operates as a single selection hyper-heuristic, and each

selection is followed by an objective function evaluation. As a result the mean number of selections is
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equal to mean number of objective evaluations. In this case, the extra objective function evaluations

performed when using SINGLE give rise to a superior performance to RAND. This is because a single

selection hyper-heuristic has more opportunities to accept solutions with low(er) objective function

values than a sequence-based one.

The TOP-GC subsequence set is the most time expensive. This is due to the large proportion of

L class heuristics in the TOP-GC subsequences, as L heuristics have a higher time cost than C, R or M

heuristics (see table 4.14). The SINGLE and RAND subsequences generate a lower number of L heuristic

selections and thus have a lower time cost. Unsurprisingly, BOT-GC which contains no L heuristics,

and many C heuristics is the most time efficient.

Table 4.14: The mean execution time (in milliseconds) of the heuristics classes C, L, M, and R calculated

from the sequences generated by DBGen on the HyFlex problems overall and for each domain.

HC All (ms) BP (ms) PFS (ms) SAT (ms) PS (ms)

C 27.5080 169.1298 0.0408 0.1773 7.6091

L 832.7797 8.2271 41.7763 1.2088 2202.5602

M 8.5262 2.9007 3.4166 16.6931 1.4122

R 256.2476 3.2653 466.0749 0.3983 489.5818

4.5 Analysing the Bin Packing Problem

The TOP-GC subsequences outperform the BOT-GC subsequences when compared over runs, problems,

and most significantly, domains. Specifically TOP-GC “wins” 1119 runs out of 1600, 34 problems out of

40, and three domains out of four. Table 4.15 show the mean final log returns αf for the subsequence

sets TOP-GC and BOT-GC broken down by problem domain. Notice that the BOT-GC subsequences

outperform the TOP-GC subsequences on the Bin Packing problem. In fact, the six problems that

BOT-GC “wins” against TOP-GC are all examples of the Bin Packing problem.

The statistics for the TOP-GC and BOT-GC subsequences are shown in table 4.10 and table 4.11.

These values are calculated from subsequences of heuristic classes that have been drawn from all four

problem domains. The γ-ratios and the mean unit log returns β suggest these sets should produce

good and poor performance respectively when evaluated on the HyFlex problems. However on the BP

domain, not only has BOT-GC outperformed TOP-GC but it has produced results comparable to SSHH.

In order to explain the discrepancy, the γ and β values are recalculated from subsequences drawn only

from the BP domain. The results are shown in table 4.16. Notice that the BOT-GC subsequence set

now has a γ-ratio greater than 1 and a negative mean unit log return β ≤ 0. Although the TOP-GC

subsequences still has a γ > 1 and β ≤ 0, when compared to BOT-GC they have smaller magnitudes.
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Table 4.15: A domain by domain comparison of the mean final log return αf of TOP-GC and BOT-GC.

The domain statistics are calculated over 400 runs. Winning scores are shown in bold. The results for

SSHH are included for comparison.

Dom. TOP-GC BOT-GC SSHH

BP -0.2419 -0.3079 -0.3009

PFS -0.0051 -0.0040 -0.0049

SAT -0.6567 -0.1246 -0.6908

PS -1.8437 -0.2760 -1.7770

All -0.6868 -0.1781 -0.6934

Table 4.16: The mean unit log return β(s), the negative β−(s) and positive β+(s) component sums,

the probability of a negative log return P (s ≤ 0), the γ-ratio, and the number Ns of occurrences for

the TOP-GC, BOT-GC, and TOP-DC subsequences on the Bin Packing domain.

s β(s) β−(s) β+(s) P (s ≤ 0) γ-ratio Ns

TOP-GC -0.0073 155.5739 49.5213 0.8440 3.0794 14477

BOT-GC -0.0162 81.3211 15.8588 0.8085 4.8236 4037

These quantities provide an explanation as to why the BOT-GC subsequences perform better than

the TOP-GC subsequences on the BP domain, and they imply that statistics calculated at the domain

level are more reliable than those calculated across different domains. In order to understand why

domain statistics produce better results than cross-domain statistics consider figure (4.2) which shows

the scaled mean log returns α for the low level heuristic classes C, L, M, and R calculated over the 400

sequences of each domain.

The results indicate that the effectiveness of the heuristic classes varies by domain, as one might

expect but that the relationship between heuristics and the BP domain is diametrically opposed to

their behaviour in other domains. For example, in the BP and PFS domains the L heuristic is less

effective than the R heuristic. In the SAT and PS domains the situation is reversed. This suggests an

explanation as to why the BOT-GC mean unit log returns differ so markedly between the BP domain

and the means calculated over all four domains. In the BP problem domain, the L heuristic is less

effective than the C and R heuristics. As BOT-GC employs more C and R heuristics and less L heuristics

than TOP-GC, the performance of the BOT-GC subsequences is superior.

The analysis in this section has shown that the interface between heuristics and problem domain

are complex. As the effectiveness of the heuristic classes varies across the problem domains, what

has been learned about a class on one domain cannot necessarily be transferred to another. However,

it should also be noted that three of the four domains behaved similarly and so good subsequence
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Figure 4.2: The scaled mean log returns α of the heuristic classes C, L, M, and R for each domain. In

each domain the α values have been scaled by the largest absolute α value into the interval [−1, 1].

selections on one of these would transfer to the other three domains. An important finding is that

this type of statistical analysis can quantify this difference in domains and bespoke optimisers can be

created to cope with the unique demands of an outlier domain such as Bin Packing.

4.6 Improving Cross-domain Performance

The objective of this experiment is to demonstrate that the reliability of cross-domain γ-ratio statistics

and thus the performance of cross-domain subsequences can be significantly improved by a reordering

of heuristic classes.

Figure 4.2 shows the normalised mean log returns α for the HyFlex heuristic classes C, L, M, and R.

The figure illustrates how the effectiveness of the heuristic classes, and the relationship between them

varies by domain. As noted in Section 4.5, these changes in heuristic class behaviour between domains

reduces the reliability of statistics calculated across domains.

Consider the four abstract heuristic classes W, X, Y, and Z. For each domain, the heuristic classes C,

L, M, and R are mapped to the abstract classes by assigning the heuristic class with the lowest α to W,

the heuristic class with the next lowest α value to X, and so on. Thus the α histograms in figure 4.2

give rise to the four domain mappings or reorderings shown in table 4.17.

The subsequences of low level heuristic selections in each domain are mapped, to and from, sub-

sequences of abstract heuristic classes. For example, the subsequence { MCLLR} from the BP domain

maps to { ZXYYW} whereas the same subsequence in the PS domain maps to { ZYWWX}.
The γ-ratio is calculated over the abstract classes using a leave-one-out cross-validation method-

ology. Specifically, for each target domain in DB1, the subsequences of the three remaining domains
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Table 4.17: The mapping for the HyFlex heuristic classes C, L, M, and R, to the abstract heuristic

classes W, X, Y, and Z, for each domain.

BP PFS SAT PS

R ←→ W R ←→ W L ←→ W L ←→ W

C ←→ X L ←→ X M ←→ X R ←→ X

L ←→ Y C ←→ Y C ←→ Y C ←→ Y

M ←→ Z M ←→ Z R ←→ Z M ←→ Z

are mapped to the abstract heuristic classes. The γ-ratio is calculated for these subsequences and the

10 subsequences with the largest γ are selected. The 10 subsequences are then mapped back into the

heuristic classes of the target domain. The only domain specific information used here is encoded in

the mapping from the abstract classes to the heuristic classes of the target domain. This methodology

is illustrated for the BP domain in figure 4.3.

This methodology gives rise to four subsequence sets, one for each domain. The resulting subse-

quences, denoted WXYZ, are shown in table 4.18. In order to assess the effect of reordering, a second

set of subsequences is selected using the same leave-one-out methodology, but omitting the mapping

to and from the abstract classes. These subsequences are denoted CLMR, and are also shown in table

4.18.

Table 4.18: The WXYZ and CLMR subsequences for each domain.

Set Dom. Subsequence

WXYZ

BP {RR, RRR, CRR, RCR, CCR, CR, LRR, RRC, MRR, CCC}

PFS {RR, RRR, LRR, RLR, LLR, LR, CRR, MRR, RRL, LLL}

SAT {LL, LLL, MLL, LML, ML, MML, CLL, RLL, LLM, MLM}

PS {LL, RL, LLL, LR, RRL, RLR, LRL, RLL, LLR, LRR}

CLMR

BP {LL, LLL, RLL, LRL, MMM, RRL, RL, MML, MLL, CLL}

PFS {LL, LLL, RLL, LRL, RRL, RL, CLL, MMM, MLL, LLR}

SAT {LL, LLL, RLL, LRL, RL, RRL, CLL, LLR, MLL, RLR}

PS {LL, RRR, LLL, RLR, LRR, RR, RRL, CL, LC, CRR}

The subsequences sets WXYZ and CLMR are used to parametrise EvalHH and evaluated on each

target domain. Table 4.19 shows the results of EvalHH, over 40 runs of MAX ITER = 150 selections

for each HyFlex problem. The results of the subsequence sets TOP-DC, and TOP-GC are included for

comparison. The low level heuristics and heuristic parameters are chosen at random.
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Figure 4.3: A flow chart of the leave-one-out cross-validation methodology used to evaluate the per-

formance of subsequences of abstract heuristic classes in the BP domain.

The Wilcoxon test is used to establish whether the median differences observed are statistically

significant. The results are shown in table 4.20. For each pair of hyper-heuristics the null hypothesis

is rejected as the p-value is less than 0.01 and the alternative hypothesis αf (A) < αf (B) is accepted

with 99% confidence. Thus the median differences are significant and the hyper-heuristics can be

stochastically ordered so that

αf (TOP-DC) < αf (WXYZ) < αf (TOP-GC) < αf (CLMR)

with 99% confidence (for each comparison).

The results show that, despite a higher overall αf , the cross-domain subsequences WXYZ are sta-

tistically inferior to the TOP-DC subsequences. This is to be expected, as the TOP-DC subsequences

are selected using statistics that are calculated for each target domain, while the WXYZ subsequences

are selected using statistics calculated from the other three domains. However, the difference in per-

formance is relatively small, with WXYZ winning the BP and PFS domains. The WXYZ subsequences

outperform the TOP-GC subsequences overall, and on the BP, PFS, and SAT domains. This is notable

because the TOP-GC subsequences are selected using statistics calculated across all four domains. The

TOP-GC subsequences outperform the CLMR subsequences which like WZYZ are selected using statistics
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Table 4.19: A domain by domain comparison of the mean final log return αf of TOP-DC, WXYZ,

TOP-GC, and CLMR. The domain statistics are calculated over 400 runs. Winning scores are shown in

bold.

Dom. TOP-DC WXYZ TOP-GC CLMR

BP -0.2896 -0.3093 -0.2419 -0.2270

PFS -0.0053 -0.0054 -0.0051 -0.0051

SAT -0.8275 -0.8128 -0.6567 -0.6149

PS -1.8378 -1.7989 -1.8437 -1.7559

All -0.7109 -0.7316 -0.6868 -0.6507

Table 4.20: The hyper-heuristic pair, the sample median difference d̂, the sample mean difference d,

the standard deviation SD, the standard error of the mean SEM, the p-value, and the interval within

which the population median difference falls with 99% confidence.

Hyper-heuristics d̂ d̄ SD SEM p-value Conf. Int.

TOP-DC - WXYZ -0.0017 -0.0085 0.0875 0.0022 0.0010 [∞,−0.0003]

WXYZ - TOP-GC -0.0336 -0.04476 0.1244 0.0031 0.0000 [∞,−0.0253]

TOP-GC - CLMR -0.0212 -0.0361 0.1015 0.0025 0.0000 [∞,−0.0165]

calculated across three domains. The difference in performance between TOP-GC and CLMR demon-

strates the importance of domain specific information, while the difference in performance between

WXYZ and CLMR demonstrates the benefits of reordering the heuristic classes.

These results show that it is possible to select cross-domain subsequences of heuristic classes that

are almost as effective on an unseen target domain, as subsequences selected using domain specific

information.

4.7 Long Subsequences of Heuristic Classes

The previous experiments concentrated on short subsequences of length two and three. There are three

reasons for this. Firstly, it is logically necessary to demonstrate that the proposed statistical framework

works with short subsequences before considering subsequences of longer lengths. Secondly, short

subsequences occur much more frequently than longer subsequences in the offline learning database.

As a result, the statistics calculated within and across problem domains are more reliable. Thirdly,

as some work has already been carried out with heuristic pairs (see for example [81]), it was decided

to include subsequences of length three. In this section the performance of a set of subsequences of

arbitrary length chosen using the γ-ratio is examined.

92



CHAPTER 4. AN ANALYSIS OF HEURISTIC SUBSEQUENCES 4.8

Table 4.21: The mean unit log return β(s), the negative β−(s) and positive β+(s) component sums,

the probability of a negative log return P (s ≤ 0), the γ-ratio, and the number Ns of occurrences for

the LONG-GC subsequences.

s β(s) β−(s) β+(s) P (s ≤ 0) γ-ratio Ns

LL -0.2276 4075.5700 0.0000 1.0000 4075.5701 17904

LLL -0.2241 1580.0700 0.0000 1.0000 1580.0699 7052

LLLL -0.2073 635.8680 0.0000 1.0000 635.8680 3068

LLLLL -0.1866 260.6290 0.0000 1.0000 260.6290 1397

LLLLLL -0.1685 114.2300 0.0000 1.0000 114.2300 678

RLLLL -0.1749 135.5010 1.5577 0.8982 52.9769 766

LLLLLLL -0.1482 49.9410 0.0000 1.0000 49.9410 337

LRLLL -0.1717 129.8070 2.4087 0.8895 38.0816 742

RLLL -0.1842 317.3610 7.4553 0.8864 37.5339 1682

LRLLLL -0.1593 56.1363 0.7107 0.9023 32.8153 348

LONG-GC -0.2161 7355.1133 12.1324 0.9887 560.0748 33974

The 10 subsequences of heuristic classes with the largest γ-ratio are selected using a γ that is

calculated over all of the subsequences in the database. This subsequence set is denoted LONG-GC and

is shown in table 4.21. It should be noted that the database contains subsequences of up to length 25.

Notice that the γ-ratios and the mean unit log returns β have greater magnitudes than those of the

TOP-GC subsequence set (see table 4.10).

The subsequence set LONG-GC is dominated by the L heuristic class, and the question arises as to

how a hyper-heuristic using only this class would perform. With this in mind, EvalHH is also run with

the singleton subsequence sets {L} and {LL}. Table 4.22 contains the results for the hyper-heuristic

SSHH and the hyper-heuristic EvalHH parameterised with the subsequence sets of the preceding sections.

The LONG-GC subsequence set has a slightly better mean final log return than TOP-GC and uses

the lowest number of objective function evaluations due to the length of its subsequences, but is

one of the most computationally expensive sets due to the dominance of the L heuristic class. The

most computationally expensive set of subsequences is TOP-DH. The overall timings for TOP-DH are

dominated by the results on the PS domain, and these subsequences consist entirely of L class heuristics

(see table 4.2). However TOP-DH is more expensive than {L} and {LL} as its subsequences tend to be

the most expensive in the other domains as well (see table 4.14).

Table 4.22 shows that a well chosen set of subsequences such as LONG-GC or TOP-GC outperform

the single heuristic selections SINGLE, demonstrating the benefits of a sequence-based approach. Fur-

thermore, combinations of several individual heuristics such as SINGLE outperform the single heuristics

{L} and {LL} confirming again the result observed in [46] and [27]. Finally the single heuristics {L}
and {LL} are superior to the random and badly chosen subsequences sets RAND and BOT-GC.
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Table 4.22: The mean final log return ᾱf , the mean percentage change, the mean number of selections

to a minimum, the mean number of objective function evaluations, the mean time to a minimum (ms),

and the total run time (ms). The statistics are calculated over 1600 runs.

αf Percent % Min. Sel. Obj. Eval. Min. T Total T

DBGen -0.6243 -49.0924 92.8738 93.8513 24873 43998

TOP-DH -0.7714 -59.2435 97.5250 49.1031 62632 141847

WXYZ -0.7316 -57.1712 102.9000 37.1613 50691 79530

TOP-DC -0.7109 -47.2025 96.0275 37.4350 65249 99218

SSHH -0.6934 -55.4024 111.8219 55.7438 36824 51643

LONG-GC -0.6932 -52.3682 107.3506 22.5325 52455 80678

TOP-GC -0.6868 -53.0720 110.5556 39.1931 40241 58633

SINGLE -0.6643 -52.9842 107.0994 107.0994 18608 30507

{L} -0.6536 -46.4370 88.3656 88.3656 37807 81847

{LL} -0.6535 -46.4447 89.3356 44.3863 38767 83240

CLMR -0.6507 -51.9381 109.4056 39.8425 89465 142424

RAND -0.6328 -51.5645 108.1688 40.3231 20781 30931

BOT-GC -0.1781 -26.4057 86.6506 31.8488 5862 12404

4.8 Pareto Ranking

The concept of Pareto efficiency [87] was introduced by the Italian engineer and economist Vilfredo

Pareto (1848–1923) and is commonly used in multi-objective optimisation. Pareto efficiency can be

defined as a state of allocation of resources amongst a number of objectives in which it is impossible

to make any one objective better off without making at least one other objective worse off. In an

engineering context, given a set of parameter choices and a method of evaluating them, the Pareto

front is the subset of parameters that are Pareto efficient.

Figure 4.4 provides an alternative view of the results presented in table 4.22 which illustrates the

performance trade-offs between SSHH and the other parameterisations. The dashed lines denote the

Pareto front that each hyper-heuristic parameterisation belongs to, where Pareto efficiency decreases

from left to right. If the Pareto fronts in each plot are numbered from 0 to n, where front-0 is the

most efficient, and front-n is the least, then each parameterisation can be evaluated by calculating

its Pareto rank which is the sum of its Pareto front indices. For example, SSHH belongs to Pareto

front 2 for minimum selections, Pareto front 1 for objective evaluations, and Pareto front 0 for time

to a minimum and total run time, which gives an overall rank of 2 + 1 + 0 + 0 = 3. This ranking, or

nondominated sorting procedure was introduced in [109].

The Pareto rank of each parameterisation in figure 4.4 is shown in table 4.23. The ranking demon-

strates that TOP-DH is the best performing parameterisation when all four criteria are considered.
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Notice that the BOT-GC parameterisation which exhibits the worst optimisation performance (see

table 4.22) is ranked (joint) second. This can be attributed to the low run-times of the BOT-GC subse-

quences which are chosen to be ineffective. The subsequence’s poor performance also gives rise to lower

mean numbers of selections to a minimum, and objective function evaluations, as such subsequences

are less likely to improve on a solution as the optimisation process progresses. Overall, the rankings

strengthen the thesis that well chosen subsequence sets such TOP-DH, TOP-DC, and WXYZ can be used

to improve optimisation performance across a number of criteria when compared to other sets, such

as SINGLE, RAND, and CLRM.

Table 4.23: The Pareto rank of each hyper-heuristic parameterisation.

Hyper-heuristic Min. Sel. Obj. Eval. Min. T Total T Rank

TOP-DH 0 0 0 0 0

TOP-DC 1 0 0 0 1

WXYZ 1 0 0 0 1

BOT-GC 0 1 0 0 1

SSHH 2 1 0 0 3

SINGLE 2 2 0 0 4

LONG-GC 2 0 1 1 4

{L} 0 2 1 2 5

TOP-GC 3 1 1 1 6

{LL} 1 2 2 3 8

RAND 3 3 1 1 8

DBGen 2 4 2 2 10

CLRM 3 2 3 4 12
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Figure 4.4: The mean final log return αf plotted against (a) the mean number of selections Min. Sel.,

(b) the mean number of objective function evaluations Obj. Eval. required to find a minimum, (c)

the mean time Min. T required to find a minimum, and (d) the mean overall run time Total T, for

the HyFlex domains.
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4.9 Increasing the Run Length

The previous experiments all use a run length of 150 low level heuristic selections. For many problems,

especially those with computationally efficient heuristics, 150 is a relatively small number over which

to evaluate a hyper-heuristics’s performance. Thus, the question arises as to whether the observed

gains in performance are still present after a more realistic execution time. In this section, the TOP-DH

subsequences, and a disruptive set of low level heuristic subsequences BOT-DH are evaluated 10 times on

each of the 40 HyFlex problems for 10 minutes of wall clock time, using a leave-one-out methodology;

a total of 400 runs. The time length of 10 minutes was chosen for computational feasibility. The

results are shown in table 4.24. The runs produce much larger numbers of selections, ranging from

941 selections for problem 13 in the PS domain, up to 6,577,523 selections for problem 8 in the BP

domain.

Table 4.24: A domain by domain comparison of the mean final log return αf of TOP-DH and BOT-DH.

Winning scores are shown in bold.

Dom. TOP-DH BOT-DH

BP -0.6515 -0.0290

PFS -0.0102 -0.0004

SAT -1.1283 -0.2459

PS -1.7873 -0.0485

All -0.8943 -0.0809

The results show that the difference in performance has increased on each domain with time and

the number of selections. This demonstrates that the subsequence-based approach and the statistical

framework employed in this thesis is also applicable to longer run lengths.

4.10 Conclusions

This chapter has applied the statistical framework developed in Chapter 3 to the analysis of subse-

quences of low level heuristics and heuristic classes.

The γ-ratio is used to select sets of subsequences of heuristic selections from the offline database

DB1. The subsequence set TOP-DH of low level heuristics, and the set TOP-DC of heuristic classes,

are selected according to a γ-ratio that is calculated for each particular domain. When the EvalHH

hyper-heuristic is parameterised with these sets it significantly outperforms the SSHH hyper-heuristic on

HyFlex problem instances. The SSHH hyper-heuristic is known to perform well on the HyFlex problems,

and this result demonstrates that offline selected subsequences can outperform online subsequence

learning. Furthermore, the TOP-DH subsequences show that the expected exploration-exploitation
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behaviour in sequences can be seen in some, but not all domains.

The offline selected subsequences of low level heuristics are able to outperform SSHH because, in

this case, the chosen subsequences are effective over the whole optimisation process. Thus, there is

no need to adapt the heuristic choices that constitute a subsequence during optimisation. In contrast,

SSHH has no a priori knowledge of a particular problem, and must spend the initial stages of the

optimisation process learning which subsequences are effective. However, when the performance of

the offline selected subsequences changes significantly during the optimisation process, online learning

must be used to adapt them so that the subsequences continue to be effective.

In order to determine the existence of effective cross-domain subsequences, statistics are also cal-

culated for heuristic classes across the whole database. The sets TOP-GC and BOT-GC contain the

subsequences with the largest and the smallest γ-ratios respectively. The results of using these sub-

sequence sets in EvalHH demonstrate that the effective subsequences TOP-GC perform better than the

disruptive sequences BOT-GC on three out of the four problem domains, and that this improvement in

performance is also statistically signifiant.

The BOT-GC subsequence set is more effective than the TOP-GC subsequences on the Bin Packing

domain. This discrepancy can be explained by recalculating the γ-ratio for these sets on the BP

domain, and observing that the γ value for BOT-GC is now larger than the γ value for TOP-GC. The

set TOP-DC contains the subsequences with the largest γ-ratio for each domain. On the BP domain, the

TOP-DC subsequences perform almost as well as the BOT-GC subsequences, and outperform TOP-GC.

The change in γ for BOT-GC is due to the differing performances of the low level heuristics on different

domains, and these differences can be quantified by calculating the mean log returns α of the heuristic

classes in each domain. This results demonstrates that in order to choose effective cross-domain

subsequences of heuristic classes, the classes must exhibit similar performance characteristics in each

domain. For example, if the α-order of the heuristic classes varies across the problem domains, then

what has been learned about a class on one domain cannot necessarily be transferred to another.

The performance of cross-domain subsequences of heuristic classes can be significantly improved by

reordering the classes. By mapping subsequences of heuristic selections to and from subsequences of

abstract heuristic classes it is possible to choose cross-domain subsequences that are almost as effective

on an unseen target domain, as subsequences selected using domain specific information.

The issue of subsequence length is examined by selecting subsequences of unrestricted lengths. The

resulting LONG-GC subsequence set contains subsequences of up to length seven and outperforms the

TOP-GC subsequence set, albeit slightly, with 99% confidence.

Lastly, the issue of run length is addressed by evaluating the TOP-DH and BOT-DH subsequences

for 10 minutes of wall clock time. The results show that the differences in performance observed in

the previous experiments are still present after significantly larger numbers of heuristic selections.

These experiments have demonstrated that subsequences can be reliably extracted in an offline

manner from a database of heuristic operations that have both effective and disruptive characteristics.
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It has also been shown that if those subsequences are well-chosen, they can provide significant im-

provements in performance. The approach has also shown that differences between problem domains

and the interface between domain and heuristic class can be quantified by using statistics which is an

important consideration for generalist algorithms such as these.

Effective subsequences of low level heuristics can be used to directly construct a selection hyper-

heuristics, or used as training patterns for an offline learning algorithm for a specific problem. Fur-

thermore subsequences of heuristic classes can, in some cases, be useful in constructing optimisers for

problems from novel domains.

These findings are novel, and underpin research in hyper-heuristics that have proposed large num-

bers of algorithms (many of which have been successful) without investigating the fundamental nature

of the low level heuristics and in particular subsequence selection. Finally, it is encouraging to see

that an offline approach to heuristic selection is able to outperform an online approach. Although

the improvement in performance is quite small in the experiments presented here, it could open the

possibility of hybrid offline and online selection hyper-heuristics trained for specific domains.
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Chapter 5

Hybrid Learning

As noted in Chapter 2, hyper-heuristics can be classified according to the nature of the learning

mechanisms used (or not) to improve optimisation performance [36]. Specifically, a hyper-heuristic

may employ no learning, online learning which uses feedback during the optimisation process, or

offline learning which is performed on a distinct set of benchmark problems prior to optimisation.

There are also examples in the literature of selection hyper-heuristics incorporating mixed or hybrid

learning which combines offline and online learning such as [23], [114], and [108].

The PHunter hyper-heuristic described in [23] mimics a traditional diving method for perl hunting.

The hyper-heuristic employs two groups of low level heuristics called “moves” and “dives”. Moves

correspond to crossover, mutate, and ruin and recreate heuristics, while dives correspond to local

search heuristics. The heuristics in a group are determined using rules that are obtained by offline

learning. During optimisation PHunter employs two online mechanisms; an unwanted (inferior to tabu)

list and, a restart mechanism which resets the search procedure when the pool of current solutions

is over-converged, or no better solutions are found for a certain amount of time. The PHunter hyper-

heuristic has been tested on the HyFlex problem domains, and the results demonstrate that PHunter

is competitive with other well known hyper-heuristics coming fourth overall in the CHeSC 20111

competition.

In [114] the authors present a framework that hybridises an online reinforcement learning hyper-

heuristic with offline population based incremental learning (PBIL) [122]. The proposed methodology

consists of two phases. In the first phase, SPBIL (a PBIL variant) is used offline to construct a posterior

probability distribution of promising solutions from statistical information derived from a population

of solutions. In the second phase, the best probability distributions are used as low-level heuristics

for the reinforcement learning hyper-heuristic. Their approach successfully combines offline and online

learning mechanisms to provide “good average performance” over a number of dynamic environment

1The HyFlex Cross-domain Heuristic Search Challenge (CHeSC 2011) (http://www.asap.cs.nott.ac.uk/chesc2011/).
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problems.

In [108] the authors investigate the performance of a selection hyper-heuristic with online and offline

learning on a number of course timetabling problems. The hyper-heuristic is an adaptive version of the

iterated local search algorithm [76], and uses a set of probabilities to select operators from a set of low

level heuristics. These selection probabilities are learned using online and offline methods. In the online

case, a preliminary (offline) set of experiments are used to determine the initial probabilities used by

the heuristic selection mechanism. The probabilities are then adapted online during the optimisation

process. In the offline case, the selection probabilities are static parameters which are learned by

the ParamILS algorithm [62] from a separate set of training instances. The paper also proposes a

methodology for the offline selection of the set of heuristics employed by the hyper-heuristic from

a larger pool of low level heuristics. Specifically, each heuristic in the pool is evaluated on a set

of training problems, and those with the best scores are chosen. The results demonstrate that the

online learning methodology statistically outperforms the offline learning methodology, and produces

competitive results when compared to the state-of-the-art.

In each of these examples, the offline and online learning concerns individual heuristic selections. In

this chapter the potential of combining sequence-based online and offline learning is investigated. The

objective is to demonstrate that hybrid learning of effective subsequences can also lead to significant

improvements in optimisation performance across a number of problem domains.

The SSHH hyper-heuristic, which has online learning capabilities, is trained offline with the Baum-

Welch learning algorithm (see Chapter 2). The parameters to be estimated are SSHH’s state transition

and heuristic emission probability matrices, and the training observations are subsequences of effective

heuristics. The results of executing the trained SSHH on unseen HyFlex problems are compared with

those of an untrained SSHH, in order to demonstrate empirically that the offline trained SSHH is able

to outperform the untrained SSHH across a number of problems and domains.

Although the primary motivation for combining offline and online learning is to improve optimisa-

tion performance in general, such hybrid learning could also be useful when applying hyper-heuristics

to large computationally expensive problems. In these cases, a hyper-heuristic could be trained offline

on a number of small, time efficient instances of a problem, before being applied to larger problems.

This chapter contains five hybrid learning experiments. In the first experiment the SSHH hyper-

heuristic’s hidden Markov model (HMM) is trained offline with the Baum-Welch learning algorithm,

using effective subsequences of low level heuristics, selected using the γ-ratio. In the second experiment,

the concept of Pareto efficiency is used to select effective subsequences of low level heuristics that are

also time efficient. The first two experiments depend on statistics calculated over a large database

of heuristic selections and objective function values. The third experiment assesses the effect on

performance when offline learning with small data sets. The fourth experiment attempts to separate

out and quantify the effects of online and offline learning, and to examine what has been learned by

the Baum-Welch algorithm. All of the preceding experiments employ a run length of 150 heuristic
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selections for reasons of computational feasibility, and for some problems this can be considered to be

a small number over which to evaluate a hyper-heuristic. The final experiment addresses the issue of

run length, by optimising each problem for 10 minutes of wall clock time.

The experiments in this chapter are conducted on the larger DB2 offline learning database (see

Chapter 3) and follow the methodology employed in Chapter 4. However, the method used here differs

in two respects. Firstly, the VRP and TSP domains are used. Secondly, the DBGen hyper-heuristic

which is used to generate DB2, and the SSHH hyper-heuristic which is used to evaluate hybrid learning,

employ a modified cross-over mechanism. Specifically, the cross-over pool uses five solutions as opposed

to one, and this larger pool size improves the performance of the cross-over heuristics. The pool size of

five solutions was taken from AdapHH [38]. The inclusion of the two unseen domains, and the changes in

subsequence statistics due to the change to DBGen provide a test of the robustness of the methodology

introduced in Chapter 3.

The abbreviations for the hyper-heuristic parameterisations used throughout this chapter together

with their descriptions are summarised in table 5.1.

Table 5.1: Hyper-heuristic parameterisation abbreviations and descriptions.

Abbr. Description Sec.

DBGen Hyper-heuristic used to generate the learning database. C2–2.5

SSHH The untrained hyper-heuristic used for comparisons. C2–2.5

T-SSHH Trained with effective subsequences (by domain). 5.1

T-SSHHN As above, but with no online learning. 5.4

P-SSHH Trained with a Pareto set of subsequences (by domain). 5.2

P-SSHHN As above, but with no online learning. 5.4

S-SSHH Trained using a single sequence (by domain). 5.3

S-SSHHN As above, but with no online learning. 5.4

A-SSHH The adverse hyper-heuristic to T-SSHH (by domain). 5.4

A-SSHHN As above, but with no online learning. 5.4

NONE No offline or online learning. 5.4

5.1 An Effective Set of Subsequences

In this experiment, the SSHH hyper-heuristic is trained offline with the Baum-Welch learning algorithm

on effective subsequences chosen using the γ-ratio. The objective is to demonstrate that the Baum-

Welch algorithm is able to learn and generalise from these well chosen subsequences of low level

heuristics across a number of problem domains. In this context, generalisation means that the trained

SSHH hyper-heuristic is able to significantly outperform the untrained SSHH hyper-heuristic when

evaluated on unseen example problems.
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The methodology employed here to select effective subsequences, and evaluate their potential as

training inputs to the Baum-Welch algorithm is based on the method introduced in Chapter 3, and

is virtually identical to that used to select and evaluate the TOP-DH subsequences in Chapter 4. The

method here differs in that the training subsequences are evaluated using Baum-Welch and the SSHH

hyper-heuristic instead of the EvalHH hyper-heuristic.

The training sets consists of the 10 subsequences of low level heuristics in DB2 with the largest

γ-ratio in each domain. The number of 10 subsequences was chosen to ensure that the subsequences

contained sufficient heuristic “diversity”, that is the subsequences consist of more that just one or

two low level heuristics. The subsequences themselves are chosen solely according to their domain

and γ-ratio. The training sets are constructed from these effective subsequences using a leave-one-out

cross-validation methodology [9]. Recall that there are 10 problem instances of interest in each of the

six HyFlex domains. For each target problem in a domain, γ is calculated from the sequences of low

level heuristics from the remaining nine problems. The subsequences are then used to train SSHH which

is evaluated on the target problem. This ensures that the training subsequences are always evaluated

on a problem that is unseen. The methodology is illustrated in figure 5.1.

Figure 5.1: A flow chart of the leave-one-out cross-validation methodology used to evaluate hybrid

learning in a given domain.
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This methodology gives rise to 60 training sets, one for each problem instance in each HyFlex

domain. As the γ statistics are quite stable, the selected training subsequences for the problems in a

domain are very similar, usually differing by at most one or two subsequences. Some example training

subsequence sets for each domain are shown in table 5.2.

Table 5.2: The effective training subsequences of low level heuristics for problem 5 in each domain of

DB2. The subsequences are listed left to right in descending γ-ratio order.

Dom. Subsequences

BP R2R2, M3R2, R2L4, R2L6, L6R2, R2M3, L4R2, R2C7, C7R2, M3C7

PFS L8L7, L10L8, L10L7, L8R6, L7L10, R6L8, R6L10, M1L8, L7L7, C14L8

SAT M1M0, M0M1, L8L7, M0M0, L7M0, M1M1, M0L7, L7L8, L7M1, L7L7

VRP L4L8, L8L4, L8L8, C6L4, L4L4, M0L4, L8L9, M0L8, C6L4L8, C5L8

TSP R5L8, L6L8, L7L7, L7L8, L6L7, R5L6, L7L6, C12L8, R5L7, L8L6

PS L4L4, L0L4, L3L4, L4L2, L2L4, L3L2, L3L0, L3L3, L4C9, L0L3

The untrained SSHH hyper-heuristic is initialised with an equiprobable state transition matrix and

an identity heuristic emission matrix. This ensures that, initially, each hidden state has an equiprob-

able chance of being selected, and can only emit a single low level heuristic. For the trained SSHH,

before Baum-Welch training, SSHH’s hidden Markov model’s state transition and heuristic emission

probability matrices are randomised. The randomisation improves Baum-Welch learning which often

fails when using equiprobable state transition and identity heuristic emission matrices. After train-

ing, the matrices are edited to ensure that every state transition and heuristic emission has a (small)

non-zero probability. The trained SSHH hyper-heuristic is initialised with these edited matrices. In

both cases, the initial state distribution, and the parameter and acceptance check emission matrices

are initialised to be equiprobable.

The results of evaluating the offline trained and untrained SSHH hyper-heuristic, 40 times on each

HyFlex problem for 150 iterations, are denoted T-SSHH and SSHH respectively, and are shown in table

5.3. It should be noted that both T-SSHH and SSHH employ online learning during optimisation.

Table 5.3: The mean final log return αf , the mean percentage change, the mean number of selections

to a minimum, the mean number of objective function evaluations, the mean time to a minimum (ms),

and the total run time (ms), over the HyFlex domains. The averages are calculated over 2400 runs.

αf % Min. Sel. Obj. Eval. Min. T Total T

T-SSHH -0.5495 -50.5216 106.3154 48.7646 59291 98306

SSHH -0.5051 -47.9762 109.3271 54.4071 28714 39601
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Table 5.4: A domain by domain comparison of the mean final log return αf and standard deviation

SD of T-SSHH and SSHH. The averages are calculated over 400 runs. The boldface type indicates a win.

Dom. T-SSHH SD SSHH SD

BP -0.3820 0.2342 -0.3396 0.2186

PFS -0.0091 0.0041 -0.0078 0.0036

SAT -0.8701 0.1886 -0.6739 0.1752

VRP -0.3247 0.0711 -0.3071 0.0870

TSP -0.0728 0.0192 -0.0678 0.0196

PS -1.6382 0.4193 -1.6344 0.4265

The results demonstrate a marked improvement in the mean final log return αf for the T-SSHH

hyper-heuristic at the cost of a significant increase in run time, even though the numbers of heuristic

selections and objective function evaluations are lower. The results, broken down by domain, are

shown in table 5.4. They demonstrate that T-SSHH is superior to SSHH on each of the six domains.

The differences in final log returns are tested for statistical significance using the Wilcoxon signed

rank test as explained in Chapter 3, Section 3.5, and the results are shown in table 5.5.

Table 5.5: The sample median difference d̂, the sample mean difference d̄, the standard deviation SD,

the p-value, and the interval within which the population median falls with 99% confidence for T-SSHH

and SSHH. Statistically significant results are shown in boldface.

Dom. d̂ d̄ SD p-value Conf. Int.

BP -0.0277 -0.0424 0.1456 0.0000 [−∞,−0.0129]

PFS -0.0012 -0.0013 0.0018 0.0000 [−∞,−0.0010]

SAT -0.1958 -0.1961 0.1312 0.0000 [−∞,−0.1800]

VRP -0.0282 -0.0176 0.0842 0.0000 [−∞,−0.0186]

TSP -0.0043 -0.0051 0.0078 0.0000 [−∞,−0.0035]

PS -0.0041 -0.0038 0.1404 0.0177 [−∞, 0.0005]

All -0.0232 -0.0444 0.1251 0.0000 [−∞,−0.0187]

The differences in median are significant overall and for five of the six domains. In the PS domain, a

two tailed test confirms that the difference in hyper-heuristic performance is not statistically significant.

Thus the hyper-heuristics can be stochastically ordered so that

αf (T-SSHH) < αf (SSHH)

with 99% confidence. That is, the optimisation performance of the offline trained hyper-heuristic

T-SSHH is significantly better than the untrained hyper-heuristic SSHH on the HyFlex domains.
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This result is important because it demonstrates that the Baum-Welch algorithm is able to learn and

generalise from well chosen subsequences of low level heuristics across five of the six HyFlex domains,

including the VRP and TSP domains. The process of generalisation across the problems of a domain

has generated a hyper-heuristic that is able to perform better than an untrained hyper-heuristic on

unseen test problems. This shows that useful information can be learned about the problems in a

domain from the sequences of heuristic selections used to optimise them.

5.2 A Pareto Set of Subsequences

Although the T-SSHH hyper-heuristic demonstrates a significant improvement in optimisation perfor-

mance over SSHH, it is at the cost of a significant increase in run time. The run time increases because

the effective subsequences used to offline train T-SSHH typically contain the low level heuristics with

the highest computational costs. In this experiment the training observations are taken from Pareto

fronts of heuristic subsequences chosen to be effective and time efficient.

Each subsequence s of length n is evaluated according to its negative γ-ratio2 and its mean unit

execution time. In symbols,

−γ(s) and
T (s)

n
.

Following Section 5.1, the training sets are constructed using a leave-one-out cross-validation

methodology. For each target problem in a domain, the training set consists of the 10 subsequences

on the Pareto front with the largest γ-ratio, constructed from the subsequences of the remaining nine

problems. Examples of the resulting training sets are shown in table 5.6. Notice that in each domain,

Table 5.6: The P-SSHH training subsequences of low level heuristics for problem 5 in each domain.

Dom. Subsequences

BP R2R2, R1R2, R2R1, M3R2R1, M5R2R2, R1M0R2R1, R2M3R2R1, L6R2R1L6R2, R2R1L6R2R2, R2M5M0R1R1

PFS L8L7, L10L8, L7L10, L10L7, L10L9, C14L10, R5R5, R5R5M1, M4C12C11, R5R5M1C12

SAT M1M0, M0M1, L8L7, C10L7, L8L8, C9L8, L8C10, C9M3, C10M4, C9C9M3

VRP L4L8, L8L8, L8L9, M0L8, L9L8, M1L8, L8M0, L8M1, C6M0, M0C6

TSP R5L8, L7L7, L7L6, C11L7, L6C11, L8C9C9, C10M2L7, C9C10L6,L6C12M4, R5L6C12M4

PS L4L4, L0L4, L4L0, L0L1, L1L0, L0R5, R5L0, L0L0, C9C9C8C9, C8C9R5C10

the first subsequences (with the largest γ-ratio) are the same as the first T-SSHH subsequence shown

in table 5.2. The Pareto fronts, illustrated in figure 5.2, show the trade-offs between subsequence run

time and optimisation performance, and demonstrate that, in general, better performing subsequences

take longer to execute. However, it should be noted that for some subsequences, such as C14L10, R5R5

2In this case the preferred direction of criteria values is “less than” and so the negative γ-ratio is used.
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in PFS, and C9M3, C10M4 in SAT, the increase in performance is small when compared to the increase

in run time.

These subsequences are used to offline train the SSHH hyper-heuristic’s HMM. The overall results

of evaluating the trained and untrained SSHH hyper-heuristic, 40 times on each HyFlex problem for

150 iterations, denoted P-SSHH and SSHH respectively, are shown in table 5.7. It should be noted that

both P-SSHH and SSHH employ online learning during optimisation.

Table 5.7: The mean final log return αf , the mean percentage change, the mean number of selections

to a minimum, the mean number of objective function evaluations, the mean time to a minimum (ms),

and the total run time (ms), over the HyFlex domains. The averages are calculated over 2400 runs.

αf % Min. Sel. Obj. Eval. Min. T Total T

SSHH -0.5051 -47.9762 109.3271 54.4071 28714 39601

P-SSHH -0.5040 -48.3740 100.4454 49.3379 10741 13556

The results demonstrate that the trained hyper-heuristic P-SSHH is significantly faster than the

untrained SSHH with only a slight reduction in overall mean final log return αf . Table 5.8 shows these

results broken down by domain. They demonstrate that the P-SSHH hyper-heuristic’s performance is

inferior to SSHH on four out of the six domains.

Table 5.8: A domain by domain comparison of the mean final log return αf and standard deviation

SD of SSHH and P-SSHH. The averages are calculated over 400 runs. The boldface type indicates a win.

Dom. SSHH SD P-SSHH SD

BP -0.3396 0.2186 -0.3654 0.2398

PFS -0.0078 0.0036 -0.0077 0.0035

SAT -0.6739 0.1752 -0.7718 0.1800

VRP -0.3071 0.0870 -0.2859 0.0834

TSP -0.0678 0.0196 -0.0669 0.0203

PS -1.6344 0.4265 -1.5264 0.4064
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Figure 5.2: The Pareto fronts of the offline training subsequences for problem 5 in each domain.
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The Wilcoxon signed rank test is used to establish whether the differences observed in the mean

final log returns αf are statistically significant. The results are shown in table 5.9.

Table 5.9: The sample median difference d̂, the sample mean difference d̄, the standard deviation SD,

the p-value, and the interval within which the population median falls with 99% confidence for SSHH

and P-SSHH. Statistically significant results are shown boldface.

Dom. d̂ d̄ SD p-value Conf. Int.

BP 0.0120 -0.0258 0.1240 0.9981 [−∞, 0.0238]

PFS -0.0001 0.0001 0.0019 0.1651 [−∞, 0.0001]

SAT 0.1015 -0.0979 0.1262 1.0000 [−∞, 0.1160]

VRP -0.0167 0.0211 0.0578 0.0000 [−∞,−0.0105]

TSP -0.0007 0.0008 0.0077 0.0067 [−∞, 0.0000]

PS -0.0690 0.1080 0.2338 0.0000 [−∞,−0.0552]

All -0.0006 0.0011 0.1363 0.1412 [−∞, 0.0005]

For the PFS domain, the result of a two tailed test yields a p-value of 0.0134 and so the differences

in median for this domain is not significant. The P-SSHH hyper-heuristic outperforms SSHH on the BP

and SAT domains while on the VRP, TSP, and PS domains the situation is reversed. The result of

a two tailed test on the overall performance yields a p-value of 0.2824 and so the SSHH and P-SSHH

hyper-heuristics are statistically similar. In symbols

αf (P-SSHH) = αf (SSHH)

with 99% confidence.

This result demonstrates that the Baum-Welch algorithm is also able to learn and generalise from

subsequences chosen to optimise a target problem and, at the same time, reduce run time. The process

of generalisation across the problems of a domain can generate a hyper-heuristic that is able to perform

(almost) as well as an untrained hyper-heuristic on unseen test problems while requiring approximately

60% less run time.

5.3 Generalisation with Small Data Sets

The T-SSHH and P-SSHH experiments employ a leave-one-out methodology and depend on statistics

calculated over 400 sequences for each problem instance. For many real world applications such large

data sets are not available. With this in mind, in the following experiment, the SSHH hyper-heuristic is

trained on a single sequence of 150 heuristic selections and objective function values. For each run of a

target problem, a single sequence of heuristic selections is chosen at random from the nine remaining

109



CHAPTER 5. HYBRID LEARNING 5.4

problems in that domain. The sequence is broken down into subsequences, and the γ-ratio is calculated

for these subsequences. The 10 subsequences with the largest γ-ratio are then used to offline train the

SSHH hyper-heuristic. The results of evaluating the trained SSHH hyper-heuristic are denoted S-SSHH,

and are shown in table 5.10.

Table 5.10: The mean final log return αf , the mean percentage change, the mean number of selections

to a minimum, the mean number of objective function evaluations, the mean time to a minimum (ms),

and the total run time (ms), over the HyFlex domains. The averages are calculated over 2400 runs.

αf % Min. Sel. Obj. Eval. Min. T Total T

T-SSHHN -0.5526 -50.7784 108.1142 53.1367 52490 89594

T-SSHH -0.5495 -50.5216 106.3154 48.7646 59309 98473

S-SSHH -0.5341 -48.8615 100.0025 49.2575 59990 92629

S-SSHHN -0.5301 -48.6753 103.0500 50.6963 54461 80558

SSHH -0.5051 -47.9762 109.3271 54.4071 28714 39601

P-SSHH -0.5040 -48.3740 100.4454 49.3379 10741 13556

P-SSHHN -0.4908 -47.1289 103.6579 51.1042 21395 29056

A-SSHH -0.4846 -46.2657 108.3900 52.4358 23174 31452

NONE -0.4802 -45.9636 106.6500 52.6696 24789 33486

A-SSHHN -0.4652 -44.8768 106.3429 52.3975 20723 28006

Unsurprisingly, the S-SSHH hyper-heuristic performance is inferior to T-SSHH as it employs far less

statistical information. However, it is significantly superior to the untrained SSHH hyper-heuristic (see

table 5.11). In symbols

αf (S-SSHH) < αf (SSHH)

with 99% confidence. This demonstrates the utility of the γ-ratio for selecting effective subsequences

of low level heuristics, even when there are only relatively small amounts of offline data available.

5.4 An Analysis of Learning

In this section, the results of evaluating an untrained SSHH hyper-heuristic on unseen HyFlex prob-

lems are compared with nine distinct parameterisations: T-SSHH, P-SSHH, S-SSHH, T-SSHHN, P-SSHHN,

S-SSHHN, A-SSHH, A-SSHHN, and NONE (see tables 5.1 and 5.10). The objective of these experiments is

to separate out and quantify the effects of online and offline learning, and then to examine what has

been learned online by SSHH, and offline by the Baum-Welch learning algorithm.
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5.4.1 Hyper-heuristic Parameterisation

The nine hyper-heuristic parameterisations considered in this section have the following characteristics.

The T-SSHHN, P-SSHHN, and S-SSHHN parameterisations denote the results of offline training the SSHH

hyper-heuristic with the T-SSHH, P-SSHH, and S-SSHH subsequences, and evaluated without online

learning. Here, the N subscript indicates that no online learning takes place. The A-SSHH hyper-

heuristic uses the offline trained T-SSHH probability matrices after they have been transformed using

the function

x′ij =
1− xij

n− 1

where n is the dimension of the matrix under consideration. This transformation maps high proba-

bilities to low probabilities and vice versa. The intention is to produce a model that is the adverse of

T-SSHH, that is a model that tends to do the “opposite” of T-SSHH by not selecting effective subse-

quences. The A-SSHHN hyper-heuristic uses the same probability matrices as A-SSHH but is evaluated

without online learning. The NONE hyper-heuristic is a version of SSHH with no offline or online learn-

ing which selects heuristics, their parameters, and makes acceptance checks equiprobably. The NONE

hyper-heuristic is used as a baseline for comparison purposes.

5.4.2 Comparing Optimisation Performance

The results of evaluating SSHH and the nine hyper-heuristic parameterisations on unseen HyFlex

problems using a leave-one-out methodology are shown in table 5.10, and illustrated in figure 5.3. The

results of the Wilcoxon signed rank test are shown in table 5.11.

Table 5.11: The sample median difference d̂, sample mean difference d, the standard deviation SD, the

p-value, and the interval within which the population median difference falls with 99% confidence.

d̂ d̄ SD p-value Conf. Int.

T-SSHHN - T-SSHH -0.0003 -0.0031 0.0736 0.0649 [−∞, 0.0002]

T-SSHH - S-SSHH -0.0066 -0.0153 0.1041 0.0000 [−∞,−0.0048]

S-SSHH - S-SSHHN -0.0006 -0.0040 0.0647 0.0175 [−∞, 0.0001]

S-SSHHN - SSHH -0.0063 -0.0250 0.1105 0.0000 [−∞,−0.0043]

SSHH - P-SSHH -0.0005 -0.0011 0.1363 0.1412 [−∞, 0.0005]

P-SSHH - P-SSHHN -0.0021 -0.0132 0.1314 0.0002 [−∞,−0.0007]

P-SSHHN - A-SSHH -0.0037 -0.0062 0.0955 0.0000 [−∞,−0.0016]

A-SSHH - NONE -0.0005 -0.0045 0.0841 0.0555 [−∞,−0.0003]

NONE - A-SSHHN -0.0055 -0.0149 0.0759 0.0000 [−∞,−0.0039]

Using the results in table 5.10 and 5.11, the hyper-heuristic parameterisations can be stochastically
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ordered so that when online learning is enabled

αf (T-SSHH) < αf (S-SSHH) < αf (P-SSHH) < αf (A-SSHH)

and when online learning is disabled

αf (T-SSHHN)< αf (S-SSHHN)< αf (P-SSHHN)< αf (NONE)< αf (A-SSHHN)

with 99% confidence (for each comparison).

These inequalities, together with the results of table 5.10 and table 5.11, demonstrate that the

T-SSHH and T-SSHHN parameterisations are the best performing optimisers in terms of objective func-

tion minimisation. A two tailed Wilcoxon test indicates that these hyper-heuristics are statistically

similar. In symbols

αf (T-SSHH) = αf (T-SSHHN)

with 99% confidence. Furthermore, the T-SSHH and S-SSHH parameterisations which combine online

and offline learning, and the T-SSHHN and S-SSHHN parameterisations which employ only offline learn-

ing, significantly outperform SSHH. The P-SSHH parameterisation and SSHH are statistically similar

(see Section 5.2), while P-SSHHN is inferior to SSHH. These results demonstrate that, with the exception

of P-SSHH, offline learning is able to significantly improve optimisation performance with or without

online learning. The results for the adverse hyper-heuristics A-SSHH and A-SSHHN demonstrate that the

performance of T-SSHH and T-SSHHN are not just a consequence of some fortuitous non-equiprobable

parameterisation. The result that A-SSHH and NONE are statistically similar, while NONE outperforms

A-SSHHN shows that SSHH’s online learning algorithm is able to adapt to poor initial parameterisations.

Figure 5.3 provides an alternative view of the results presented in table 5.10 which illustrates

the performance trade-offs between SSHH and the nine parameterisations. The figure shows that,

with the exception of the adverse parametrisation A-SSHH, offline learning decreases the number of

selections required to find a minimum, and the number of objective function evaluations. However,

with the exception of P-SSHH, the reductions in selections and objective function evaluations does not

lead to a reduction in the time to a minimum, or overall run time. This is because the offline training

subsequences are chosen to be effective, and so tend to consist of time expensive heuristics. In contrast,

the adverse parameterisation A-SSHH is constructed to select ineffective subsequences which tend to

consist of computationally inexpensive heuristics. The reduction in time to a minimum and overall

run time for the P-SSHH parameterisation is because it is trained with subsequences that are effective

and time efficient. Figure 5.3 also shows that, with the exception of T-SSHH, online learning always

improves optimisation performance.

The dashed lines in figure 5.3 denote the Pareto front that each hyper-heuristic parameterisation

belongs to, where Pareto efficiency decreases from left to right. If the Pareto fronts in each plot

are numbered from 0 to n, where front-0 is the most efficient, and front-n is the least, then each
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parameterisation can be evaluated by calculating its Pareto rank which is the sum of its Pareto front

indices. For example, SSHH belongs to Pareto front 2 for minimum selections, Pareto front 3 for

objective evaluations, and Pareto front 0 for time to a minimum and total run time, which gives an

overall rank of 2+3+0+0 = 5. The Pareto rank for each parameterisation in figure 5.3 is shown in table

5.12. The ranking demonstrates that when the four criteria of selections to minima, objective function

evaluations, run time to minima, and overall run time are taken into consideration, the offline trained

hyper-heuristics T-SSHHN and S-SSHHN, and the hybrid learning hyper-heuristics T-SSHH, P-SSHH, and

S-SSHH outperform SSHH. Furthermore, SSHH outperforms the adverse parameterisation A-SSHH, with

or without online learning, the offline trained P-SSHHN, and the no learning hyper-heuristic NONE.

This ranking demonstrate the potential for offline and hybrid learning to improve hyper-heuristic

performance.

Table 5.12: The Pareto rank of each hyper-heuristic.

Hyper-heuristic Min. Sel. Obj. Eval. Min. T Total T Score

T-SSHHN 0 0 0 0 0

T-SSHH 0 0 1 1 2

P-SSHH 1 2 0 0 3

S-SSHH 0 1 2 1 4

S-SSHHN 1 2 1 0 4

SSHH 2 3 0 0 5

A-SSHH 2 3 1 1 7

P-SSHHN 2 3 1 1 7

A-SSHHN 3 4 1 1 9

NONE 3 4 2 2 11

Figure 5.4 plots the mean log return of the best solution found against the number of iterations for

run 0 of problem 5 in each domain for SSHH, T-SSHH, and P-SSHH. The plots show that, in this example,

T-SSHH converges faster than P-SSHH and SSHH in all six domains, leading to the best solutions in all

but the PS domain. Furthermore, for the BP and SAT domains, and to a lesser extent PFS, both

offline trained hyper-heuristics converge faster than the untrained SSHH.
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(a) αf versus Min. Sel.

100 102 104 106 108 110

-0.56

-0.54

-0.52

-0.5

-0.48

-0.46

(b) αf versus Obj. Eval.

48 49 50 51 52 53 54 55

-0.56

-0.54

-0.52

-0.5

-0.48

-0.46

(c) αf versus Min. T.

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

10
4

-0.56

-0.54

-0.52

-0.5

-0.48

-0.46

(d) αf versus Total T.

1 2 3 4 5 6 7 8 9 10

10
4

-0.56

-0.54

-0.52

-0.5

-0.48

-0.46

Figure 5.3: The mean final log return αf plotted against (a) the mean number of selections Min. Sel.,

(b) the mean number of objective function evaluations Obj. Eval. required to find a minimum, (c)

the mean time Min. T required to find a minimum, and (d) the mean overall run time Total T.
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(a) BP

0 50 100 150

Iteration

-4.4

-4.2

-4

-3.8

-3.6

-3.4

-3.2

-3

L
o
g
 o

b
je

ct
iv

e
 f
u
n
ct

io
n
 v

a
lu

e

SSHH

T-SSHH

P-SSHH

(b) PFS
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(c) SAT
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(d) VRP
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Figure 5.4: The best mean log objective function value of SSHH, T-SSHH, and P-SSHH for run 0 of

problem 5 for each domain.
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5.4.3 Heat Map Analysis

Section 5.4.2 presented a comparative analysis of SSHH and nine parameterisations that demonstrates

that offline learning is able to significantly improve optimisation performance. This section presents

an examination what has been learned.

An insight into what the Baum-Welch algorithm has learned can be gained by examining SSHH’s

state transition and heuristic emission matrices. Figure 5.5 shows heat maps of the transition and

emission matrices for the T-SSHH trained hyper-heuristic for problem 5 in the SAT domain, before and

after optimisation with online learning.

(a) Transition matrix before.
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(b) Transition matrix after.
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(c) Emissions matrix before.
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(d) Emissions matrix after.
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Figure 5.5: A heat map of the average transition and emission probability matrices for T-SSHH on

problem 5 in the SAT domain before and after 150 iterations. The probabilities are averaged over 40

runs.

As expected, the emissions matrix contains relatively high probabilities for the M0, M1, L7, and L8

low level heuristics that occur in the T-SSHH training subsequences for the SAT domain (see table
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5.2). This demonstrate that the Baum-Welch algorithm is able learn from (or load) the training

subsequences. Furthermore, notice that the before and after matrices are very similar; they have not

been significantly altered by the online learning algorithm. This is because the Baum-Welch algorithm

has found a probabilistic maxima from which the online learning algorithm is unable to escape. These

maxima can also be observed in the probability matrices learned in the other HyFlex domains.

5.5 Increasing the Run Length

The previous experiments all use a run length of 150 low level heuristic selections. For some problems

with computationally efficient heuristics, 150 iterations is a relatively small number over which to

evaluate a hyper-heuristics’s performance. Thus, the question arises as to whether the observed gains

in performance are still present after longer execution times. In this section, the SSHH hyper-heuristic,

and the offline trained hyper-heuristic T-SSHH are evaluated (using a leave-one-out methodology) for

10 times on each of the 60 HyFlex problems instances for 10 minutes of wall clock time. The results

are shown in table 5.13.

Table 5.13: A domain by domain comparison of the mean final log return αf of SSHH and T-SSHH over

10 minutes. The averages are calculated over 10 and 100 runs. The boldface type indicates a win.

Dom. SSHH T-SSHH

BP -0.9823 -1.0294

PFS -0.0143 -0.0139

SAT -1.0452 -1.1004

VRP -0.4701 -0.4705

TSP -0.0892 -0.0893

PS -1.7045 -1.6549

All -0.7176 -0.7264

The T-SSHH hyper-heuristic outperforms the SSHH hyper-heuristic overall, and on four of the six

HyFlex domains. However, the improvements in mean final log return αf are modest, particularly for

the VRP and TSP domains where the gains are so small that they are unlikely to be significant. This

demonstrates that although offline training can lead to improvements in performance, especially early

on in the optimisation process, the online learning algorithm can, given enough time, perform (almost)

as well. Figure 5.6 shows heat maps of the transition and emission matrices for the T-SSHH trained

hyper-heuristic for problem 5 in the SAT domain, before and after 10 minutes of optimisation with

online learning. Notice that the before and after matrices are very similar, and are also very similar to

the matrices produced after 150 iterations shown in figure 5.5. This strengthens the conclusion that

the Baum-Welch algorithm has found a probabilistic maxima.

117



CHAPTER 5. HYBRID LEARNING 5.6

(a) Transition matrix before.
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(b) Transition matrix after.
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Figure 5.6: A heat map of the average transition and emission probability matrices for T-SSHH on

problem 5 in the SAT domain before and after a 10 minute run. The probabilities are averaged over

10 runs.

5.6 Conclusions

This chapter has presented a methodology for combining the online learning capabilities of the SSHH

hyper-heuristic, with offline learning of effective subsequences of heuristics using the Baum-Welch

algorithm.

The methodology, based on the γ-ratio, is able to significantly improve the optimisation perfor-

mance of the SSHH hyper-heuristic on the HyFlex problems with 99% confidence; a problem set on

which SSHH is known to perform well. The same methodology can also produce a hyper-heuristic that

when trained with subsequences taken from a Pareto front, has similar optimisation performance to

the untrained SSHH hyper-heuristic, but with more than a 60% improvement in run time.
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The two preceding experiments demonstrate that it is possible to learn and generalise from effective

sets of subsequences. However, these experiments rely on large amounts of offline data. The γ-ratio

can also be used to significantly improve performance in situations where there is only relatively small

amounts of offline data available.

An analysis of a number of SSHH parameterisations when online learning is enabled or disabled

shows that the performance of the SSHH hyper-heuristic is significantly affected by the initial config-

uration of the probability matrices. Furthermore, although online learning generally improves optimi-

sation performance, the offline learning algorithm produces parameterisations that are local maxima

from which the online learning algorithm is unable to escape. Further research into balancing the

contribution of offline and online learning so that neither algorithm overwhelms the other is needed.

Finally, the observed improvements in optimisation performance due to offline learning can also be

seen in longer runs.

These results demonstrate the utility of combining online and offline subsequence learning. One

application of such hybrid learning could be in real-world scenarios where multiple problem instances

exist within a problem domain. In these cases SSHH could be trained offline on computationally simple

instances of a problem to determine the initial biases towards certain heuristics. Once trained, the

SSHH hyper-heuristic could then be used on computationally expensive, real-world instances, benefiting

from the domain-specific training, but using online learning to adapt to the specifics of such instances.
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Chapter 6

A Case Study: Water Distribution

Networks

In this chapter, the methodology developed and evaluated on the HyFlex problems in Chapters 3, 4

and 5 is applied to a novel problem domain; the optimisation of water distribution networks (WDN).

Optimising the design and rehabilitation of water distribution networks is an important real-world

problem. A WDN delivers water from reservoirs, tanks, and water treatment facilities to consumers

via a network of pipes and makes use of pumps and valves to meet consumer demand. The WDN

optimisation problem is characterised as a discrete NP-hard combinatorial optimisation problem with

large scale multi-modal search landscapes [69].

A variety of meta-heuristics [10] have been successfully applied to this problem such as simulated

annealing [28], shuffled frog leaping algorithms [42], harmony search [52], honey-bee mating optimi-

sation [83], differential evolution [129], particle swarm optimisation [43], multi-objective evolutionary

algorithms [120], and ant colony optimisation [105]. To date, hyper-heuristics have received relatively

little attention in the WDN optimisation literature [69] [128].

This chapter investigates the optimisation of the 12 WDN problems presented in [120] with the

sequence-based selection hyper-heuristic SSHH described in Chapter 2. The optimisation performance

of the SSHH hyper-heuristic is compared with the five multi-objective evolutionary algorithms (or

MOEAs) used in [120]. Following Chapter 5, the SSHH hyper-heuristic is then trained offline using the

Baum-Welch learning algorithm [95] and an appropriate training set of heuristic subsequences. The

training subsequences are chosen from an offline learning database using the statistical methodology

introduced in Chapter 3. The statistical methodology is then used to analyse the results of offline

learning, which leads to an improved offline learning strategy. Finally, the potential for scalable learn-

ing, where knowledge learned from a small problem is usefully transferred to a second larger problem,

is explored.
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This chapter presents four results. Specifically,

1. a hyper-heuristic with online learning is competitive with the state-of-the-art across 12 WDN

problems of varying size,

2. offline learning can improve on online learning performance,

3. the effectiveness of the heuristics changes markedly during the optimisation process for WDN

problems, and

4. knowledge learned from small WDN problems can be transferred to larger ones, raising the

potential for high performance algorithms trained on benchmarks and deployed on large, real-

world problems.

The structure of this chapter is as follows. Section 6.1 contains an overview of the water distribution

network problems presented in [120] and considered here. Section 6.2 describes the methodology used

to conduct the optimisation experiments. In Section 6.3, the SSHH hyper-heuristic is used to optimise

the 12 WDN problems, and these results are compared with those produced by the MOEA’s employed

in [120]. In Section 6.4, in order to improve optimisation performance the SSHH hyper-heuristic’s

hidden Markov model (HMM) is trained offline with the Baum-Welch learning algorithm. However,

in this case, offline learning fails to improve optimisation performance. With this in mind, Section 6.5

presents an analysis of the results of offline learning, which leads, in Section 6.6, to an improved offline

learning methodology. In Section 6.7 the concept of probabilistic length, and the Kullback-Leibler

distance are used to visualise the changes in the probability distribution encoded in the HMM due to

online and offline learning. Finally, in Section 6.8, the potential for scalable learning is explored.

6.1 Water Distribution Networks

Water distribution networks are an important element of urban infrastructure as they convey clean

water from reservoirs, tanks and water treatment works to homes and businesses via a set of pipes. The

design for a WDN aims to ensure a supply of clean water to the demand nodes at sufficient pressure

and for minimum monetary cost. Although cost minimisation is the primary design objective, there

are many other objectives that can also be considered such as minimisation of water age, adherence to

water pressure and velocity constraints, and increasing the robustness of the network to reduce supply

outages.

In this chapter a simple WDN optimisation problem is considered. The discrete decision variables

are the diameters of the pipes in a network. The objectives are to minimise the network’s overall cost

and maximise the network’s reliability, while meeting all demand constraints (or loading conditions),

and maintaining the minimum required head (pressure) throughout the network.
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This section is structured as follows. Section 6.1.1 describes the 12 networks, Section 6.1.2 specifies

the design objectives, and Section 6.1.3 defines the single valued objective function used in this case

study. Section 6.1.3 also defines the solution points that are used to compare optimisation performance.

Lastly, in Section 6.1.4, the six low level heuristics that are used to optimise the WDN problems are

presented.

6.1.1 The Networks

The 12 WDN problems considered here are taken from [120]. Table 6.1 shows a summary of the prob-

lems including the number of loading conditions, water sources, decision variables, and pipe diameter

options. The problems are categorised into four groups; small (S), medium (M), intermediate (I), and

large (L) according to the size of search space, and range from small benchmark instances with tens

of pipes to large-scale city-wide networks comprised of thousands of pipes.

The problems differ from one another in a number of other respects. Of the 12 problems, 11 are

based on real world networks, while the TLN network [3] is an example of a hypothetical network. The

TRN [53], BAK [73], NYT [102] and EXN [45] networks are expansion problems, where the task is to

extend an existing network by modifying some of the pipes in the network. In addition to selecting pipe

diameters such problems can sometimes make use of extra options such pipe cleaning, pipe duplication,

or ”leaving alone”. The remaining problems TLN, BLA [104], HAN [47], GOY [70], FOS, PES, MOD

[13], and BIN [96], are pure design problems where the diameters of any or all of the pipes in a network

can be modified.

Each problem has minimum head pressure requirements for the demand nodes. The BLA, FOS,

PES, and MOD networks also have maximum pressure requirements, and upper bounds on water veloc-

ities in the pipes. The TRN network differs from the other problems in that it has three sets of loading

conditions, while the BIN network, unlike a typical WDN, has a fixed level of water consumption

across all demand nodes.

Figure 6.1 shows an example schematic of the Blacksburg distribution network.

6.1.2 The Design Objectives

In this case study, the water distribution network design problem is specified by three objective func-

tions: the cost C, the head pressure deficit H , and the network’s resilience In. The cost and head

pressure deficit are to be minimised while the resilience is to be maximised.

The monetary cost is usually expressed in millions and is defined by

C =

np∑

i=1

Uc(Di)Li (6.1)

where Uc is the unit pipe cost which depends on the diameter Di selected, and the length Li of pipe

i = 1, . . . , np.
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Table 6.1: The problem name, acronym, the number of loading conditions (LC), number of water

sources (WS), number of decision variables (DV), number of pipe diameter options (PD), for the water

distribution network problems. For the TRN problem, three existing pipes have eight diameter options

for duplication and the two extra options of cleaning or leaving alone.

Problem Acronym LC WS DV PD Search Space Size

Two-Reservoir TRN 3 2 8 8∗ 3.28 × 107 S

Two-Loop TLN 1 1 8 14 1.48 × 109 S

BakRyan BAK 1 1 9 11 2.36 × 109 S

New York NYT 1 1 21 16 1.93 × 1025 M

Blacksburg BLA 1 1 23 14 2.30 × 1026 M

Hanoi HAN 1 1 34 6 2.87 × 1026 M

GoYang GOY 1 1 30 8 1.24 × 1027 M

Fossolo FOS 1 1 58 22 7.25 × 1077 I

Pescara PES 1 3 99 13 1.91 × 10110 I

Modena MOD 1 4 317 13 1.32 × 10353 L

Balerma BIN 1 4 454 10 1.00 × 10455 L

Exeter EXN 1 7 567 11 2.95 × 10590 L

The head pressure deficit is defined by

H =

nn∑

j=1

(
max(Hj −Hmax

j , 0) + max(Hreq
j −Hj , 0)

)
(6.2)

where Hj is the actual head pressure, Hreq
j is the minimum required head pressure, and Hmax

j is the

maximum required head pressure (if any) for each demand node j = 1, . . . , nn.

Network resilience measures the redundancy of a pipe network, and maximising this indicator can

improve network reliability. It has been shown that using a network resilience index as an additional

objective reduces the occurrence of nonviable networks, and yields solutions which are more robust

under pipe failure conditions [94]. There are however many network resilience measures in the lit-

erature, and each has its own particular advantages and disadvantages (see for example [7]). Each

resilience measure attempts to mimic the design goal of designing reliable loops with practicable pipe

diameters, while providing excess head pressure above the minimum required at all nodes. In this

chapter, following [120], a network’s resilience is defined by

In =

∑nn
j=1 CjQj(Hj −Hreq

j )
(∑nr

k=1 QkHk +
∑npu

i=1
Pi

γ

)
−∑nn

j=1 QjH
req
j

. (6.3)

where Qj is the demand, nr is the number of reservoirs, Qk is the discharge, and Hk is actual head

of reservoir k, npu is the number of pumps, Pi is the power of pump i (if any), and γ is the specific
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Figure 6.1: The layout of the Blacksburg network (BLA). The network consists of thirty-five pipes

of which twelve have fixed diameters, one reservoir with a fixed head of 715.56m, and thirty demand

nodes. Fixed pipes are shown as blue lines.

weight of water. The term Cj is the uniformity which is defined by

Cj =

∑npj
i=1 Di

npjmax{Di}
(6.4)

where npj is the number of pipes connected to node j and Di is the diameter of pipe i connected to

node j. The EPANET21 software library [100] is used to run hydraulic simulations in order to obtain

the variables required for the calculation of a network’s resilience.

6.1.3 Comparing Solutions

The solutions produced by the SSHH hyper-heuristic are compared with those of the five multi-objective

evolutionary algorithms (or MOEAs) used in [120]. It should be emphasised that the objective of this

study is not to demonstrate that SSHH is a superior optimiser to the MOEAs. Rather, it is to show that

SSHH is a computationally efficient optimisation algorithm capable of producing high quality solutions

comparable to the state-of-the-art, and that these solutions can be improved upon with offline learning.

As the SSHH hyper-heuristic employed in this case study is a single objective optimiser, the three

quantities of cost, head pressure deficit, and resilience are combined to define the single value objective

function

f = aC + bH + (−cIn) (6.5)

1The EPANET2 software and manual can be downloaded from:

https://www.epa.gov/water-research/epanet/
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that is to be minimised. The constants a = 200, b = 1000 and c = 5 are chosen to ensure that the

objective function f is always positive across all 12 problems, as opposed to “tuning” them for each

problem. The objective function favours low cost networks with low head pressure deficits, as solutions

with non-zero deficits are considered to be nonviable.

An MOEA is a multi-objective optimiser that operates on a population of solutions. Such algorithms

naturally generate a Pareto front of “best” solutions, which make the trade-offs between the conflicting

objectives of cost and resilience explicit. Although SSHH operates on a single solution, it can also

generate a Pareto front. However, the use of a single objective value forces the algorithm to explore a

smaller region of the solution space; the region of low cost, and therefore lower resilience networks. As

a result, comparing the Pareto fronts produced by the two methods is unhelpful. Instead, the SSHH

and MOEA optimisers are compared on a single point on the published Pareto front for each problem;

the solutions with the cheapest monetary cost for each problem.

Table 6.2 shows the cheapest viable solutions, their resilience, and the number of objective function

evaluations used to generate them, taken from the Pareto fronts of C and In presented2 in [120]. The

Pareto fronts were generated by executing the five MOEAs 30 times, on each problem for the number

of iterations shown.

Table 6.2: The minimum cost C (M) and resilience In for the viable solutions of the WDN problems

found by the MOEAs, and the number of objective function evaluations used to generate them [120].

Prob. C In Evals.

TRN 1.7501 0.1490 100,000

TLN 0.4190 0.1535 100,000

BAK 0.9036 0.4978 100,000

NYT 38.8142 0.3906 600,000

BLA 0.1183 0.4267 600,000

HAN 6.1952 0.2041 600,000

GOY 0.1770 0.3262 600,000

FOS 0.0296 0.5239 1,000,000

PES 1.8134 0.2655 1,000,000

MOD 2.5394 0.3619 2,000,000

BIN 1.9986 0.3935 2,000,000

EXN 16.2722 0.3772 2,000,000

2Implementations of the problems together with their Pareto fronts can be downloaded from

https://emps.exeter.ac.uk/engineering/research/cws/resources/benchmarks/ under Design/Resilience.
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6.1.4 The Low Level Heuristics

In order to optimise a WDN problem the SSHH hyper-heuristic requires a number of low level heuristics.

The five heuristics used in [69] and a two-point crossover heuristic C5 are used in these experiments.

The low level heuristics are:

1. M0 – change one pipe diameter randomly,

2. S1 – swap two pipe diameters at random,

3. M2 – increase or decrease a randomly selected pipe diameter by one size,

4. R3 – “ruin” several pipes and rebuild randomly where the number of pipes to be changed is a

parameter in the range [1, 5],

5. S4 – shuffle several pipes (i.e. makes several swaps) where the number of pipes to be changed is

a parameter in the range [1, 5], and

6. C5 – two-point crossover of two vectors of network pipe diameters.

One of the objectives of this case study is to evaluate the performance of the additional crossover

heuristic.

The low level heuristics can be grouped into four classes, mutational M, swap S, ruin and recreate

R, and crossover C.

6.2 Experimental Methodology

The random, unbiased, single selection hyper-heuristic DBGen (see Chapter 3) employing the low level

heuristics described in Section 6.1.4 is used to generate a database of heuristic selections and objective

function values. Specifically, the DBGen hyper-heuristic is executed 40 times on each of the 12 WDN

problem instances for 10,000, 20,000, 50,000, and 100,000 iterations for the small, medium, intermediate

and large problems, respectively. The number of iterations for each size were chosen for computational

feasibility. The number of 40 runs was chosen so as to ensure that robust statistics could be calculated

for each problem instance. For each problem, each DBGen run r is seeded by a unique number

seed = 1000 + r

which is used to initialise the pseudorandom number generator used by DBGen, and to randomly

initialise a WDN problem instance.

Although the computational cost of constructing such a database is significant, the objective of

this study is not to compare optimisation performance using equivalent computational resources, but

rather (as mentioned in Section 6.1.2) it is to investigate what can be learned from a pre-existing offline
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learning database that has been constructed using a method that is independent of the optimisation

algorithm under consideration.

Following Chapter 5, the Baum-Welch learning algorithm is used to offline train the SSHH hyper-

heuristic. The Baum-Welch algorithm is used to estimate a set of parameters for SSHH’s HMM that

maximise the probability of generating a given sequence of training observations. Here, the parameters

to be estimated are the HMM’s state transition and heuristic emission matrices, while the training

observations are subsequences of low level heuristics that are selected from the offline learning database.

Specifically, the training observations consist of the 10 subsequences of length two and three with the

largest γ-ratios in the database. Subsequences of length two and three are used as they occur more

frequently in the database than longer subsequences, and as a result, the statistics calculated for

these subsequences are more reliable. The number of 10 subsequences was chosen to ensure that the

subsequence set contained sufficient heuristic “diversity”, that is the subsequences consist of more that

just one or two low level heuristics.

The results of executing the offline trained SSHH hyper-heuristic, denoted T-SSHH, on the WDN

problems are compared with those of an untrained SSHH hyper-heuristic using a leave-one-out cross-

validation methodology [9]. Recall that there are 12 problem instances in WDN domain. For each

target problem, the training set consists of the 10 subsequences with the largest γ-ratios, chosen from

the subsequences of the remaining 11 problems. The subsequences are used to train the HMM of the

T-SSHH hyper-heuristic which is then evaluated on the target problem. This ensures that T-SSHH is

always evaluated on a problem that is “unseen”. The objective is to demonstrate empirically that

an offline trained T-SSHH hyper-heuristic is able to learn and generalise from training subsequences

selected across a number of problems. In this context, generalisation means that the trained T-SSHH

hyper-heuristic is able to significantly outperform the untrained SSHH hyper-heuristic when evaluated

on unseen problem instances.

Before Baum-Welch training, T-SSHH’s hidden Markov model’s state transition and heuristic emis-

sion probability matrices are randomised. The randomisation improves Baum-Welch learning which

often fails when using equiprobable state transition and identity heuristic emission matrices. After

Baum-Welch training, the probability matrices are edited to ensure that every state transition and

heuristic emission has a non-zero probability of at least 0.0001. The offline trained T-SSHH hyper-

heuristic is initialised with these edited matrices.

6.3 Online Learning

In this section the SSHH hyper-heuristic is used to optimise the 12 WDN problems. This experiment

extends the work presented in [69] by evaluating the SSHH hyper-heuristic, with an additional crossover

operator, on multiple WDN problems. The objective is to compare the performance of the SSHH

algorithm with that of the evolutionary algorithms, and to determine the utility of the extra crossover
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heuristic.

The SSHH hyper-heuristic is executed 40 times on each of the 12 problems in the WDN domain.

For each problem, each run is seeded by a unique number

seed = 100 + r

that is distinct to the seeds used to generate the offline learning database. The number of iterations

used by SSHH varies with the problem size. Specifically, SSHH is executed for 10,000, 20,000, 50,000,

and 100,000 iterations for the small, medium, intermediate and large problems, respectively. The

number of iterations for each size were chosen for computational feasibility. The number of 40 runs

was chosen so as to ensure that robust statistics could be calculated for each problem instance. The

SSHH hyper-heuristic is compared to the MOEAs on a single point on the published Pareto fronts; the

solutions with the cheapest monetary cost. The cheapest solutions found by each algorithm for each

problem are shown in table 6.3.

Table 6.3: The lowest cost C (M), resilience In, and the number of objective function evaluations

(Evals.) for the solutions of the WDN problems produced by SSHH and MOEA. The result R indicates

an equal (E), non-dominant (ND), dominant (D) or nonviable (NV) solution.

Prob.
SSHH MOEAs

R
C In Evals. C In Evals.

TRN 1.7501 0.1110 8876 1.7501 0.1490 100000 ND

TLN 0.4200 0.1579 5850 0.4190 0.1535 100000 ND

BAK 0.9036 0.4978 9257 0.9036 0.4978 100000 E

NYT 38.8142 0.3906 18282 38.8142 0.3906 600000 E

BLA 0.1186 0.4804 17375 0.1183 0.4267 600000 ND

HAN 6.1350 0.1797 18580 6.1952 0.2041 600000 ND

GOY 0.1781 0.4498 17334 0.1770 0.3262 600000 ND

FOS 0.0296 0.5249 49124 0.0296 0.5239 1000000 ND

PES 1.8319 0.2210 48438 1.8134 0.2655 1000000 D

MOD 2.5754 0.2739 81101 2.5394 0.3619 2000000 D

BIN 2.1366 0.3280 56005 1.9986 0.3935 2000000 D

EXN 7.6130 0.1912 67841 16.2722 0.3772 2000000 NV

The cheapest solutions found by SSHH and the MOEAs for the problems BAK and NYT are identical.

For the small problem TRN and TLN, the medium sized problems BLA, HAN, GOY, and FOS no

solution dominates. For the intermediate problem PES, and the large problems MOD and BIN, the

MOEA solutions (shown in boldface) dominate those found by SSHH. As SSHH only evaluates the

objective function after an acceptance check, rather than every iteration, the number of objective

function evaluations (Evals.) for SSHH is always less than the number of iterations.
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The solution produced by SSHH for EXN has a head deficit of H = 2.6940. The head penalties

are calculated by summing the pressure violations over the whole network. When the violations are

small, and spread evenly across a network, the solution can be viewed as semi-viable, or approaching

viability. For the EXN network, the pressure violation occurs at a single pipe, and so the SSHH solution

is deemed nonviable. However, by choosing the alternative constants a = 2, b = 5000, and c = 0.1 for

the objective function, SSHH can find a viable solution for EXN where C = 17.0886 and In = 0.3373,

using 49552 objective function evaluations.

As SSHH uses less iterations (and objective function evaluations) than the MOEA’s the question

arises as to whether its optimisation performance could be improved on the larger problems with a

comparable number of iterations. Table 6.4 shows the cheapest cost solutions found by executing

SSHH on PES, MOD, BIN, and EXN for additional iterations. Specifically, SSHH is run 40 times

for 1,000,000 iterations on PES and 2,000,000 iterations on MOD, BIN and EXN. As extending the

number of iterations for EXN using the original objective function constants also yields a nonviable

solution, the result shown in table 6.4, denoted EXN∗, uses the alternative constants defined above.

While the MOD and BIN solutions remain dominant after the additional iterations, the solutions for

PES and EXN∗ are now non-dominated. For PES, SSHH actually finds a lower cost solution than any

of the MOEAs.

Table 6.4: The lowest cost C (M), head deficit H , and resilience In for the solutions of the PES, MOD,

BIN, and EXN∗ problems produced by SSHH and MOEA. The result R indicates a non-dominant (ND)

or dominant (D) solution.

Prob.
SSHH MOEA

R
C In Evals. C In Evals.

PES 1.8125 0.2546 557549 1.8134 0.2655 1000000 ND

MOD 2.5485 0.2792 1457855 2.5394 0.3619 2000000 D

BIN 2.0919 0.3440 1014035 1.9986 0.3935 2000000 D

EXN∗ 15.5632 0.3425 681349 16.2722 0.3772 2000000 ND

As the constants used to define the objective function are chosen to ensure that the function

is positive for all the problems in the WDN domain, one would expect a multi-objective algorithm

to outperform a single objective function optimiser. However, the differences in cost and network

resilience are modest, while SSHH employs significantly less objective function evaluations than the

MOEAs. This is important because, for many large problems (such as EXN), evaluating the objective

function is computationally expensive.

These results demonstrate that the SSHH hyper-heuristic is a computationally efficient alternative

to a multi-objective evolutionary algorithm for the optimisation of WDN problems. Furthermore, it

should be noted that the SSHH algorithm can be extended to optimise multiple objectives [117].
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6.4 Offline Learning

In order to improve optimisation performance the SSHH hyper-heuristic’s HMM is trained offline with

the Baum-Welch learning algorithm on an effective set of heuristic subsequences selected from the offline

learning database. Following Chapter 5, the training subsequences are the 10 subsequences of heuristics

of length two and three with the largest γ-ratios in the offline learning database. The training sets

are constructed from these effective subsequences using a leave-one-out cross-validation methodology.

Specifically, for each target WDN problem, the training set consists of the 10 subsequences with the

largest γ-ratios, chosen from the subsequences of the 11 remaining problems. These subsequences are

used to offline train the HMM of the SSHH hyper-heuristic which is then used to optimise the “unseen”

target problem. This methodology gives rise to 12 training sets, one for each of the WDN problems.

The offline trained hyper-heuristic, denoted T-SSHH, is executed 40 times on each of the 12 problems

in the WDN domain. The mean objective function values for each problem are shown in table 6.5.

Table 6.5: A problem by problem comparison of the mean final objective function value and standard

deviation for SSHH and T-SSHH. Winning scores are shown in boldface.

Prob. SSHH SD T-SSHH SD

TRN 357.4068 16.9400 361.0980 18.6944

TLN 87.2512 2.6345 87.9132 2.4008

BAK 179.0267 0.9965 179.2223 1.4257

NYT 8116.0158 536.2183 8169.6525 645.3373

BLA 22.2911 1.2971 22.5268 2.4840

HAN 1286.6305 37.4569 1294.9970 42.7782

GOY 33.3999 0.1606 33.3900 0.0628

FOS 4.2449 0.6641 4.4674 0.9202

PES 401.5132 31.3177 409.5692 50.8569

MOD 555.0569 27.6637 564.3754 100.4345

BIN 494.2631 65.7123 537.6853 115.3677

EXN 4789.5943 402.1191 4738.0677 810.7313

The problem by problem results demonstrate that the SSHH hyper-heuristic outperforms the offline

trained hyper-heuristic T-SSHH on 10 of the 12 WDN problems. The overall results are shown in

table 6.6. Although the mean final log return αf is slightly better for T-SSHH than SSHH, the mean

percentage change in objective function value is worse. The differences in mean final log returns are

tested for statistical significance and the results are shown in table 6.7. The results of the one tailed

Wilcoxon test together with the results contained in table 6.5 and table 6.6 indicate that T-SSHH

is an inferior optimiser when compared with SSHH, and that offline learning has failed to improve

optimisation performance.
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Table 6.6: The mean final log return αf , the mean percentage change, the mean number of iterations

to a minimum, and the mean number of objective function evaluations.

αf % Min. Sel. Obj. Eval.

SSHH -2.9104 -88.7454 32916.5854 32238.0979

T-SSHH -2.9134 -88.7435 32695.6125 30071.8729

Table 6.7: The sample pseudo-median difference d̂, the sample median absolute deviation MAD, the

sample mean difference d̄, the standard deviation SD, the p-value, and the 99% confidence interval for

αf (T-SSHH)− αf (SSHH). Statistically significant results are shown in boldface.

d̂ MAD d̄ SD p-value Conf. Int.

0.0017 0.0225 -0.0030 0.2011 0.9029 [−∞, 0.0055]

6.5 An Analysis of Heuristic Effectiveness

In Chapter 4, the γ-ratio is used to select effective subsequences of heuristics from a number of

distinct problem domains. The γ-ratio can also be used, in certain circumstances, to select effective

subsequences across a number of problem domains. For example, consider two comparable domains,

and define the α-order of a domain to be the order of its low level heuristics (or heuristic classes) when

ranked by their mean log return α. If the difference between the α-orderings of the two domains is small,

then a subsequence that is effective in one domain is likely to be effective in the other (see Chapter

4, Section 4.6). In this section, the failure of offline training to improve optimisation performance in

the previous section is investigated by considering the α-order of the low level heuristics of the WDN

domain during the course of the optimisation process.

Consider the LOW and HIGH subsets of low level heuristics defined in Chapter 3, Section 3.3.2. The

mean log return α of the low level heuristics is calculated from the LOW and HIGH sets. The heuristics

are then ranked by their α values. The resulting LOW and HIGH α-orderings for the smallest problem

in each size category, the EXN problem, and overall, are shown in table 6.8. The change in rankings

is quantified by using the Spearman’s Footrule distance [33].

The results in table 6.8 show some large differences in the orderings of the LOW and HIGH heuristic

sets. For example, notice how the M2 heuristic changes from being one of the least effective heuristics

in the HIGH sets, to one of the most effective heuristics in the LOW sets. These large differences in rank

indicate that different individual heuristics are effective at different points in the optimisation process.

Figure 6.2 shows the effectiveness of the low level-heuristics for each percentile over all 12 problems.

The plot illustrates the changes in heuristic effectiveness as solution optimality increases. Notice that

the two-point crossover heuristic C5 is the best performing low level heuristic in all but the last two

percentiles P i
20 and P i

10. Figure ?? shows the heuristic effectiveness for each heuristic class. The bars
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Table 6.8: The low level heuristics in the HIGH and LOW subsets ordered by ascending mean log return

ᾱ from left to right, the Spearman’s Footrule distance d, and the normalised Footrule distance d′ = d
m .

Prob. Set α-order d d′

TRN
HIGH C5, R3, S4, M0, S1, M2

10 0.5556
LOW C5, M2, M0, R3, S1, S4

NYT
HIGH C5, S4, R3, S1, M0, M2

12 0.6667
LOW C5, M2, M0, R3, S1, S4

FOS
HIGH S4, C5, R3, S1, M0, M2

16 0.8889
LOW M2, M0, C5, S1, R3, S4

MOD
HIGH C5, R3, M0, M2, S1, S4

6 0.3333
LOW M2, C5, M0, R3, S1, S4

EXN
HIGH C5, R3, M0, M2, S1, S4

6 0.3333
LOW C5, M2, M0, S1, R3, S4

ALL
HIGH C5, S4, R3, S1, M0, M2

14 0.7778
LOW M2, C5, M0, S1, R3, S4

show the maximum and minimum ᾱ values.

Figure 6.3 shows the normalised Spearman’s Footrule metric between the HIGH order (percentile

P i
100) and the 10 local percentiles for the WDN and HyFlex domains. Notice that the WDN domain

exhibits the largest change in heuristic order, and although the WDN problems are evaluated for more

iterations than the HyFlex problems, the change in order occurs early on in the optimisation process

starting at percentile P i
70. This large change in heuristic order could explain why offline learning is

effective in the HyFlex domains but not in WDN.

Such large changes in heuristic order and effectiveness are particularly relevant to SSHH as the

efficient optimisation of such problems require online learning strategies, as any offline learned heuristic

subsequences can only be effective at particular points during optimisation. The result of this analysis

is also important for other optimisation techniques. For example, a vanilla genetic algorithm will

typically execute a mutation operation and crossover operation at a given fixed rate for every iteration

of the algorithm. For problems where the effectiveness of the crossover and mutate operation varies

significantly during optimisation, optimisation performance can be improved by varying this rate

accordingly.
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Figure 6.2: The mean log return α of the low level heuristics in the WDN domain, averaged over the

10 local percentiles. Optimality increases from left to right, while negative α values correspond to

reductions in the objective function value.
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Figure 6.3: The normalised Spearman’s Footrule metric between the HIGH order (percentile 10) and

the 10 local percentiles for all domains. The optimisation process proceeds in time from left to right.
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(a) S class WDN
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(d) M class WDN
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Figure 6.4: The mean log return α of the low level heuristics in the WDN domain, averaged over the 10

local percentiles. The optimisation process proceeds in time from left to right, while negative α values

correspond to reductions in the objective function value. The bars show the maximum and minimum

α values.
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6.6 Offline Learning with LOW Subsequences

In order to test the hypothesis that it is the large variance in heuristic performance during optimi-

sation that prevents the Baum-Welch algorithm from finding a suitable set of HMM parameters, the

experiment in Section 6.4 is repeated using subsequences that are effective when the objective func-

tion value is relatively low. Specifically, the 10 subsequences of length two and three with the largest

γ-ratios are selected from the LOW set defined in Section 6.5. The Baum-Welch learning algorithm is

used to train SSHH’s HMM with the effective LOW subsequences, using a leave-one-out cross-validation

methodology.

The SSHH hyper-heuristic is initialised with an identity heuristic emission matrix and equiproba-

ble transition, parameter and acceptance matrices. The optimisation process with online learning is

started, and when half of the specified iterations have been performed, the current HMM is switched

for the offline trained HMM. The optimisation process, again with online learning, is then resumed.

Although the method of switching to the LOW trained HMM is simple, it is trivial to implement, and

requires no information regarding the objective function. The results for the SSHH hyper-heuristic when

it is trained offline using effective subsequences chosen from the LOW set are denoted T-SSHH-L. The

results for the offline trained hyper-heuristic with no switching mechanism, where the offline trained

HMM is used from the outset of the optimisation process, are included for comparison purposes, and

are denoted T-SSHH-L-NS.

The offline trained hyper-heuristic T-SSHH-L and T-SSHH-L-NS are each executed 40 times on each

of the 12 problems in the WDN domain. Table 6.9 contains the mean final objective function value

for each problem in the WDN domain. The T-SSHH-L hyper-heuristic outperforms SSHH on all 12

problems.

The results in table 6.10 show that, overall, the offline trained hyper-heuristic T-SSHH-L outperforms

SSHH. The T-SSHH-L hyper-heuristic also outperforms T-SSHH-L-NS which demonstrates the importance

of applying the effective subsequences at an appropriate point in the optimisation process.

The overall differences in the mean final log returns are tested for statistical significance as before,

and the results are shown in table 6.11. They demonstrate that the differences, while small, are

statistically significant, and so the offline trained hyper-heuristic T-SSHH-L outperforms the SSHH

hyper-heuristic with 99% confidence.

These results show that, despite large variations in heuristic performance over the optimisation

process, it is possible to significantly improve the optimisation performance of the SSHH hyper-heuristic

on unseen WDN problems with offline learning. The result for EXN is particularly encouraging, as

it shows that a training set constructed from a number of smaller problems can lead to improved

optimisation on a larger, more complex, problem.

Table 6.12 contains a comparison of the cheapest monetary cost solutions found by SSHH, T-SSHH-L,

and the MOEAs for each problem. Dominant solutions are shown in boldface. The performance of
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Table 6.9: A problem by problem comparison of the mean final objective function value and standard

deviation for SSHH and T-SSHH-L. Winning scores are shown in boldface.

Prob. SSHH SD T-SSHH-L SD

TRN 357.4068 16.9400 355.4825 14.4080

TLN 87.2512 2.6345 86.7689 2.4960

BAK 179.0267 0.9965 178.8902 0.9436

NYT 8116.0158 536.2183 7985.0690 448.5106

BLA 22.2911 1.2971 22.0291 1.1858

HAN 1286.6305 37.4569 1279.6965 36.1578

GOY 33.3999 0.1606 33.3729 0.0081

FOS 4.2449 0.6641 4.1938 0.6468

PES 401.5132 31.3177 393.3359 27.0505

MOD 555.0569 27.6637 545.1349 24.2674

BIN 494.2631 65.7123 474.7110 34.7078

EXN 4789.5943 402.1191 4667.1560 272.0995

Table 6.10: The mean final log return αf , the mean percentage change, the mean number of iterations

to a minimum, and the mean number of objective function evaluations.

αf % Min. Sel. Obj. Eval.

SSHH -2.9104 -88.7454 32916.5854 32238.0979

T-SSHH-L -2.9248 -88.8740 34693.5292 30437.8688

T-SSHH-L-NS -2.9105 -88.7656 32384.0750 32212.7813

T-SSHH-L is markedly inferior to the MOEAs on the large problems MOD, BIN and EXN. This could be

due to the relatively low number of iterations employed by T-SSHH-L on these problems. Another cause

could be that the 100000 iterations employed by DBGen is insufficient to discover the subsequences of

heuristics necessary to construct effective training sets for the large problems.

It should be noted that although the values of C, H and In vary considerably across the WDN

problems, the objective function constants a, b, and c are identical for each task. The EXN∗ result

demonstrates that optimisation performance can be improved by “tuning” the constants for a particular

problem. However, preliminary experiments suggest that using the same objective function for each

problem facilitates learning and generalisation.
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Table 6.11: The sample median difference d̂, the sample median absolute deviation MAD, the sam-

ple mean difference d̄, the standard deviation SD, the p-value, and the 99% confidence interval for

αf (T-SSHH-L)− αf (SSHH). Statistically significant results are shown in boldface.

d̂ MAD d̄ SD p-value Conf. Int.

-0.0056 0.0015 -0.0144 0.1941 0.0000 [−∞,−0.0036]

Table 6.12: The lowest cost C (M) and resilience In for the solutions of the WDN problems produced

by SSHH, T-SSHH-L, and the MOEAs. The solutions for EXN produced by SSHH and T-SSHH-L are

nonviable with a head deficit H of 2.6940 and 7.4360 respectively.

Prob.
SSHH T-SSHH-L MOEAs

C In C In C In

TRN 1.7501 0.1110 1.7501 0.1110 1.7501 0.1490

TLN 0.4200 0.1579 0.4200 0.1579 0.4190 0.1535

BAK 0.9036 0.4978 0.9036 0.4978 0.9036 0.4978

NYT 38.8142 0.3906 38.8142 0.3906 38.8142 0.3906

BLA 0.1186 0.4804 0.1186 0.4804 0.1183 0.4267

HAN 6.1350 0.1797 6.1177 0.1764 6.1952 0.2041

GOY 0.1781 0.4498 0.1783 0.4607 0.1770 0.3262

FOS 0.0296 0.5249 0.0296 0.5249 0.0296 0.5239

PES 1.8319 0.2210 1.8276 0.2171 1.8134 0.2655

MOD 2.5754 0.2739 2.5980 0.2775 2.5394 0.3619

BIN 2.1366 0.3280 2.1668 0.2967 1.9986 0.3935

EXN 7.6130 0.1912 2.7001 0.1891 16.2722 0.3772

6.7 Visualising Learning

The results of Section 6.6 demonstrate that the offline trained T-SSHH-L hyper-heuristic significantly

outperforms the SSHH hyper-heuristic on the WDN problems. The SSHH hyper-heuristic employs a

HMM to generate sequences of low level heuristic selections, their parameters, and acceptance check

decisions. The HMM encodes a stationary probability distribution defined over these emissions. The

objective of this section is to visualise the changes in the probability distribution encoded in the HMM

that occur during online learning, and for the T-SSHH-L hyper-heuristic, the changes due to switching

to the offline trained HMM.

During the optimisation process, every time SSHH or T-SSHH-L finds a new, best solution, the online

learning mechanism updates the hyper-heuristic’s HMM state transition matrix, and the parameter

and decision check emission matrices, thus altering the encoded probability distribution. The identity

heuristic emission matrix is not updated so that each hidden state always corresponds to a unique low
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level heuristic.

The effects of online learning on the HMM can be visualised using the concept of probabilistic

length and the Kullback-Leibler divergence (see Chapter 2). Specifically, the effects of online learning

on SSHH’s HMM can be illustrated by plotting the log number of iterations performed by SSHH against:

1. the probabilistic length of each state transition vector in the HMM,

2. the Kullback-Leibler distance between the current HMM and the initial equiprobable HMM,

3. the Kullback-Leibler distance between the HMM before and after online learning, and

4. the objective function value.

The probabilistic length of a state transition n-vector measures uncertainty; the shortest length

1/
√
n corresponds to maximum uncertainty, while the longest length of 1 corresponds to minimum

uncertainty (or equivalently maximum certainty). As SSHH employs an identity heuristic emission

matrix, increasing the certainty of the next hidden state to be selected is equivalent to increasing the

certainty of the next heuristic selection.

The Kullback-Leibler divergence can be used to define a “distance” between probability distribu-

tions, and therefore HMMs [65]. Plotting the Kullback-Leibler distance between the current HMM

and the initial, equiprobable HMM shows how much learning has taken place overall, while plotting

the Kullback-Leibler distance between the current HMM before and after online learning shows how

much has been learned during a particular learning episode.

These three plots are compared with a plot of the log number of iterations against the objective

function value of the best solution found so far. This plot shows the overall progress of the optimisation

process. As online learning episodes tend to occur less frequently as the optimisation process proceeds,

a log scale for iterations is used to improve plot clarity.

The figures 6.6, and 6.7 show a typical run of SSHH and T-SSHH-L on the NYT problem. In this

example, the SSHH hyper-heuristic is executed for 20000 iterations, and finds the minimum solution of

C = 44.8854, H = 0.0800, and In = 0.4147

after 3699 iterations, and 68 online learning episodes (see table 6.13). After this point no further online

learning takes place and so the traces for probabilistic length, the KL-distances, and the objective

function value remain flat (see figure 6.6).

The T-SSHH-L hyper-heuristic, which switches to the offline trained HMM after 10000 iterations

(indicated in figures 6.6 and 6.7 by the vertical dashed line) finds the improved solution

C = 41.9999, H = 0.0022, and In = 0.4117

at iteration 13886, after 10 further online learning episodes. The abscissa of figure 6.7 has been

rescaled so that the changes in the probability distribution after switching to the offline trained HMM
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are clearer. It should be noted that in this case, offline learning not only improves optimisation

performance, but also reduces the number of objective function evaluations (see table 6.13).

Table 6.13: The final log return αf , the percentage change, the number of iterations to a minimum,

and the number of objective function evaluations for run 2 of the NYT problem.

αf % Min. Sel. Obj. Eval.

SSHH -0.6051 -75.1720 3699 19467

T-SSHH-L -0.6377 -76.9676 13886 14660

Plot 6.6a demonstrates that although online learning tends to increases the certainty of the next

heuristic selection as one would expect, some hidden states such as S1 and S5 can “forget” and revert to

less certain selection probabilities. The general increase in certainty is reflected in plot 6.6d that shows

that, overall, online learning consistently increases the HMM distance from the initial equiprobable

state. As the distance from the equiprobable state increases, so the propensity of the HMM to produce

certain subsequences of heuristics over others increases. The changes between HMM states evident in

figure 6.6b) indicate that although the largest changes between states occur early on in the optimisation

process, significant changes also occur later on. This supports the conclusion of Section 6.5, that the

effectiveness of heuristics and subsequences of heuristics changes during the optimisation process.

Figure 6.7b shows that the change in probability distribution between HMM states after switching

to the offline trained HMM is an order of magnitude larger than any of the changes observed due

to online learning. Figure 6.7d also demonstrates a significant increase in the KL-distance between

the initial, equiprobable state, and the offline trained HMM. This increase in KL-distance indicates

increased certainty regarding the selection of heuristics, and is reflected in the changes to the proba-

bilistic lengths of the hidden states. Notice that with the exception of hidden state S4 the remaining

states have all become more certain. These plots suggest that switching to the offline trained HMM

moves SSHH to a more “certain” region of the heuristic search space. However, although the region is

more certain, it allows another 10 online learning episodes to occur (see figure 6.7c).

The effect of learning can also be visualised with heat maps of the HMM’s probability matrices.

Figure 6.5 shows heat map plots of the transition and heuristic emission probability matrices for

T-SSHH-L, before and after the switch to the offline trained HMM, and after optimisation has finished.

The changes in probability due to switching the online trained HMM for the offline trained version are

evident in figures 6.5a, and 6.5b and figures 6.5d and 6.5e, while the magnitude of this change can be

seen in figure 6.7b.

The effect of online learning on the offline trained HMM can be seen in figures 6.5b and 6.5c and

figures 6.5e and 6.5f, Despite 10000 iterations, and 10 further online learning episodes, the offline

trained heat maps do not change a great deal. However, although the changes are small, with many

disappearing due to rounding, transition states S1 and S3 (row one and row three), and heuristic
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emission state H3 (row three) are more certain of their next state. In this case, the 10 additional

online learning episodes have reinforced the results of offline learning. This supports the hypothesis

proposed in Chapter 5, that the Baum-Welch algorithm has found a “probabilistic maxima”, from

which the online learning algorithm cannot escape.
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(c) Transitions at end.
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(d) Emissions before switch.
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(e) Emissions after switch.
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(f) Emissions at end.
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Figure 6.5: A heat map of the transition and emission probability matrices for T-SSHH-L for run 2 of

the NYT problem after 10000, 10001, and 20000 iterations.
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(a) Probabilistic length of each state vector.
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(b) KL-distance between HMM states.
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(c) Log objective function value.
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(d) KL-distance from initial HMM state.
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Figure 6.6: The online learning traces generated by SSHH when optimising NYT (run 2) resulting in a

cost of 44.8854 and resilience 0.4147.
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(a) Probabilistic length of each state vector.
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(b) KL-distance between HMM states.
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(c) Log objective function value.
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(d) KL-distance from initial HMM state.
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Figure 6.7: The online learning traces generated by T-SSHH-L when optimising NYT (run 2) resulting

in a cost of 44.8854 and resilience 0.4147.
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6.8 Scalable Learning

In this section, the potential for scalable learning is explored. Scalable learning is where a model

developed for a small, computationally tractable task, is reused as the starting point of a model for

a second, larger task. The concept of scalable learning is appropriated from [17] where the authors

use evolutionary algorithms to generate novel heuristics for small problems which are then shown to

perform well when tested on larger problems.

The idea is to generate training subsequences from a small problem which are then used, offline,

to improve optimisation performance on a larger, more computationally expensive problem. With

this in mind, a training set is constructed from the LOW selections and objective function values of

the TRN problem. Specifically, the 10 subsequences of length two and three, with the largest γ-

ratios are selected from the LOW set for TRN, and this training set is used to offline train SSHH. The

offline trained hyper-heuristic, denoted T-SSHH-L-TRN, uses the same switching mechanism as T-SSHH-L

described in Section 6.6. As all the training subsequences are drawn from one problem and evaluated

on the remaining 11 problems, the leave-one-out cross validation methodology is not required. The

results for the TRN problem are included for completeness.

The offline trained hyper-heuristic T-SSHH-L-TRN is executed 40 times on each of the 12 problems

in the WDN domain. Table 6.14 contains the mean final objective function values for each problem in

the WDN domain. The results demonstrate that T-SSHH-L-TRN outperforms SSHH on every problem

(see table 6.9), and outperforms T-SSHH-L on five out of 11 problems.

The overall optimisation results shown in table 6.15 indicate that T-SSHH-L-TRN outperforms SSHH,

and is slightly less effective than T-SSHH-L.

Table 6.14: A problem by problem comparison of the mean final objective function value and standard

deviation for T-SSHH-L and T-SSHH-L-TRN. Winning scores are shown in boldface.

Prob. T-SSHH-L SD T-SSHH-L-TRN SD

TRN 355.4825 14.4080 355.6056 13.5715

TLN 86.7689 2.4960 87.0160 2.5482

BAK 178.8902 0.9436 178.8715 0.9204

NYT 7985.0690 448.5106 8011.2947 444.8608

BLA 22.0291 1.1858 22.0194 1.0362

HAN 1279.6965 36.1578 1276.8813 27.1250

GOY 33.3729 0.0081 33.3721 0.0079

FOS 4.1938 0.6468 4.2177 0.6845

PES 393.3359 27.0505 396.5199 29.9579

MOD 545.1349 24.2674 549.7243 25.2320

BIN 474.7110 34.7078 487.6116 39.1680

EXN 4667.1560 272.0995 4632.3642 333.9616
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Table 6.15: The mean final log return αf , the mean percentage change, the mean number of iterations

to a minimum, and the mean number of objective function evaluations.

αf % Min. Sel. Obj. Eval.

SSHH -2.9104 -88.7454 32916.5854 32238.0979

T-SSHH-L -2.9248 -88.8740 34693.5292 30437.8688

T-SSHH-L-TRN -2.9233 -88.8643 33901.3896 29479.8042

The overall differences in final log returns are tested for statistical significance. The results, shown

in table 6.16, indicate that the offline trained hyper-heuristic T-SSHH-L-TRN outperforms the SSHH

hyper-heuristic on 11 of the WDN problems with 99% confidence.

Table 6.16: The sample median difference d̂, the sample median absolute deviation MAD, the sam-

ple mean difference d̄, the standard deviation SD, the p-value, and the 99% confidence interval for

αf (T-SSHH-L-TRN)−αf (SSHH) (excluding the TRN problem). Statistically significant results are shown

in boldface.

d̂ MAD d̄ SD p-value Conf. Int.

-0.0039 0.0023 -0.0138 0.1977 0.0000 [−∞,−0.0022]

The result that subsequences drawn from TRN, which is the smallest problem in the WDN domain,

can be used to the improve the optimisation of EXN which is the largest, is notable. However, the

improvement in performance is perhaps less surprising when one notes that the heuristic orderings in

the LOW sets are very similar for TRN and EXN (see table 6.8).

These experimental results demonstrate that it is possible to learn offline from a small, computa-

tionally inexpensive problem, and then use this knowledge to improve optimisation performance on

larger, more computationally expensive WDN problems with the same objective function.

6.9 Conclusions

The sequence based selection hyper-heuristic SSHH is able to produce viable solutions for the 12 WDN

problems that are comparable in monetary cost and resilience to the cheapest solutions presented in

[120] but using significantly less computational resources. In addition, the two-point crossover heuristic

is shown to perform well when compared with the five low level heuristics employed in [69].

The selection hyper-heuristic DBGen is used to generate an offline learning database of low level

heuristic selections and their objective function values across the 12 problems in the WDN domain. By

employing the framework presented in Chapter 3, low-level heuristics and subsequences of heuristics

can be identified in the database as being either effective or disruptive. Effective subsequences tend
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to decrease the objective function value, while disruptive subsequences tend to increase the objective

function value. The most effective heuristic subsequences are used to offline train the HMM of the

SSHH hyper-heuristic using the Baum-Welch learning algorithm following the methodology presented

in Chapter 5. However, in this case, the Baum-Welch algorithm is unable to learn an effective optimi-

sation strategy because the performance of the effective subsequences varies considerably during the

optimisation process, and this variation can be quantified by the Spearman’s footrule metric. In order

to test this hypothesis, subsequences that are effective when the objective function value is relatively

low are selected from the database. These subsequences are used to train another HMM which is

employed by the SSHH hyper-heuristic after the midpoint of the optimisation process. Although the

method of switching between optimisation strategies is simple, it produces a small, but statistically sig-

nificant improvement in performance, with 99% confidence. The final experiment, demonstrates that

scalable learning is possible, that is, it is possible to learn offline from a small WDN problem which

is computationally inexpensive, and transfer this learning to larger, more computationally expensive

problems. Furthermore, this improvement in optimisation performance is also statistically significant,

with 99% confidence.
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Chapter 7

Conclusions

This thesis has presented a novel statistical framework for the offline identification and analysis of

effective subsequences of low level heuristics. Effective subsequences of heuristics can be used to

improve the optimisation of NP-hard problems. Such problems are characterised by the absence of

any known polynomial-time algorithmic solution, and occur in a wide range of real-world applications.

It has been shown that optimisation performance can be improved either directly by using effective

subsequences to construct a sequence-based selection hyper-heuristic, or indirectly as training patterns

for some offline learning algorithm. It has also been demonstrated that effective subsequences of

heuristic classes can, in some cases, also be useful in constructing optimisers for problems from novel

or unseen domains.

A Framework for Offline Learning

In Chapter 3 the unbiased, single selection hyper-heuristic DBGen is repeatedly executed on the HyFlex

set of benchmark problems [84], in order to construct a number of offline learning databases from the

resulting heuristic selections, and objective function values. The HyFlex benchmark set is a well known

set of discrete optimisation problems that has been used in a number of studies. It is an implementation

of six computationally hard problem domains: 1D bin packing (BP), permutation flow shop (PFS),

Max Boolean Satisfiability (SAT), Vehicle Routing (VRP), Travelling Salesman (TSP), and Personnel

Scheduling (PS). The use of a preexisting benchmark set significantly reduces the time required to

develop and implement computational experiments, and facilitates the comparison of results between

this and other studies.

The statistical framework is based on the concept of logarithmic returns [61]. Logarithmic returns

are used widely in finance where they are employed to compare two or more variables when the

originating price series consist of highly unequal values. In this thesis, logarithmic returns are used to

normalise subsequences of objective function values, and their application in this context is novel.
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The framework is used to analyse and categorise heuristic selections such as

1. individual heuristics,

2. subsets of heuristics, and

3. subsequences of heuristics,

based on their associated objective function values. Statistics are calculated over sets of occurrences of

heuristic selections, and these statistics are used to quantify heuristic behaviours such as optimisation

performance, and the changes in optimisation performance that occur during the optimisation process.

In general, heuristic selections can be categorised as either effective selections that tend to decrease

the objective function value, or disruptive selections that tend to increase the objective function value.

By quantifying heuristic behaviour it becomes possible to employ visualisation techniques as an aid to

the analysis of heuristic effectiveness.

In keeping with the literature, a non-parametric statistical test is used to validate experimental

results [48] [49] [32] [116]. Specifically, the non-parametricWilcoxon signed-rank test is used to establish

stochastic orderings on a number of hyper-heuristics that are parameterised with sets of heuristic

selections. The objective is demonstrate that certain hyper-heuristic parameterisations perform better

than others, and that this improvement in performance is statistically significant, with 99% confidence.

It should be emphasised that the proposed framework for offline learning does not depend on

the problem domain, the number or type of heuristics, or the process used to generate the heuristic

selections.

An Analysis of Heuristic Subsequences

In Chapter 4, the framework is used to identify and quantify, well known heuristic behaviours, such

as the expected exploration-exploitation behaviour that occurs in some heuristic subsequences, the

effect of the choice and order of heuristics on optimisation performance, and the changes in heuristic

performance that occur during the optimisation process. This analysis is novel, and demonstrates that

differences between problem domains and the interface between domain and heuristic (class) can be

quantified by using statistics which is an important consideration for a general purpose offline learning

framework.

The γ-ratio, introduced in Chapter 3, Section 3.3.4 is defined as the ratio of the sum of the negative

and positive changes of the objective function value over a set of occurrences. It is employed to select

subsequences from an offline learning database, and its definition and use in this context are novel. Sev-

eral sets of heuristic subsequences are selected using the γ-ratio, and these subsequences are evaluated

with the unbiased, sequence based selection hyper-heuristic EvalHH using a leave-one-out cross vali-

dation methodology. The EvalHH hyper-heuristic is used to demonstrate empirically that well chosen

subsequences of heuristics can produce better optimisation results than individual heuristic selections
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when tested on unseen problems from the BP, PFS, SAT, and PS domains, with 99% confidence.

This result is important because it underpins the thesis that subsequences of heuristics are important

structural components of the optimisation process. The EvalHH hyper-heuristic, when parameterised

with well chosen subsequences of heuristics can also outperform the SSHH hyper-heuristic. The SSHH

hyper-heuristic is a published sequenced based hyper-heuristic that employs online learning of heuristic

subsequences, and is known to perform well on the HyFlex problems [67]. These results demonstrate

that subsequences can be chosen that generalise across the benchmark training problems leading to

improvements in optimisation performance on unseen test problems. Furthermore, it demonstrates the

utility of offline learning in general, and the proposed statistical framework in particular.

Having demonstrated that it is possible to extract useful information from the heuristic selections

used to optimise the problems of a domain, the question arises as to whether it is possible to extract

information from heuristic selections taken across a number of domains. Such cross-domain selections

must necessarily consist of heuristic classes, and could be used to construct optimisers for novel, unseen

domains. The γ-ratio can also be used to select effective cross-domain subsequences of heuristic classes.

These sets of cross-domain subsequences, when evaluated using EvalHH, can generalise across three out

of the four HyFlex domains tested. The performance of cross-domain subsequences can be significantly

improved by remapping or reordering the classes according to their mean log return α. By mapping

subsequences of heuristic selections to and from subsequences of abstract heuristic classes it is possible

to construct cross-domain subsequences that are almost as effective on an unseen target domain, as

subsequences selected using information that is specific to that domain1. These results indicates that

cross-domain generalisation is possible for some, but not all, problem domains, and that heuristic order

or context is crucial to optimisation performance.

The preceding results concern short subsequences of length two and three, which are evaluated

using the EvalHH hyper-heuristic over a run of 150 iterations. The importance of subsequence length is

examined by using the γ-ratio to select subsequences of heuristic classes of unrestricted lengths. The

resulting long subsequence set outperforms a similarly constructed subsequence set of length two and

three, albeit slightly, with 99% confidence. For many problems, especially those with computationally

efficient heuristics, 150 iterations is a relatively small number over which to evaluate a hyper-heuristic’s

performance. The issue of evaluation run length is addressed by evaluating some subsequence sets for

10 minutes of wall clock time which is a more realistic execution time. The results show that the

improvements in optimisation performance observed in the previous experiments are still present after

significantly larger numbers of heuristic selections. These results demonstrates that the framework can

also be applied to longer subsequences and longer evaluation runs.

1It should be noted that some domain knowledge is required to define the heuristic reordering
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Hybrid Learning

In Chapter 5 a methodology for combining the online learning capabilities of the SSHH hyper-heuristic,

with offline learning of effective subsequences using the Baum-Welch algorithm is presented. The use

of the Baum-Welch algorithm to offline train the SSHH hyper-heuristic is novel.

The methodology, using subsequences chosen with the γ-ratio and leave-one-out cross-validation,

is able to significantly improve the optimisation performance of the SSHH hyper-heuristic on five of the

six HyFlex problem domains tested, with 99% confidence. The same methodology can also produce a

hyper-heuristic that when trained with subsequences taken from a Pareto front, has similar optimisa-

tion performance to the untrained SSHH hyper-heuristic, but with more than a 60% improvement in

run-time. The ability to offline train SSHH so that it is significantly more time efficient, at little or no

cost to optimisation performance is important when optimising large, computationally expensive or

time-critical problems. Moreover, in this case, the time savings are large enough to be commercially

useful.

The previous experiments rely on large amounts of offline data. The γ-ratio can also be used

to significantly improve performance in situations where there is only relatively small amounts of

offline data available. This becomes important when dealing with novel or computationally expensive

problems where large amounts of offline data may not be available.

An insight into what the Baum-Welch algorithm has learned can be gained by examining SSHH’s

state transition and heuristic emission probability matrices. An analysis of heat maps constructed

from these matrices before and after optimisation shows that they have not been significantly altered

by the online learning algorithm. This is because the Baum-Welch algorithm appears to have found

a probabilistic maxima from which the online learning algorithm is unable to escape. These maxima

can also be observed in the probability matrices learned in the other HyFlex domains.

These results show that it is possible to learn and generalise from sets of effective subsequences in

order to improve the optimisation performance or time-efficiency of the SSHH hyper-heuristic. This

demonstrates the utility of combining offline and online subsequence learning.

One application of such hybrid learning could be in real-world scenarios where multiple problem

instances exist within a problem domain. In these cases SSHH could be trained offline on computa-

tionally simple instances of a problem to determine the initial biases towards certain subsequences of

heuristics. Once trained, the SSHH hyper-heuristic could then be used on computationally expensive,

real-world instances, benefiting from the domain-specific training, but using online learning to adapt

to the specifics of such instances.

A Case Study: Water Distribution Networks

In Chapter 6 the offline learning framework is applied a novel problem domain; the optimisation of

water distribution networks (WDN) [128].
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The sequence based selection hyper-heuristic SSHH is used to produce viable solutions for 12 WDN

problems that are comparable in monetary cost and resilience to the cheapest solutions produced by

five multi-objective evolutionary algorithms (MOEA) [120] but using significantly less computational

resources. In addition, a two-point crossover heuristic is shown to perform well when compared with

the five low level heuristics employed in a previous study [69].

By employing the framework presented in Chapter 3, effective subsequences of heuristics are iden-

tified in an offline learning database. A set of effective heuristic subsequences, selected using the

γ-ratio, is used to offline train the hidden Markov model (HMM) of the SSHH hyper-heuristic using

the Baum-Welch learning algorithm. However, in this case, the Baum-Welch algorithm is unable to

learn an effective optimisation strategy because the performance of the effective subsequences varies

considerably during the optimisation process. In order to test this hypothesis, subsequences that are

effective when the objective function value is relatively low are selected from the database. These

subsequences are used to train another HMM which is employed by the SSHH hyper-heuristic after

the midpoint of the optimisation process. Although the method of switching between optimisation

strategies is simple, it produces a small, but statistically significant improvement in performance, with

99% confidence.

The last experiment in this case study, demonstrates that it is possible to learn offline from a small

WDN problem which is computationally inexpensive, and transfer this learning to larger, more com-

putationally expensive problems in order to improve optimisation performance with 99% confidence.

The Kullback-Leibler divergence presented in Chapter 2 is used to define a “distance” between

probability distributions, and therefore HMMs [65]. Plotting the KL-distance between SSHH’s current

HMM and its initial, equiprobable HMM shows how much learning has taken place overall, while

plotting the KL-distance between the current HMM before and after online learning shows how much

has been learned during a particular learning episode. The concept of probability vector can also be

used to visualise the effects of offline and online learning. This method of analysing the effects of

hybrid learning is novel.

These results underpin research in hyper-heuristics that have proposed large numbers of algorithms

(many of which have been successful) without investigating the fundamental nature of the low level

heuristics and in particular subsequence selection. Although the offline learning gains are modest, it

should be possible to improve on these results.

Summary

This thesis has demonstrated the importance of heuristic context, and the generation of specific heuris-

tic orderings to achieve significant improvements in hyper-heuristic performance. It has explored the

capabilities of offline learning of heuristic subsequences and the possible synergies with online learning

across a variety of problem domains for the first time. Furthermore, experimentation has shown that

generalisation is possible in many cases, leading to the potential for algorithms trained on small prob-
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lem instances which can then be applied to larger real-world instances, thus raising the prospect of

a “library” of potential optimisers to be deployed on computationally expensive real-world problems.

This work, and its application to a real-world problem taken from the water industry demonstrates

that these methods can achieve comparable performance to state-of-the-art optimisation approaches.

However, the main discoveries in this thesis demonstrate the limits of heuristic subsequences and what

can be learned offline, hopefully providing some guiding principles to subsequent researchers in this

field.

Limitations

This thesis, in common with all studies, is subject to a number of limitations.

The main constraint on this study has been the modest computer resources available. As all the

experiments have been conducted on a modern desk top computer, the initial choice of 40 runs of

150 iterations for each problem in each HyFlex domain was dictated by statistical best practice and

computational feasibility. The longer runs of 10-minutes of wall-clock time, while useful, could not be

tested for statistical significance because of the small number of 10 runs per problem.

The replicability of computational experiments has long been a concern in the machine learning

literature [88]. The PS domain of the HyFlex problems is not replicable, in the sense that although

initialising a PS problem with the same random seed produces the same initial problem, identical

optimisation runs, that is, application of the same low level heuristics and heuristic parameters, does

not produce identical results. As the implementation details of all the HyFlex domains are hidden it

was not possible to rectify this issue.

Some of the low level heuristics employed in this study are parameterised, and these heuristic

parameters are not directly employed in the offline learning framework. The framework uses sets

of heuristic occurrences to calculate performance estimates. When heuristic parameters are consid-

ered, these sets become very small, and the performance estimates become unreliable. Grouping all

parametrised occurrences together results in estimates that are averaged over all choices of a param-

eter, and this requires a learning algorithm to generalise over the parameters. The role of heuristic

parameters could be investigated by constructing a larger offline learning databases.

The analysis of SSHH parameterisations when online learning is enabled or disabled in Chapter 5,

shows that the performance of the SSHH hyper-heuristic is significantly affected by the initial config-

uration of the probability matrices. Although offline learning generally improves optimisation per-

formance, the offline learning algorithm produces parameterisations that appear to be local maxima

from which the online learning algorithm is unable to escape. Further research into balancing the

contribution of offline and online learning so that neither algorithm overwhelms the other is needed.

In Chapter 6, the SSHH hyper-heuristic and the MOEAs are only compared at a single point; the

cheapest viable solution. This weakness could be addressed by employing the multi-objective version

of SSHH described in [117]. This would allow SSHH to generate a Pareto front of solutions during
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optimisation, enabling a direct comparison with the Pareto fronts presented in [120], and facilitating

an analysis of the trade-offs between the conflicting design objectives of cost and resilience.

Future Work

This thesis could be extended in a number of ways. For example, the framework could be applied to

the three extra HyFlex domains presented in [1]. The additional domains are implementations of the

Knapsack, Quadratic Assignment, and Max-Cut problems. In order to define a minimisation problem

the Knapsack problem employs a negative objective function, with a maximum value of zero, and some

finite, but unspecified, negative minimum value. The use of a negative objective function (with zero)

requires changes to the framework as it is not possible to calculate logarithmic returns in this case.

Switching the sign of the objective function creates a maximisation problem which presents problems

when calculating cross-domain statistics with other minimisation problems.

The Knapsack, Quadratic Assignment, and Max-Cut problems are discrete problem domains. The

framework could also be tested on continuous problem domains.

All of the experiments in this thesis employ sets of 10 heuristic subsequences. The number of 10

subsequences was chosen to ensure that a subsequence set contained sufficient heuristic “diversity”,

that is the subsequences consist of more that just one or two low level heuristics, and to simplify the

comparison of different subsequence sets. The Pareto fronts of the subsequence sets shown in figure

5.2, in Chapter 5 demonstrate the trade off between heuristic optimisation performance and execution

time. This information could be used to refine the choice, and number of the subsequences in a set.

The γ-ratio which is used to select heuristic subsequences is defined as the ratio of the sum of the

negative and positive changes of the objective function value over a set of occurrences. This definition

could be improved. For example, the γ-ratio makes no use of the variance (or standard deviation) of

the changes in the objective function value. Preliminary experiments suggest that employing variance

could improve the effectiveness of heuristic selections.

In Chapter 6, one obvious task for future research would be to improve the mechanism employed to

switch between the optimisation strategies encoded in the initial and (possibly various) offline trained

HMMs. Although switching at the midpoint of optimisation is trivial to implement, a lot of information

regarding the performance of heuristic subsequences over the whole optimisation problem is discarded.

It is also clear from the EXN∗ result in Section 6.3 that the optimisation of water distribution

networks can be improved by “tuning” the objective function parameters for each problem. However

preliminary experiments suggest that using the same objective function parameters facilitates gener-

alisation, and the transfer of learning from small problems to larger ones. A fuller investigation into

learning when objective function parameters vary for each problem is left to future research.

The framework has also been applied to the study of sequences of heuristic selections, that is,

individual runs of heuristics generated, in this case, by the DBGen hyper-heuristic [123] [124]. This work

could be extended. For example, the analysis of the differences and similarities of sequences within,
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and across domains begun in [123] could be applied to other types of selection hyper-heuristic, and

the notion of similarity employed could also be refined. Unpublished experimental work demonstrates

that the remapping process described in Chapter 4 can also be successfully applied to the heuristic

sequences used to train the Elman network in [124]. Further research into the identification of effective

training sequences within and across domains could complement the study of heuristic subsequences.

Finally, this thesis is solely concerned with single objective optimisation problems. The framework

could be extended to deal with multiple objective problems, and tested using the multi-objective

version of SSHH presented in [117].
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Appendix A

Clustering of Hyper-heuristic

Selections

A.1 Introduction

Selection hyper-heuristics are methods that are typically used to solve computationally hard optimi-

sation problems (see [15]). A selection hyper-heuristic selects heuristics from a given set of low level

heuristics, deciding which heuristic to apply at a given point during the optimisation process. The

sequences of low level heuristic selections and objective function values that result from the applica-

tion of a simple selection hyper-heuristic to the HyFlex problem set (see [84]) are used to construct

an offline learning database. The intention is to select effective subsequences of heuristics from this

database and use them as inputs to machine learning algorithms in order to improve optimisation.

The purpose of this study is to algorithmically identify and analyse the similarities and dissimilar-

ities that occur between the sequences of the database. By employing a suitable measure of similarity,

the sequences of the offline database can be grouped or clustered according to the view of the sim-

ilarity algorithm. It can be shown that by using a well-known algorithm from bioinformatics more

commonly used to explore the conserved regions of DNA sequences, the Smith-Waterman algorithm

(see [106]), it is possible to characterise problems using only the sequence of heuristic choices made

by the hyper-heuristic. The Smith-Waterman algorithm is able to provide a measure of the level

of similarity between two strings operating over any alphabet, and is used here to define a distance

function between sequences of heuristics which is then used to perform a cluster analysis. The results

presented here show that the Smith-Waterman algorithm is able separate the offline database into

distinct problem domains.

The automatic separation and identification of problem domains from sequences of heuristics is
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important because it demonstrates that there are subsequences of heuristics that are common to each

problem domain, and that these subsequences vary between domains. This strengthens the thesis

that subsequences of heuristics play an important role in the optimisation process. In addition, the

identification of a (similar) problem domain can improve the choice of learning algorithm, learning

algorithm parameterisation, and training data. For example, in [113] a k-nearest neighbour classifier

is used to identify problems in an offline database that are similar to a target problem based on a set

of measurable problem characteristics. This metaknowledge is then used to retrieve further problem

specific information which is used to optimise the performance of a planning algorithm. The method

described here differs from conventional metalearning approaches to algorithm selection in that, as

only sequences of low level heuristic classes are employed, no problem specific information is required,

preserving the domain barrier.

A.2 HyFlex and the Offline Learning Database

The Hyper-heuristics Flexible framework (or HyFlex, see [84]) is an implementation of 4 computation-

ally hard benchmark problem domains:

1. 1D bin packing (BP),

2. permutation flow shop (PFS),

3. boolean satisfiability (SAT), and

4. personnel scheduling (PS).

Each problem domain contains 10 distinct problems of varying complexity. HyFlex hides all problem

specific information such as the solution representations, the solution constructions, and the low level

heuristic implementations. Each HyFlex domain has four general classes of low level heuristic:

1. mutation (M) which perturbs a solution randomly,

2. crossover (C) which constructs a new solution from two or more existing solutions,

3. ruin and recreate (R) which destroys a given solution partially and then rebuilds the deleted

parts, and

4. local search (L) that incorporates an iterative improvement process and returns a non-worsening

solution.

The actual number and implementation of the low level heuristics differs between problem domains.

A simple hyper-heuristic is executed for 150 selections, 40 times on each of the 10 HyFlex problems

in each domain. The resulting 1600 sequences of heuristic selections and objective function values are
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used to construct the offline database. The number of 40 trials was chosen because for a sufficiently

large number (say n > 30) the central limit theorem ensures that the arithmetic mean of any results

will be approximately normally distributed, regardless of the underlying distribution. This allows

robust statistics to be calculated for each problem. The number of 150 selections was chosen after

experimental observations indicated that no major improvements in objective function occurred beyond

this point.

A.3 The Smith-Waterman Algorithm

The goal is to compare sequences of heuristic classes to obtain an understanding of the problem space

from an algorithmic perspective. However, the comparison of sequences is not straightforward. For

example, using the Hamming distance, two otherwise identical binary strings will appear dissimilar,

that is score a high Hamming distance, if one string is shifted by one character in either direction. The

Smith-Waterman algorithm (see [106]) is intended to overcome this because it attempts to identify

similar regions of any given pair of strings. In bioinformatics, the Smith-Waterman algorithm is

used to analyse the arrangement of DNA/RNA or protein sequences. The algorithm performs a local

sequence alignment by use of dynamic programming; instead of looking at the whole sequence, the

Smith-Waterman algorithm compares subsequences of all possible lengths and optimises a similarity

measure. A large similarity score produced by the algorithm implies that the strings are very similar.

A similarity score of 0 implies that the two strings have no symbols in common. The similarity measure

is defined by a similarity matrix and a set of gap penalties. The similarity matrix defines the positive

score for matching two symbols or the cost of mismatching two symbols. The gap penalties specify

the score or cost of opening up a gap in a string and extending that gap in order to improve the fit

with another string. Although the similarity matrix and gap penalties can be adjusted to alter the

behaviour of the algorithm, in general it is not known which values are best suited for optimisation

problems. In this study the similarity matrix is

L C R M

L 3 −2 −2 −2

C −2 3 −2 −2

R −2 −2 3 −2

M −2 −2 −2 3

while the gap open and gap extend penalties are −3 and −1 respectively.

In this paper two distance functions, defined on sequences of heuristic selections, are considered: a

distance function based on the Smith-Waterman algorithm and for comparison purposes, the Hamming

distance.

The Smith-Waterman algorithm can be used to construct a simple notion of distance d between
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sequences. In symbols

d(s1, s2) = maxSW − sw(s1, s2)

where maxSW is the maximum value that can be attained by the Smith-Waterman function sw on the

subsequences under consideration. A low d value indicate that two sequences are similar or close. In

this study the maximum Smith-Waterman score over the 1600 sequences of the database is 357. This

function should only be loosely interpreted as a distance function as it is not a metric in the formal

sense.

A.4 Cluster Analysis

A k-medoid clustering algorithm employing the Smith-Waterman and Hamming distances is used to

separate the entire offline learning database of 1600 sequences into 4 clusters corresponding to the

4 HyFlex domains. For clustering purposes, only the sequence selections up to and including the

minimum objective function value are used, as these are the selections that are used as learning

algorithm inputs. The accuracy of the resulting clusters are evaluated using the four commonly used

measures: purity, normalised mutual information (NMI), Rand index, and the F5 (see [78]). For each

measure, the worst clusterings have values close to 0 while a perfect clustering has a value of 1. The

results shown in table A.1 demonstrate that the Smith-Waterman distance is superior in each measure.

Table A.1: A comparison of clustering accuracy.

Distance Purity NMI Rand F5

S-W 0.8269 0.5954 0.7951 0.8001

Hamming 0.5350 0.2955 0.6185 0.7320

A.5 Conclusions

This experiment demonstrates that the sequences of heuristic selections produced by a simple hyper-

heuristic on the HyFlex problems contain subsequences that are common to each problem domain and

that differ significantly between problem domains. These similarities and differences can be identified

automatically using the Smith-Waterman algorithm. Specifically, the clusters produced by a k-medoid

cluster algorithm using Smith-Waterman are more accurate than those produced using the Hamming

distance across 4 standard accuracy measures. The existence of discernible subsequences of heuristics in

the database lends weight to the argument that the ordering of a subsequence is crucial to search efficacy
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and this ordering varies with problem domain. The ability to identify (similar) problem domains from

a sample of heuristic selections can also be used to guide the choice of learning algorithm and learning

algorithm parameters for unseen problems or those with novel heuristic sets without requiring problem

specific information. These results demonstrate the suitability of the Smith-Waterman algorithm as a

measure of sequence similarity for offline learning applications.
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Offline Learning with Elman

Networks

B.1 Introduction

Hyper-heuristics are heuristic methods that are employed to solve computationally hard problems for

which no known effective algorithmic solution exists. Typically such problems are presented as opti-

misation problems where the goal is to minimise an objective function defined on a space of solutions.

Such methods have proved effective on a number of real world problems (see [15]).

A selection hyper-heuristic selects heuristics from a given set of low level heuristics and applies them

sequentially to optimise a particular problem. Many hyper-heuristics employ learning algorithms in

order to improve optimisation performance, and this learning may be classified as either online or

offline. Online learning is based on the low level heuristic selections and resulting objective function

values computed during the execution of a hyper-heuristic. In contrast, offline learning is performed on

a database of low level heuristic selections and objective function values computed by a hyper-heuristic

on a fixed number of benchmark problems. This paper is concerned with offline learning for selection

hyper-heuristics.

A variety of machine learning algorithms have been proposed for offline learning (see for example

[99], [20], and [111]). In [99] classifier systems are applied to the 1D bin packing problem. Here the

system learns a set of rules which associate characteristics of the current problem state with specific

heuristics. Heuristics are selected and applied sequentially, thus gradually altering the characteristics

of the problem. The system when trained on several problems, generalises by also performing well on

unseen problems. In [20] case based reasoning (CBR) is applied successfully to exam timetabling prob-

lems. The assumption underlying CBR is that “similar problems will have similar solutions”. Previous
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problems and their “good” solutions (called source cases) are collected and stored. A similarity based

retrieval process compares the source cases with the problem at hand, and selects heuristics that were

employed successfully in similar situations. Here the authors employ a two-stage learning process, one

for the case representation (or feature selection) and another for source case selection. In [111], messy

genetic algorithms are used to evolve combinations of condition-action rules which represent problem

states and associated heuristics. Each chromosomes represents a hyper-heuristic and contains the set

of rules that determine which heuristic should be applied to which problem state. When tested, these

hyper-heuristics generalised well and solved many of the test problems efficiently.

In each case, learning is used to improve optimisation performance by improving the selection of

individual heuristics at particular points in the search process across a number of training problems. In

contrast, recent research (see [67] and [123]) has argued that heuristic selections should be understood

as part of a sequence of selections. The concept of heuristic sequences is intuitive, certain heuristic

orderings make sense (e.g. an explorative mutation followed by an exploitative local search) whereas

others (e.g. the reverse of the previous example) do not.

The objective of this study is to test the thesis that subsequences of heuristics can be found in

the offline learning database that are effective across a number of problems and (it is hoped) problem

domains. A selection hyper-heuristic is executed on the well known HyFlex set of benchmark problems

(see [84]) and the resulting sequences of low level heuristic selections and objective function values are

used to construct an offline learning database. An Elman network (see [40]) is used to extract effective

subsequences of heuristics automatically by learning from suitable sets of sequences chosen from the

offline database. Elman networks are recurrent neural networks which naturally learn from, process

and produce sequences of data. After training, the Elman network is used to compute new sequences

of heuristics which are then evaluated on unseen HyFlex example problems. The aim is to determine

if the network has generalised from the training sequences. In this context, generalisation means that

the network is able to produce a sequence of heuristic selections which, when evaluated on the unseen

examples, outperform the training sequences.

The benchmark problems are drawn from 4 distinct problem domains. Offline learning can be

classified as either intra-domain or inter-domain. In intra-domain learning, the training sequences and

the test optimisation problem are drawn from the same problem domain. In inter-domain learning,

the training sequences and test problem can be drawn from different domains.

The results presented here demonstrate that an Elman network is capable of intra-domain learning

and generalisation with 99% confidence when trained on suitable sequences of heuristic selections.

When trained using an inter-domain training set, the Elman network did not exhibit generalisation

indicating that inter-domain generalisation is harder, and the methodology used to choose the training

sets is unsuitable in this case.

This paper is structured as follows. Section B.2 details the methodology and describes the con-

struction of the offline learning database, the structure of the Elman networks and their training sets,
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and the hyper-heuristic used to evaluate the sequences produced by the trained Elman networks. Sec-

tion B.3 contains the results of two experiments designed to test the suitability of Elman networks for

offline intra-domain and inter-domain learning. Finally, Section B.4 presents the conclusions of this

study.

B.2 Methodology

Section B.2.1 contains a description of the HyFlex benchmark problems and the DBGen hyper-heuristic

used to generate the offline learning database. In Section B.2.2 the mathematical concept of a loga-

rithmic return is introduced and used to quantify hyper-heuristic performance, and to select training

sequences from the database. Section B.2.3 details the architecture of the Elman network used in

this study, while Section B.2.4 describes the construction of the intra-domain and inter-domain train-

ing sets. Finally, in Section B.2.5, the BLIND hyper-heuristic that is used to evaluate the sequences

produced by the trained Elman networks is presented.

B.2.1 HyFlex and the Offline Learning Database

The Hyper-heuristics Flexible framework (or HyFlex1, see [84]) is a set of benchmark problems that

has been used in a number of studies. See for example [118], [37], [82], [38], [67], and [31]. HyFlex

contains an implementation of four computationally hard problem domains:

1. 1D bin packing (BP),

2. permutation flow shop (PFS),

3. boolean satisfiability (SAT), and

4. personnel scheduling (PS).

Each problem domain contains 10 distinct problems of varying complexity. HyFlex hides all problem

specific information such as the solution representations, the solution constructions, and the low level

heuristic implementations. Each HyFlex problem has four general heuristic classes:

1. parameterised mutation (M) which perturbs a solution randomly,

2. crossover (C) which constructs a new solution from two or more existing solutions,

3. parameterised ruin and recreate (R) which destroys a given solution partially and then rebuilds

the deleted parts, and

1HyFlex, Cross-domain Heuristic Search Challenge (CHeSC 2011) is used in this study (see

http://www.asap.cs.nott.ac.uk/chesc2011/).
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4. parameterised hill climbing or local search (L) that incorporates an iterative improvement process

and returns a non-worsening solution.

The actual number and implementation of the low level heuristics in each class differs between problem

domains. As a result, it is not possible to directly compare sequences of low level heuristics from

different domains. Instead, sequences of heuristic classes are compared.

Algorithm 11 The DBGen hyper-heuristic in pseudocode.

1. ITERATIONS ← 150;

2. new-sol ← initialiseSolution();

3. new-obj ← f(new-sol);

4. cross-sol ← initialiseSolution();

5. cross-obj ← f(new-sol);

6. while (ITERATIONS−− > 0) do

7. cur-sol ← new-sol;

8. cur-obj ← new-obj;

9. Heuristic h ← selectHeuristic();

10. new-sol ← apply( h, new-sol, cross-sol );

11. new-obj ← f(new-sol);

12. double r ← ran();

13. if (new-obj < cross-obj or r < 0.5) then

14. cross-sol ← new-sol;

15. cross-obj ← new-obj;

16. end

17. if (new-obj ≥ cur-obj and r ≥ 0.5) then

18. new-sol ← cur-sol;

19. new-obj ← cur-obj;

20. end

21. end

The random, unbiased, single selection hyper-heuristic DBGen used to generate the offline learning

database is shown in listing 11. The function select() (line 9) selects a single low level heuristic class at

random from the set {C, L, R, M}. The function apply() (line 10) takes the heuristic class and chooses,

again at random, an actual low level heuristic and its parameters from the available heuristics of that

class. The actual heuristic is then applied to the current solution cur-sol, and if the class is C, to

the current crossover solution cross-sol. An objective function evaluation (line 11) and an acceptance

check (lines 12–20) are then performed. The function ran() (line 12) returns a uniformly distributed

pseudorandom number in the interval (0, 1). If a new solution’s objective value is less than the current

solution’s objective value cur-obj or ran() < 0.5 then it is accepted. Otherwise the new solution is

rejected. The random term allows new solutions to be accepted regardless of their objective function

approximately 50% of the time. Accepting states that may lead to a large increase in objective function

value forces the DBGen hyper-heuristic to explore the space of low level heuristic selections instead of

optimising the problem efficiently.

The DBGen hyper-heuristic is executed 40 times, for 150 selections, on the 10 problems in each of

the 4 HyFlex domains. The resulting 1600 sequences of low level heuristic selections and associated
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objective function values are used to construct an offline learning database. The number of 40 trials was

chosen because for a sufficiently large number (say n > 30) the central limit theorem ensures that the

arithmetic mean of any observed values will be approximately normally distributed, regardless of the

underlying distribution. This allows robust statistics to be calculated for each problem. The number

of 150 selections was chosen after experimental observations indicated that no major improvements in

objective function occurred beyond this point.

B.2.2 Final Log Returns and the BEST Sequences

In this study, logarithmic returns are used to measure the performance of a hyper-heuristic. The final

log return αf of a hyper-heuristic run or sequence s is the log return between the initial solution of

a run x0, which has an objective function value o0, and the best final solution xmin found during the

run, which has an objective function value of omin. In symbols

αf (s) = log10

(
omin

o0

)
.

Logarithmic returns allows us to easily compare the objective function values produced by a hyper-

heuristic executing on a number of distinct problems or problem domains.

The mean final log return of a set of N sequences is

αf ({s1, . . . , sN}) = 1

N

N∑

i=1

αf (si).

The function αf is the mean of log values. The anti-log of the mean of the logs is equivalent to the

geometric mean. In symbols

log−1
(

1

N

N∑

i=1

log(xi)

)
= N

√
x1 · x2 · · ·xN

assuming the values xi all have the same sign. The geometric mean is always less than or equal to the

arithmetic mean, and is employed to average values which have very different ranges. The geometric

mean normalises the ranges, so that no range dominates the average. Although the use of log returns

normalises the ranges of different objective functions, the log return values can still differ significantly,

as some problems are harder to optimise than others. For this reason, in this study, the arithmetic

mean of the final log returns αf is used in preference to the arithmetic mean of the decimal returns.

The final unit log return βf is the final log return αf divided by the sequence’s length up to (and

including) the minimum objective function value. That is

βf (s) =
αf (s)

min
.

The length of a sequence is important because for many real world optimisation applications the

execution times of the low level heuristics and objective function evaluations can be non-trivial.
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The HyFlex benchmark problems set consists of 4 problem domains, each one containing 10 prob-

lems. The set of the 40 “best” sequences in the offline database, denoted BEST, consists of the sequences

with the lowest final unit log return βf for each problem. These sequences are the shortest sequences

that produce the largest decrease in the objective function value for each problem. As the offline

database was generated by executing the DBGen hyper-heuristic 40 times on each of the 40 HyFlex

problems, the “best” sequence for each problem is selected from a pool of 40 sequences.

B.2.3 Elman Networks

Elman networks are examples of simple recursive neural networks. They are typically applied to

problems which express themselves naturally as temporal sequences such as natural language processing

applications (see [40] and [41]). Such networks learn from, process, and produce sequences of data.

The training sequences are sequences of low level heuristics selections chosen from the offline learn-

ing database. Each such sequence is encoded using a field representation so that it can be processed

by the Elman network. Specifically, each low level heuristic selection {M, C, R, L} is encoded as a vector

in {0, 1}4 where

M = (1, 0, 0, 0)

C = (0, 1, 0, 0)

R = (0, 0, 1, 0)

L = (0, 0, 0, 1),

and X = (0, 0, 0, 0) denotes a missing or unknown selection. These vectors are then concatenated to

form an input pattern. For example, given the sequence MCRLR, an input pattern of 4 low level heuristic

selections, corresponding to the current selection L and the three past selections MCR is

(

M︷ ︸︸ ︷
1, 0, 0, 0,

C︷ ︸︸ ︷
0, 1, 0, 0,

R︷ ︸︸ ︷
0, 0, 1, 0,

L︷ ︸︸ ︷
0, 0, 0, 1)

while the output pattern corresponding to the next selection in the sequence is

(

R︷ ︸︸ ︷
0, 0, 1, 0).

The number of selections to be used as an input is termed the memory length of a selection strategy

(see [6]). Using the current heuristic selection and those prior to it as inputs provides context for the

next selection.

Initial experiments with memory length show that Elman network learning improves significantly

as the number of past selections increases. Figure B.1 shows the results of training an Elman network

with a memory length of 1, 2, 3, 4 and 5, on the INTRA training sequences for each domain (see Section
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B.2.4). It should be noted that increasing the number of past selections also increases the number of

weights which also improves learning.

In this study, a memory length of 4 is used because, with this number, the Elman network learns

80% (or more) of each training set. Thus, the 3-layer Elman network used in this experiment has 16

input units, 16 hidden units (and therefore 16 context units), 4 output units, and 596 weights. The

hidden and output units employ the sigmoid activation function. The number of 16 hidden units was

chosen arbitrarily.
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Figure B.1: The percentage of LLH training errors for an Elman network with 4, 8, 12, 16 and 20

inputs, 16 hidden units, and 4 output units, for each domain.

After training, given some initial input, an Elman network produces a sequence of outputs. The

output sequence may converge to a single point, a limit cycle of repeating values, or produce a chaotic

non-repeating sequence.

B.2.4 Training Sets

This study is concerned with offline intra-domain and inter-domain learning of heuristic classes. In

intra-domain learning, the training sequences and the test optimisation problem are drawn from the

same problem domain. This simplifies the learning task considerably as the low level heuristics in each

class are identical for each problem and so the heuristic classes will have similar statistical charac-

teristics across the problems of the domain. This is not generally the case for inter-domain learning

where the training sequences and test problem can be drawn from different domains. These different

domains will have different low level heuristic implementations and so the heuristic classes can have

different statistical characteristics in each domain (see figure B.2). However, the general underlying
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principles of each heuristic class should remain similar, for example a mutation operation should make

small random changes, while a local search operation will greedily search the surrounding space.
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Figure B.2: The scaled mean log returns α of the heuristic classes C, L, M, and R for each domain.

In each domain the α values have been scaled by the largest absolute α value into the interval [−1, 1].

The training sets for intra-domain and inter-domain learning are constructed from the BEST heuris-

tic class sequences. As these sequences are the most efficient optimisations of each problem available

they contain the most “useful information” regarding that problem and therefore they are prime can-

didates for inputs to a machine learning algorithm. In this study, leave-one-out cross-validation (see

[9]) is employed to determine whether the Elman network sequences are able to outperform the BEST

training sequences.

For intra-domain learning, the BEST subsequences are divided by domain into 4 sets of 10 sequences.

For each problem in a domain, the sequence for that problem is left out of the training set and the

remaining 9 sequences are used to train a network. The sequence produced by the trained network

is then evaluated on the problem that was left-out. Thus the sequence generated by the network is

always evaluated on a problem that the network has not been trained on. Applying this methodology

gives rise to 40 training sets of 9 sequences, one for each problem, constructed from the 10 sequences

selected for each domain.

For inter-domain learning, the BEST subsequences are again divided by domain into 4 sets of 10

sequences. For each domain, 3 sequences are selected from each of the 3 remaining domains. These

sequences correspond to the problems with the lowest βf in those domains. Applying this methodology

gives rise to 4 training sets of 9 sequences, one for each domain, constructed from the 9 sequences

selected from the other domains.

In each case, for each problem, the Elman network is trained with 9 sequences drawn from the
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set BEST. It should be noted that for network training, only the accepted selections of each sequence

up to (and including) the minimum objective function value are used. Rejected selections, and those

selections that occur after the minimum objective function value are not used.

B.2.5 The BLIND Hyper-heuristic

The BLIND hyper-heuristic is used to evaluate sets of heuristic sequences on the HyFlex problems. It

is intended to serve as a simple test bed and a “level playing field”, in order to evaluate and compare

the performance of sequences. The sequence based hyper-heuristic BLIND used in these experiments

blindly applies a given sequence, one low level heuristic class after another to a HyFlex problem,

accepting every selection. The actual low level heuristics and their parameters are chosen at random.

B.3 Results

Section B.3.1 presents the results of training the Elman networks with the intra-domain and inter-

domain training sequences. In Section B.3.2 the sequences that are generated by the trained networks

are evaluated on the HyFlex problems using the BLIND hyper-heuristic.

B.3.1 Network Training

An Elman network is trained with the intra-domain and inter-domain training sets using stochastic

Backpropagation with early stopping over a maximum of 1000 epochs (see [9]) using the parameters

shown in table B.1. The learning rate, momentum term, and the number of training epochs have not

been optimised.

Table B.1: The Elman network structure and training parameters.

Input Hidden Out Learn Momentum Epochs

16 16 4 0.1 0.25 1000

The results of network training are summarised in table B.2 and figure B.3. Table B.2 shows

the results of training the Elman network with the 40 intra-domain training sets. The results are

averaged over the 10 training sets in each domain. The columns show the average number of low level

heuristics in each set, the average percentage of low level heuristics incorrect after training, the average

network root mean square error, and the average number of epochs. Low level heuristic correctness is

determined by applying a winner-take-all strategy to the network’s output units and comparing the

network’s choice of heuristic with the target heuristic. Figure B.3a shows the percentage of low level

heuristic errors during intra-domain training for 4 representative problems (number 7, 19, 34, and
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Table B.2: The averaged training results of the Elman network on the intra-domain training sets.

Dom. Num. Wrong (%) Error Epochs

BP 369.0 12.6407 4.2958 907.7

PFS 94.5 1.0260 1.0491 328.9

SAT 288.2 18.3158 4.1991 918.9

PS 121.5 3.0474 0.9290 947.3

14) chosen from the BP, PFS, SAT and PS domains. These results demonstrate that the difficulty

of learning intra-domain sequences of heuristic selections varies by domain. For example, the SAT

domain sequences are much harder to learn than the training sequences of the other domains.

Table B.3: The averaged training results of the Elman network on the inter-domain training sets.

Dom. Num. Wrong (%) Error Epochs

BP 151 1.7391 1.0443 999

PFS 224 1.0638 1.3208 994

SAT 175 0.7194 0.8031 616

PS 221 1.0810 0.9290 739

Similarly, table B.3 and figure B.3b show the results of training the Elman network with the 4

inter-domain training sets. These results demonstrate that intra-domain learning is harder than inter-

domain learning.

After training, the Elman network is then given the initial “blank” input XXXX. As Elman networks

are deterministic, the intra-domain trained networks produces a set of 40 sequences, one for each

problem, while the inter-domain trained networks produce a set of 4 sequences, one for each domain.

B.3.2 Evaluating the Elman Network Sequences

The BLIND hyper-heuristic is parameterised with three sets of sequences denoted BEST, INTRA, and

INTER and then executed 40 times on each of the HyFlex problems. The INTRA sequence set is

generated by the intra-domain trained Elman networks, while the INTER sequence set is generated by

the inter-domain trained Elman networks. It should be noted that the pseudorandom number seeds

and therefore the initial solutions used for the INTRA, INTER, and BEST evaluation runs presented here

are identical and distinct to the pseudorandom number seeds used by DBGen to generate the offline

database from which the BEST sequences are selected.

When parameterised with the BEST sequences the BLIND hyper-heuristic applies all the accepted
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(a) Intra-domain training results.
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(b) Inter-domain training results.
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Figure B.3: The Elman network training results for the intra-domain and inter-domain sets. In figure

(a) the training sequences are drawn from the BP, PFS, SAT and PS domains. In figure (b) the

training sequences are drawn from the {PFS SAT PS}, {BP SAT PS}, {BP PFS PS}, and {BP PFS

SAT} domains.

selections including those after the minimum objective function value. This is done because some

sequences in BEST find a minimum quickly, in some cases after only 9 selections. Using all accepted

selections gives the BLIND hyper-heuristic a larger number of iterations/selections to better optimise

a problem. The length of the BEST sequences also dictate the number of selections used by the INTRA

and INTER parameterisations. The results of evaluating the INTRA and INTER sequence sets on the

HyFlex problems are compared to the BEST sequences (see table B.4). The intention of the comparison

is to determine whether the network has learned anything over and above the information contained

in the BEST sequences. The INTRA sequences outperform the BEST sequences overall and on each

domain, while BEST outperforms INTER overall, and on each domain except the PFS domain. The

best generalisation is observed between INTRA and BEST on the SAT domain (which was the hardest to

learn). The overall averages are calculated over 1600 sequences, and the domain averages are calculated

over 400 sequences.

A paired t-test is used to establish whether the difference observed in the mean final log returns of

BEST and INTRA is statistically significant. Formally, the null hypothesis

αf (BEST) ≥ αf (INTRA)

is rejected if t lies outside the interval [−2.3287,∞) and the alternative hypothesis

αf (BEST) < αf (INTRA)
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Table B.4: A domain by domain and overall comparison of the mean final log return αf of BEST,

INTRA and INTER.

Dom. BEST INTRA INTER

BP -0.2172 -0.2202 -0.0375

PFS -0.0043 -0.0049 -0.0051

SAT -0.4345 -0.6919 -0.2313

PS -1.7912 -1.8042 -1.5560

All -0.6118 -0.6803 -0.4575

is accepted with 99% confidence. The results of the t-test are shown in table B.5. The difference in

mean is statistically significant overall, and for the PFS and SAT domains with 99% confidence. For

the BP and PS domains the difference in mean is not statistically significant.

Table B.5: The domain, the sample mean difference, the standard deviation, the t-score, and the

interval within which the population mean difference falls with 99% confidence.

Dom. Diff. SD t-score Conf. Int.

BP -0.0030 0.0821 -0.7214 [-0.0136, 0.0077]

PFS -0.0006 0.0024 -5.2796 [-0.0009, -0.0003]

SAT -0.2573 0.1085 -47.4485 [-0.2714, -0.2433]

PS -0.0130 0.1225 -2.1289 [-0.0289, 0.0028]

All -0.0685 0.1424 -19.2384 [-0.0777, -0.0593]

B.4 Conclusions

The sequence set BEST consists of the sequences with the lowest final unit log return βf for each HyFlex

problem. An intra-domain training set INTRA and an inter-domain training set INTER are constructed

from the BEST sequences and used to train an Elman network. In order to estimate the Elman

network’s capacity for generalisation the network is evaluated using a leave-one-out cross-validation

methodology. The first result presented in this study demonstrates that the Elman network is capable

of intra-domain generalisation with 99% confidence. This result is notable because the Elman network

is able to significantly outperform the sequences on which it was trained. The process of generalisation

across the training problems within a domain has generated a network that is able to perform better

on unseen test problems in that domain. This shows that useful information can be learned about the

problems in a domain from the sequences of heuristic selections used to optimise them. The second
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result shows that the Elman network is not capable of inter-domain generalisation using the training

set INTER in spite of the fact that the training sets are easier to learn. This suggests that inter-

domain generalisation is harder than intra-domain generalisation, and that low training errors need

not translate into good generalisations. This was generally to be expected, the sequences of heuristics

learned on one domain are not expected to be applicable to another. However, there are exceptions,

for example the performance on PFS domain from the INTER trained network performed well and

indicates perhaps that a more general strategy for solving the PFS domain would be successful.

Overall, the Elman network proved to be able to generalise the training sequences for intra-domain

learning which opens up the possibility of the use of bespoke learned algorithms for particular problems.

Inter-domain generalisation was more difficult, as expected, and more work would need to be conducted

to determine whether a different methodology would allow domains with similar sequences to be

identified.
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Appendix C

Database Structure

This chapter presents an overview of the structure of the offline learning database used in this thesis.

The database is implemented using the MySQL1 relational database management system, and consists

of four main table schemas; a sequence table, two subsequence tables, and a results table. These tables

are described in Section C.1, Section C.2, and Section C.3 respectively. For clarity, some minor tables

and some table columns, such as those used to improve query efficiency, or to facilitate the calculation

of certain values, have been omitted. The tables have not been normalised.

C.1 The Sequence Table

The offline learning database is generated by repeatedly executing the DBGen hyper-heuristic (see

Chapter 3, Section 3.2) on a given set of benchmark problems. The sequence table is used to hold

hyper-heuristic run data, that is, the data generated when a hyper-heuristic is executed on a particular

problem instance. A hyper-heuristic run is stored as consecutively indexed rows in the sequence table,

where each row corresponds to a single iteration of the hyper-heuristic. Table C.1 contains a description

of the sequence table columns, while table C.2 contains some example run data. When extracting

sequences from the sequence table it is important to distinguish between a whole sequence of accepted

and rejected selections, and the sequence of accepted selections used to generate subsequences. All

timings are given in milliseconds (ms).

1see https://www.mysql.com
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Table C.1: The sequence table column names and descriptions.

Column Description

Dom. The problem domain.

Prob. The problem instance identifier (1-10).

HH The hyper-heuristic.

Run The run identifier.

Seq. The sequence index.

LLH The low level heuristic selected.

P The heuristic parameter selected.

Cur. The current objective function value.

New The new objective function value.

Log Ret. The logarithmic return α.

A The result of the acceptance test (True/False).

Evals. The current number of objective function evaluations.

LLH T The time taken to apply the selected low level heuristic (ms).

Obj. T The time taken to evaluate the objective function (ms).

Table C.2: Some example values for the sequence table.

Dom. Prob. HH Run Seq. LLH P Cur. New Log Ret. A Evals. LLH T Obj. T

BP 3 SSHH 0 0 M3 0.9 0.0480 0.0480 0.0000 T 1 14 1

BP 3 SSHH 0 1 R2 1.0 0.0480 0.0428 -0.0497 T 2 9 2

BP 3 SSHH 0 2 R2 0.3 0.0428 0.0422 -0.0061 T 3 2 1

C.2 The Subsequence Tables

Sequences of accepted selections are extracted from the sequence table, and broken down into consecu-

tive subsequences of length n = 2, 3, . . . , 15. The raw subsequence table holds data for each individual

occurrences of a particular subsequence. This table schema is used to store low level heuristic data for

domain specific learning, and, in a separate table, heuristic class data for cross domain learning. Table

C.3 contains a description of the raw subsequence table columns, while table C.4 contains some ex-

ample raw subsequence data for heuristic classes. The maximum subsequence length of 15 was chosen

because beyond this length the numbers of subsequence occurrences are too small to calculate robust

statistical estimates of performance. All timings are given in milliseconds (ms).

The data in the raw subsequence tables is then consolidated and the relevant averaged values

for each subsequence is stored in the subsequence tables for low level heuristics and heuristic classes
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Table C.3: Raw Subsequence Data Columns.

Column Description

Dom. The problem domain.

Prob. The problem instance identifier.

HH The hyper-heuristic.

Run The run identifier.

Pos. The position in a sequence where the subsequence occurs.

Subseq. The subsequence.

Cur. Current objective function value before applying the subsequence.

New The new objective function value after applying the subsequence.

Unit Log Ret. Unit log return β.

T Execution time of subsequence (ms).

Table C.4: The Raw Subsequence Data Table.

Dom. Prob. HH Run Pos. Subseq. Cur. New. Unit Log Ret. T

BP 3 DBGen 0 13 CC 0.0434 0.0434 0.0000 539

BP 3 DBGen 0 52 CC 0.0499 0.0381 -0.0586 551

BP 3 DBGen 0 52 CCL 0.0499 0.0421 -0.0246 576

respectively. Table C.6 contains a description of the subsequence table columns, while table C.5

contains some example subsequence data for heuristic classes. Note that when storing low level heuristic

subsequence data the Doms. column has a fixed value of 1.
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Table C.5: Subsequence Table Columns.

Column Description

HH The hyper-heuristic.

Subseq. The subsequence.

Doms. The number of problem domains where the subsequence occurs.

Mean The mean unit log return β.

P. Sum The sum of the positive β values.

N. Sum The sum of the negative β values.

N. Num. The number of negative β values.

T. Num. The total number of occurrences.

Min. The minimum unit log return min β.

Max. The maximum unit log return max β.

Var. The variance of the mean unit log return β.

T Average execution time of subsequence (ms).

Table C.6: Subsquence Table.

HH Subseq. Doms. Mean P. Sum N. Sum N. Num. T. Num. Min. Max. Var. T

DBGen CC 4 0.1642 779.8570 50.1554 3346 4443 -1.9474 1.9339 0.2307 15.5772

DBGen CCC 4 0.1323 120.7200 7.0897 588 859 -1.2648 1.2867 0.1242 26.5041

DBGen CCCC 4 0.0907 16.0861 0.1168 111 176 -0.0354 0.9645 0.0562 38.5262

C.3 The Results Table

The results for each run of a hyper-heuristic are stored in the results table. Hyper-heuristic results,

for each problem, each domain, or across a number of domains can be calculated by grouping and

averaging the rows of the result table. Table C.7 contains a description of the result table columns,

while table C.8 contains some example result data for the SSHH hyper-heuristic. All timings are given

in milliseconds (ms).

175



APPENDIX C. DATABASE STRUCTURE C.3

Table C.7: Results Table Columns.

Column Description

Dom. The problem domain.

Prob. The problem instance identifier.

HH The hyper-heuristic.

Run The run identifier.

Initial Initial objective function value.

Final Best, final objective function value.

Log Ret. Final log. return αf .

Percent Percentage reduction in objective function value.

Seq. The position of the best solution in the whole sequence.

Pos. The position of the best solution in the sequence of accepted selections.

Evals. The number of objective function evaluations.

T Average execution time of the subsequence (ms).

Table C.8: Results Table.

Dom. Prob. HH Run Initial Final Log Ret. Percent Seq. Pos. Evals. T

BP 3 SSHH 0 0.0480 0.0151 -0.5018 -68.5045 146 73 75 4053.5238

BP 3 SSHH 1 0.0497 0.0151 -0.5173 -69.6148 140 71 67 3853.3131

BP 3 SSHH 2 0.0496 0.0148 -0.5267 -70.2649 146 78 88 3892.3478
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[25] Cowling, P., Kendall, G., and Soubeiga, E. A hyperheuristic approach to scheduling a

sales summit. In Practice and Theory of Automated Timetabling III (2001), E. K. Burke and

W. Erben, Eds., vol. 2079 of Lecture Notes in Computer Science, Springer, pp. 176–190.

[26] Creighton, H. B., and McClintock, B. A correlation of cytological and genetical crossing-

over in Zea Mays. Proc. Natl. Acad. Sci. 17 (1931), 492–497.

[27] Crowston, W. B., Glover, F., Thompson, G. L., and Trawick, J. D. Probabilistic and

parametric learning combinations of local job shop scheduling rules. ONR Research memorandum.

Carnegie Mellon University, 1963.

[28] Cunha, M., and Sousa, J. Water distribution network design optimization: Simulated anneal-

ing approach. Journal of Water Resources Planning and Management 125, 4 (1999), 215–221.

[29] Curtois, T., Ochoa, G., Hyde, M., and Vázquez-Rodŕıguez, J. A. A HyFlex module
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[32] Derrac, J., Garćıa, S., Molina, D., and Herrera, F. A practical tutorial on the use of

nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelli-

gence algorithms. Swarm and Evolutionary Computation 1, 1 (2011), 3 – 18.

[33] Diaconis, P., and Graham, R. L. Spearman’s footrule as a measure of disarray. Journal of

the Royal Statistical Society. Series B 39, 2 (1977), 262–268.

[34] Dietterich, T. G. Approximate statistical tests for comparing supervised classification learning

algorithms. Neural Computation 10 (1998), 1895–1923.

[35] Dorigo, M., and Stützle, T. Ant Colony Optimization. The MIT Press, 06 2004.

179



BIBLIOGRAPHY C.3
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[37] Drake, J. H., Özcan, E., and Burke, E. K. An improved choice function heuristic selection

for cross domain heuristic search. In Parallel Problem Solving From Nature (PPSN XII), Lecture

Notes in Computer Science (2012), C. A. C. Coello, V. Cutello, K. Deb, S. Forrest, G. Nicosia,

and M. Pavone, Eds., vol. 7492, pp. 307–316.
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M. Schoenauer, Eds., vol. 10764 of Lecture Notes in Computer Science, Springer, pp. 217–230.

[125] Yates, W. B., and Keedwell, E. C. Analysing heuristic performance for optimising water

distribution networks. In 17th International Computing and Control for the Water Industry

Conference (CCWI) (2019), Extended Abstract.

[126] Yates, W. B., and Keedwell, E. C. An analysis of heuristic subsequences for offline hyper-

heuristic learning. Journal of Heuristics 25, 3 (2019), 399–430.

[127] Yates, W. B., and Keedwell, E. C. Combining online and offline learning for a sequence-

based selection hyper-heuristic. In preparation (2020).

[128] Yates, W. B., and Keedwell, E. C. Offline learning with a selection hyper-heuristic: An

application to water distribution network optimisation. Evolutionary Computation, accepted

(2020).

[129] Zheng, F., Zecchin, A. C., and Simpson, A. R. Self-adaptive differential evolution algorithm

applied to water distribution system optimization. Journal of Computing in Civil Engineering

27, 2 (2013), 148–158.

187


	Introduction
	Overview
	Research Contributions
	Published Work
	Thesis Structure

	Background
	Optimisation Problems
	High Level Heuristics
	Metaheuristics
	Hyper-heuristics
	Selection Hyper-heuristics

	A Sequenced-based Approach
	Subsets of Heuristics
	Subsequences of Heuristics

	Hyper-Heuristic Learning
	A Sequence-based Selection Hyper-heuristic
	The No Free Lunch Theorems

	A Framework for Offline Learning
	The HyFlex Problems
	Offline Learning Databases
	Estimating Heuristic Performance
	Logarithmic Returns
	Low Level Heuristics
	Subsets
	Subsequences

	Hyper-heuristic Performance
	Statistical Validation
	Conclusions

	An Analysis of Heuristic Subsequences
	The EvalHH Hyper-heuristic
	Low Level Heuristics
	Heuristic Classes
	Cross-domain Heuristic Classes
	Analysing the Bin Packing Problem
	Improving Cross-domain Performance
	Long Subsequences of Heuristic Classes
	Pareto Ranking
	Increasing the Run Length
	Conclusions

	Hybrid Learning
	An Effective Set of Subsequences
	A Pareto Set of Subsequences
	Generalisation with Small Data Sets
	An Analysis of Learning
	Hyper-heuristic Parameterisation
	Comparing Optimisation Performance
	Heat Map Analysis

	Increasing the Run Length
	Conclusions

	A Case Study: Water Distribution Networks
	Water Distribution Networks
	The Networks
	The Design Objectives
	Comparing Solutions
	The Low Level Heuristics

	Experimental Methodology
	Online Learning
	Offline Learning
	An Analysis of Heuristic Effectiveness
	Offline Learning with LOW Subsequences
	Visualising Learning
	Scalable Learning
	Conclusions

	Conclusions
	Clustering of Hyper-heuristic Selections
	Introduction
	HyFlex and the Offline Learning Database
	The Smith-Waterman Algorithm
	Cluster Analysis
	Conclusions

	Offline Learning with Elman Networks
	Introduction
	Methodology
	HyFlex and the Offline Learning Database
	Final Log Returns and the BEST Sequences
	Elman Networks
	Training Sets
	The BLIND Hyper-heuristic 

	Results
	Network Training
	Evaluating the Elman Network Sequences

	Conclusions

	Database Structure
	The Sequence Table
	The Subsequence Tables
	The Results Table


