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Abstract—Hyper-heuristics are a class of high-level search
methodologies which operate on a search space of low-level
heuristics or components, rather than on solutions directly.
Traditional iterative selection hyper-heuristics rely on two key
components, a heuristic selection method and a move acceptance
criterion. Choice Function heuristic selection scores heuristics
based on a combination of three measures, selecting the heuristic
with the highest score. Modified Choice Function heuristic se-
lection is a variant of the Choice Function which emphasises
intensification over diversification within the heuristic search
process. Previous work has shown that improved results are
possible in some problem domains when using Modified Choice
Function heuristic selection over the classic Choice Function,
however in most of these cases crossover low-level heuristics
(operators) are omitted. In this paper, we introduce crossover
low-level heuristics into a Modified Choice Function selection
hyper-heuristic and present results over six problem domains.
It is observed that although on average there is an increase in
performance when using crossover low-level heuristics, the benefit
of using crossover can vary on a per-domain or per-instance basis.

I. INTRODUCTION

The term ‘hyper-heuristic’ was defined by Burke et al. [2],
[3] as: “...a search method or learning mechanism for selecting
or generating heuristics to solve computational search prob-
lems”. This definition covers the two main classes of hyper-
heuristics, those methods which seek to select an appropriate
heuristic to apply at a given stage of a search (e.g. [15]) and
those which seek to generate new heuristics from an existing
set of low-level heuristics or heuristic components (e.g. [7]).
A typical selection hyper-heuristic iteratively selects a low-
level heuristic to apply to a single solution, making a decision
whether to accept the new solution generated at each step. Such
hyper-heuristics are labelled heuristic selection method -
move acceptance criteria in this paper hereafter. Although
there has been a proliferation in hyper-heuristic research within
the last decade, ideas exhibiting hyper-heuristic behaviour
were around as early as 1961 [11]. Recently, hyper-heuristics
have been used to solve a variety of problems including
bin packing [19], dynamic environments [17], examination
timetabling [25], the multidimensional knapsack problem [10]
and the vehicle routing problem [12].

The HyFlex [1], [23] framework was introduced to
support the first Cross-domain Heuristic Search Challenge

(CHeSC2011) [22] and promote the development of general-
purpose heuristic search algorithms. The HyFlex framework
provides a software interface within which heuristic search
methods can be defined and tested on a number of well-known
problem domains. For each problem domain a set of low-level
heuristics, including crossover low-level heuristics (operators),
are implemented for a high-level search methodology to select
from. Within the HyFlex framework, all crossover low level
heuristics are binary operators, which require two solutions
as input each time they are selected, returning a new solution
constructed from them. There remaining low-level heuristics
are unary operators. In the CHeSC2011 competition very few
of the leading entrants provided a strategy for controlling the
input for crossover low-level heuristics, with many choosing
to omit them altogether.

This paper introduces a scheme to manage the input
solutions for crossover low-level heuristics within an existing
selection hyper-heuristic presented by Drake et al. [9]. This
hyper-heuristic was shown to offer state-of-the-art results in the
MAX-SAT problem domain within HyFlex, with mixed results
in five other problem domains. We show that it is possible
to vastly improve the performance of this hyper-heuristic in
a number of problem domains by introducing crossover low-
level heuristics.

II. LITERATURE REVIEW

Selection hyper-heuristics can be decomposed into two
key components [24], a heuristic selection method and a
move acceptance criteria. In such hyper-heuristics, a low-level
heuristic is selected and applied to a single solution at each
step, before a decision is made whether or not to accept
the newly generated solution. This framework is illustrated in
Figure 1. The Choice Function is an elegant heuristic selection
method which selects a heuristic to apply based on a weighted
combination of three different measures [5]. Drake et al. [9]
noted that in the context of cross-domain optimisation Choice
Function-based hyper-heuristics performed poorly, leading to
the proposal of the Modified Choice Function. The Modified
Choice Function controls the intensification and diversification
parameters of the Choice Function automatically, using a
method inspired by Reinforcement Learning. As the focus of
that paper was on the comparison of two different selection



Fig. 1: A traditional selection hyper-heuristic framework

mechanisms, only simple All Moves acceptance criteria was
used with crossover low-level heuristics omitted entirely.

Crossover is a core operator in many evolutionary algo-
rithms, inspired by its biological namesake, and is now in-
cluded as a low-level heuristic in many general purpose hyper-
heuristic frameworks such as HyFlex [23] and Hyperion [26].
In Genetic Algorithms, the canonical form of crossover com-
bines two suitably fit solutions to yield a new solution which
inherits genetic material from both. Jansen and Wegener [16]
showed that it is possible to have a function which can be
expected to be optimised in polynomial time using a Genetic
Algorithm with crossover, whereas using evolution strategies
based on only selection and mutation need expected exponen-
tial time. Watson and Jansen [27] introduced a function that
was solvable by a Genetic Algorithm in polynomial time on
average and exponential time for a mutation-based algorithm.
Doerr et al. [6] provided the first theoretical proof of crossover
being beneficial in a practical optimisation problem. Their
work showed that introducing a crossover operator into a
mutation-based evolutionary algorithm solving the all-pairs
shortest path problem could reduce the expected optimisation
time. As crossover is provably beneficial in some problem
domains, it follows that it makes sense to use such operators
when optimising over multiple problem domains.

As a traditional single-point selection hyper-heuristic oper-
ates on a single candidate solution, some method is required to
control the additional input arguments required by crossover
low-level heuristics. The management of crossover heuristics
within selection hyper-heuristics was investigated at two levels
of abstraction by Drake et al. [8]. This paper delineated the
responsibility of managing the input arguments for crossover
as belonging to either the high-level search methodology, or
below the domain barrier at the problem-level with the low-
level heuristics. Although against the traditionally accepted

definition of hyper-heuristics, which strictly enforces the do-
main barrier, improved performance was observed on instances
of the multidimensional knapsack problem by integrating
problem domain-specific knowledge. Unfortunately it is not
always the case that it is possible to choose the level at which
crossover should operate. The HyFlex framework is one such
case where crossover management can only be performed at
the hyper-heuristic level. In the CHeSC2011 competition, very
few of the leading entrants provided a strategy for controlling
crossover. Only two of the top ten hyper-heuristics provide
a description for managing the second input required by a
crossover heuristic. The first uses the current best-of-run solu-
tion as the second input solution. The second gives a detailed
explanation of a crossover management scheme and was the
eventual CHeSC2011 competition winner, AdapHH [21]. This
hyper-heuristic maintains a memory of the five best solutions
seen so far, of which a random solution is used each time a
crossover low-level heuristic is chosen. When a new best-of-
run solution is found it replaces one of the five solutions in
memory chosen at random.

III. A MODIFIED CHOICE FUNCTION - ALL MOVES

HYPER-HEURISTIC WITH HYPER-HEURISTIC LEVEL

CROSSOVER CONTROL

The Modified Choice Function is an elegant heuristic
selection method which scores heuristics based on three differ-
ent measures, which emphasises the intensification parameter
of the original Choice Function [9]. At each iteration of a
search, a heuristic is selected based on a weighted combination
of these three measures. The first measure (f1) reflects the
previous performance of a given low-level heuristic, with the
value of f1 for a low-level heuristic hj defined as:

f1(hj) =
∑

n

φn−1
In(hj)

Tn(hj)
(1)

where In(hj) is the change in solution quality, Tn(hj) is the
time taken to execute the heuristic for each previous invocation
n of heuristic hj and φ is a value between 0 and 1 giving
greater importance to recent performance.

The second measure (f2) rewards heuristics which are suc-
cessful when applied consecutively. Values of f2 are calculated
for each heuristic hj when applied immediately following hk

as follows:

f2(hk, hj) =
∑

n

φn−1
In(hk, hj)

Tn(hk, hj)
(2)

where In(hk, hj) is the change in fitness, Tn(hk, hj) is the
time taken to call the heuristic for each previous application n
of heuristic hj following hk and φ is the same value as in f1.

The third measure (f3) is the time (τ(hj)) since each
heuristic was last selected by the Choice Function. This gives
all heuristics at least a small chance of selection.

f3(hj) = τ(hj) (3)

In order to rank heuristics, a score is given to each heuristic
with Modified Choice Function F calculated as:

Ft(hj) = φtf1(hj) + φtf2(hk, hj) + δtf3(hj) (4)



where t is the current iteration. At each step, if the quality
of the solution improves, φ is is rewarded heavily whilst δ
is harshly punished. If the solution quality deteriorates after
a low-level heuristic is applied, φ is reduced linearly and δ
is increased in order to diversify the heuristic search process.
This scheme intends to make the intensification component
the dominating factor in the calculation of F. In the Modified
Choice Function, the parameters φt and δt are defined as:

φt =

{

0.99, if quality improves

max {φt−1 − 0.01, 0.01}, if quality deteriorates

(5)

δt = 1− φt (6)

Using 0.01 as the minimum weight ensures that φ al-
ways has some non-negative influence on the F value for
each heuristic. Although each individual heuristic has an
associated F value, all low-level heuristics use the same φ
and δ values. The Modified Choice Function was shown to
outperform the original Choice Function on average, over six
different problem domains by Drake et al. [9]. In this paper,
the Modified Choice Function was paired with All Moves
acceptance criterion, however crossover low-level heuristics
were not used. Here crossover low-level heuristics will be
included in a Modified Choice Function - All Moves hyper-
heuristic, with the second solutions for crossover managed at
the hyper-heuristic level as defined by Drake et al. [8]. A
memory of elite solutions will be maintained from which a
second solution, necessary for crossover operators, is used each
time a crossover low-level heuristic is selected.

An n-ary operator is a low-level heuristic which requires n
solutions as input (assuming n > 1). In the HyFlex framework
the only n-ary operators currently available are crossover op-
erators. For the experiments in this paper where crossover low-
level heuristics are included, each time a crossover heuristic
is chosen the first input solution is the incumbent solution.
For the second input solution a random solution is provided
from a memory of elite solutions of length m, containing
the best solutions found so far. At every m-th selection of a
crossover heuristic the elite memory of solutions is not used.
Instead a new solution is generated from scratch using the
solution initialisation methods provided by the framework. If
the application of a crossover operator yields an improvement
in solution quality compared to the worst solution in the elite
memory, the new solution replaces it, provided that this does
not result in duplicate solutions appearing in the memory. For
all experiments in this paper, the memory length m of potential
solutions for n-ary operators is set to 10. This scheme intends
to ensure that poor quality solutions found early in the search
are quickly expunged from the memory, whilst still preserving
a certain element of diversity. A generalised pseudocode of
this mechanism is shown in Algorithm 1.

IV. EXPERIMENTAL FRAMEWORK AND RESULTS

This section compares the Modified Choice Function - All
Moves hyper-heuristic of Drake et al. [9] which does not use
crossover low-level heuristics, with the same hyper-heuristic
using the crossover management scheme described in Sec-
tion III. In Section IV-A an indirect comparison is performed,

Algorithm 1 Scheme used to control input for crossover low
level-heuristics

1: Inputs:
2: current solution (curSoln)
3: array of solutions in elite memory (memSoln[m])
4: crossover operator selected (crossOp)
5: variable to count crossover calls (calledCount)
6: if crossover operator is selected then
7: calledCount++
8: if calledCount mod m == 0 then
9: generate a solution for crossover, newCrossSoln

10: //apply crossover operator
11: newSoln← crossOp(curSoln, newCrossSoln)
12: else
13: index← random Int between 0 and m-1
14: //apply crossover operator
15: newSoln← crossOp(curSoln,memSoln[index])
16: end if
17: if newSoln is better than the worst solution in

memSoln[] then
18: newSoln replaces the worst solution in memSoln[]

if it is not already in memSoln[]
19: end if
20: end if

ranking each hyper-heuristic against the set of hyper-heuristics
submitted to the CHeSC2011 competition over six benchmark
problem domains. Whilst this gives a reasonable overview of
performance generally and in some specific domains, little can
be said of the performance difference in the domains where
both methods perform relatively badly when compared to the
competition entrants. As a result we will also provide a direct
comparison between the objective function values obtained by
both hyper-heuristics in Section IV-B.

A. Indirect comparison of Modified Choice Function - All
Moves with and without crossover

Following CHeSC2011 the results for each of the compe-
tition entries were provided, over a set of 30 problems taken
from six problem domains (MAX-SAT, Bin Packing, Person-
nel Scheduling, Permutation Flow Shop, Travelling Salesman
Problem and Vehicle Routing Problem). These results were
taken as the median of 31 runs of each hyper-heuristic on
each instance. In each case, our results are also taken as
the median of 31 runs in order to directly compare with the
competition entries. They are ranked using the ‘Formula One’
scoring system, with the best performing hyper-heuristic for
each instance awarded 10 points, the second 8 points and
then each further hyper-heuristic is awarded 6, 5, 4, 3, 2, 1
and 0 points respectively. As this ranking system is based
on relative performance, the Modified Choice Function - All
Moves hyper-heuristics are compared to the competition entries
independently. All experiments were carried out on machines
allowed 576 seconds running time for a hyper-heuristic on each
instance, as defined by the benchmarking tool provided by the
competition organisers. Please note that in Figures 2 to 5, the
number of hyper-heuristics may vary as methods which score
0 points are omitted from these plots.

Table I(a) shows the results of the Modified Choice Func-
tion - All Moves hyper-heuristic of Drake et al. [9] which did



TABLE I: Results of the median of 31 runs of the Modi-
fied Choice Function - All Moves hyper-heuristic (a) without
crossover and (b) with crossover, compared to CHeSC2011
competitors using Formula One scores over all six domains

(a)

Rank Name Score

1 AdapHH 177.1

2 VNS-TW 131.6

3 ML 127.5

4 PHUNTER 90.25

5 EPH 88.75

6 NAHH 72.5

7 HAHA 71.85

8 ISEA 68.5

9 KSATS 61.35

10 HAEA 52

11 ACO-HH 39

12 MCF - AM 38.85

13 GenHive 36.5

14 DynILS 27

15 SA-ILS 22.75

16 XCJ 20.5

17 AVEG-Nep 19.5

18 GISS 16.25

19 SelfSearch 5

20 MCHH-S 3.25

21 Ant-Q 0

(b)

Rank Name Score

1 AdapHH 179.35

2 VNS-TW 129.35

3 ML 122

4 PHUNTER 86.75

5 EPH 84.75

6 MCF - AM 73.7

7 HAHA 73.6

8 NAHH 70.5

9 ISEA 65.5

10 KSATS 57.2

11 HAEA 49

12 ACO-HH 37

13 GenHive 33.5

14 SA-ILS 22.1

15 DynILS 22

16 XCJ 19.5

17 AVEG-Nep 18.5

18 GISS 16.6

19 SelfSearch 5.5

20 MCHH-S 3.6

21 Ant-Q 0

not use crossover low-level heuristics. Table I(b) shows the rel-
ative results of Modified Choice Function - All Moves including
crossover management as described in Section III, using the
same scoring metrics. From these tables, it can be seen that
including crossover heuristics gives a marked improvement
in performance when compared to the CHeSC2011 entrants.
Where the Modified Choice Function - All Moves hyper-
heuristic without crossover scores 38.85 points, ranking 12th
out of 21 hyper-heuristics, the same hyper-heuristic including
crossover scores 73.7 points and ranks 6th. The top five
hyper-heuristics are unchanged from the original CHeSC2011
competition, with AdapHH [21] in first place with 177.1 points
when ranked against Modified Choice Function - All Moves
without crossover and 179.35 when compared to Modified
Choice Function - All Moves with crossover. This is interesting
as despite being outperformed by the hyper-heuristic contain-
ing crossover on average, the variant not including crossover
performs better against the best hyper-heuristic overall. This
suggests that in at least one problem domain, the Modified
Choice Function - All Moves hyper-heuristic without crossover
is outperforming the Modified Choice Function - All Moves
hyper-heuristic with crossover.

Although using the Formula One scoring system as a com-
parison method gives a good indication of performance over all
six problem domains, it may be that one method excels in one
or more different domains over another. Table II separates the
information from Table I, giving the individual scores obtained
in each problem domain by each hyper-heuristic. In the case
of the MAX-SAT domain the proposed hyper-heuristic with
crossover scores 21.2 points, with the original Modified Choice
Function - All Moves [9] scoring 32.85 points. The Modified
Choice Function - All Moves hyper-heuristic presented by
Drake et al. [9] outperformed all CHeSC2011 entrants in
this problem domain, offering state-of-the-art results. This
indicates that crossover is in fact detrimental to performance in
this domain. For instances of Bin Packing problems Modified

Choice Function - All Moves with crossover scores 21 points.
This is a big improvement on the 0 points scored by the ver-
sion of this hyper-heuristic without crossover, indicating that
crossover greatly improves the solution quality in this domain.
In Personnel Scheduling, the Modified Choice Function - All
Moves hyper-heuristic with crossover performs slightly better
than Modified Choice Function - All Moves hyper-heuristic
without crossover, with each method scoring 8.5 points and
6 points respectively. For Vehicle Routing Problem instances,
using crossover again results in an a significant improvement in
performance, obtaining 23 points compared to 0 points without
crossover. In the case of both Permutation Flow Shop and
Travelling Salesman Problem, both Modified Choice Function
- All Moves variants score 0 points when compared with the
CHeSC2011 entrants.

TABLE II: Number of Formula One points scored in each
problem domain by Modified Choice Function - All Moves
with and without crossover

Problem Domain With Crossover Without Crossover [9]

MAX-SAT 21.2 32.85

Bin Packing 21 0

Personnel Scheduling 8.5 6

Permutation Flow Shop 0 0

Travelling Salesman Problem 0 0

Vehicle Routing Problem 23 0

Total 73.7 38.85

Figure 2 shows the number of Formula One points of each
of the CHeSC2011 entrants and the Modified Choice Function
- All Moves hyper-heuristic with crossover in the MAX-
SAT problem domain. Here the proposed hyper-heuristic with
crossover scores 21.2 points and is the fifth best competitor.
Crucially the Modified Choice Function - All Moves hyper-
heuristic is no longer the highest scoring method as it was
when no crossover low-level heuristics were included by Drake
et al. [9]. Despite the fact that it is no longer the best
method in this domain it still offers competitive performance,
outperforming 16 of the other 20 hyper-heuristics. The best
hyper-heuristic is AdapHH [21] which scores 34.1 points.

Fig. 2: Number of points scored in the MAX-SAT domain by
each CHeSC2011 competitor and Modified Choice Function -
All Moves (MCF-AM) hyper-heuristic with crossover
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Figure 3 shows the results of the Modified Choice Func-
tion - All Moves hyper-heuristic with crossover over the Bin
Packing problem instances. This hyper-heuristic ranks third
in this domain with 21 points, beaten by only two other
methods, ISEA [18] and AdapHH, which score 29 and 45
points respectively.

Fig. 3: Number of points scored in the Bin Packing domain by
each CHeSC2011 competitor and Modified Choice Function -
All Moves (MCF-AM) hyper-heuristic with crossover
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Figure 4 shows the performance of Modified Choice
Function - All Moves hyper-heuristic with crossover and
CHeSC2011 entrants on the Personnel Scheduling domain
using the Formula One scoring system. The Modified Choice
Function - All Moves hyper-heuristic with crossover performs
almost as well as the winning CHeSC2011 entrant (AdapHH),
with only 0.5 points separating these two methods. The best
performing hyper-heuristic in Personnel Scheduling is VNS-
TW [14] with 37.5 points.

Fig. 4: Number of points scored in the Personnel Schedul-
ing domain by each CHeSC2011 competitor and Modified
Choice Function - All Moves (MCF-AM) hyper-heuristic with
crossover
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Figure 5 presents the results for the Modified Choice
Function - All Moves hyper-heuristic with crossover over
the instances of the Vehicle Routing Problem provided by
HyFlex. Interestingly the other methods in the top three places
also utilise crossover low-level heuristics. The first placed
hyper-heuristic in this domain is PHUNTER [4] with 30
points and second is HAEA with 24 points. This suggests
that using crossover may be desirable when trying to obtain
solutions comparable with state-of-the-art hyper-heuristics in
this problem domain.

Fig. 5: Number of points scored in the Vehicle Routing
Problem domain by each CHeSC2011 competitor and Modified
Choice Function - All Moves (MCF-AM) hyper-heuristic with
crossover
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Despite offering a great improvement in performance in
terms of overall Formula One scores when crossover is added,
Modified Choice Function - All Moves still scores 0 points in
the Permutation Flow Shop and Travelling Salesman Problem
domains.

The best performing hyper-heuristics in the Permutation
Flow Shop domain are ML, AdapHH and VNS-TW. These
are also the top three hyper-heuristics in the competition
overall. Both ML and VNS-TW use an underlying Iterated
Local Search [20] framework. Iterated Local Search consists
of two phases, ‘shaking’ and ‘local improvement’. The shaking
phase is applied first and uses perturbation heuristics to modify
the current solution and move the search into a different area
of the search space. Following this, one or more local search
heuristics are applied in the second phase to move the new
solution to a local optimum. In both of these hyper-heuristics,
only mutation low-level heuristics are used, all crossover low-
level heuristics are omitted from the set of available heuristics.
Although not strictly tied to an ILS framework, AdapHH
contains a number of mechanisms which allow it to behave as
if it were an ILS hyper-heuristic. It is possible that this hyper-
heuristic is behaving in this way in order to be effective in this
domain. It could be the case that it is necessary to enforce local
search each time a modification is made, in order to reach a
local minimum, to obtain strong performance in this domain.



In the case of the Travelling Salesman Problem the best
three hyper-heuristics are AdapHH, EPH and PHUNTER.
Again, these hyper-heuristics are all amongst the top entrants
to the CHeSC2011 competition finishing first, fourth and fifth
respectively. All of these hyper-heuristics are capable of se-
lecting crossover low-level heuristics, indicating that crossover
may be beneficial in this domain. The hyper-heuristics which
finish second and third overall, VNS-TW and ML are fourth and
sixth in this problem domain, with another ILS-based hyper-
heuristic, DynILS, coming fifth. These three hyper-heuristics
are all based on the iterative application of a perturbation
operator, followed by a local search phase and do not select
from the set of crossover low-level heuristics. This suggests
that although crossover low-level heuristics are beneficial to
the state-of-the-art methods, they are not necessary to obtain
above average performance. Despite the fact that the leading
entrants are all hyper-heuristics that use crossover, surprisingly
Modified Choice Function - All Moves with crossover performs
badly in this domain. This implies that it may not simply be
a case of whether or not to include crossover, and that the
best crossover management methods may in fact be domain-
specific. It may also be the case that it is not the low-level
heuristic set used which determines the quality of solutions
found in this domain, but in fact the synergy between other
hyper-heuristic components.

As with any ranking mechanism, there are issues with one
method potentially gaining an advantage simply by the metrics
of the comparison method used. Di Gaspero and Urli [13]
used a normalised cost function value to compare the relative
performance of hyper-heuristics. This can be generalised to
compare hyper-heuristics over an arbitrary number of instances
or domains. The median objective function value of the 31
runs for a given instance are normalised to a value ∈ [0, 1],
using the maximum and minimum fitness value obtained for
all hyper-heuristics. The normalised objective function value
objnorm for a given problem instance inst is calculated as:

objnorm(inst) =
objactual(inst)− objbest(inst)

objworst(inst)− objbest(inst)
(7)

where objactual represents the actual median objective
achieved in this instance by a given hyper-heuristic and
objbest(inst) and objworst(inst) represent the best and worst
median objective values obtained by any of the CHeSC2011
competitors. Figure 6 shows the normalised objective function
values over all 30 instances for the 20 CHeSC2011 competitors
and Modified Choice Function - All Moves of Drake et al. [9].
Figure 7 provides the same plot using the Modified Choice
Function - All Moves with crossover and CHeSC2011 entrants.
In these figures, the 21 hyper-heuristics being compared are
sorted by median normalised objective function value with a
lower value indicating better performance.

These box and whisker plots give an indication of rel-
ative variation in performance for each hyper-heuristic over
all domains. Ranking hyper-heuristics by median normalised
objective function value modifies the position of many of the
top ten competitors from Table I when compared to both
Modified Choice Function - All Moves variants. Effectively
this metric measures the distance from the best performing
hyper-heuristics in every single instance, tested relative to

Fig. 6: Box and whisker comparison of 21 CHeSC2011
entrants and Modified Choice Function - All Moves without
crossover [9] using normalised objective function

AdapHH

ML

VNS−TW

PHUNTER

ISEA

NAHH

HAEA

EPH

HAHA

KSATS

ACO−HH

XCJ

GenHive

SA−ILS

DynILS

SelfSearch

AVEG−Nep

MCF−AM

GISS

MCHH−S

Ant−Q

0.00 0.25 0.50 0.75 1.00
Normalised Cost Function

H
yp

er
−

he
ur

is
tic

Fig. 7: Box and whisker comparison of 21 CHeSC2011
entrants and Modified Choice Function - All Moves with
crossover using normalised objective function
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the best and worst performing hyper-heuristics. This could
arguably provide a better measure of average performance over
all 30 instances than the Formula One scoring system. In any
case, the best performing hyper-heuristic is still AdapHH using
this scoring mechanism. It is likely that those hyper-heuristics
which rank in a higher position using the Formula One system
than using normalised objective function perform particularly
well in some problem domains compared to others. The hyper-
heuristics placing higher when using median normalised ob-
jective function value are likely to provide better performance
on average over all domains. Using this metric, again adding
crossover low-level heuristics to Modified Choice Function -
All Moves is clearly beneficial, ranking 9th, where the original
Modified Choice Function - All Moves [9] ranks 18th.

B. Direct comparison of Modified Choice Function - All
Moves with and without crossover

Table III shows the results of an independent Student’s t-
test within a 95% confidence interval on the objective function
values obtained by Modified Choice Function - All Moves
with and without crossover, for 31 runs of each instance.
For each problem domain, five instances are tested. Each cell
of the table provides the number of instances of a particular
domain in which there is a variation in performance between
the two hyper-heuristics. In this table, > and ≫ denote the
number of cases that Modified Choice Function - All Moves
with crossover is outperforming Modified Choice Function
- All Moves without crossover on average or statistically
significantly respectively. Conversely, < and ≪ denote the
number of cases which the Modified Choice Function - All
Moves without crossover is outperforming Modified Choice
Function - All Moves with crossover on average or statistically
significantly. From this table it becomes clear that there is a
certain pattern in the performance in some problem domains
with respect to whether or not crossover low-level heuristics
are used.

TABLE III: Pairwise comparison of Modified Choice Function
- All Moves with and without crossover using independent
Student’s t-test

Problem Domain ≪ < > ≫

MAX-SAT 3 2 0 0

Bin Packing 0 0 0 5

Personnel Scheduling 1 1 3 0

Permutation Flow Shop 0 0 3 2

Travelling Salesman Problem 1 0 0 4

Vehicle Routing Problem 1 1 0 3

In the previous section it was shown that Modified Choice
Function - All Moves is no longer the best hyper-heuristic
in the MAX-SAT domain compared to CHeSC2011 entrants
when crossover low-level heuristics are introduced. A direct
comparison between the objective function values shows that
the Modified Choice Function - All Moves hyper-heuristic
without crossover performs better on average in all 5 instances
of the competition set, with the difference being statistically
significant in 3 instances. Conversely, in the Bin Packing and
Permutation Flow Shop problem domains, Modified Choice
Function - All Moves with crossover outperforms Modified
Choice Function - All Moves without crossover on average
in all 5 instances. This difference is statistically significant
in all 5 Bin Packing instances and in 2 of the 5 Permutation

Fig. 8: Number of competition instances in which Modified
Choice Function - All Moves hyper-heuristic with and with-
out crossover perform best on average for each CHeSC2011
problem domain
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Flow Shop instances. In the case of Bin Packing the difference
in performance was noted in the previous section, as there
is a clear improvement in relative performance against the
CHeSC2011 competitors in this problem domain. For Permu-
tation Flow Shop this difference was less clear in Section IV-A,
as both methods scored 0 points using the Formula One scoring
system.

Differentiating between the performance of each hyper-
heuristic in the other three problem domains is more difficult.
In Personnel Scheduling, both methods outperform each other
on average in at least one of the instances, with the variant
not using crossover obtaining statistically significantly better
results in one instance. In the case of both the Travelling
Salesman Problem and the Vehicle Routing Problem it is
the case that either including or omitting crossover low-level
heuristics can provide statistically significantly better results
depending on the instance in question. This presents a problem
when trying to generalise methods, as performance does not
only vary on a per-domain basis but also a per-instance basis.
Figure 8 shows some of the information of Table III visually,
giving the number of instances in which each hyper-heuristic
performs best on average. With the exception of MAX-SAT,
the problem domains have been abbreviated in this figure as
follows: Bin Packing (BP), Personnel Scheduling (PS), Per-
mutation Flow Shop (PFS), the Travelling Salesman Problem
(TSP) and the Vehicle Routing Problem (VRP). In terms of
the total number of instances in which each hyper-heuristic
performed better on average, Modified Choice Function - All
Moves with crossover is better in 20 cases and Modified Choice
Function - All Moves without crossover better in 10 cases.

V. CONCLUSION

Crossover low-level heuristics have been added to a Mod-
ified Choice Function - All Moves hyper-heuristic, managed
using a hyper-heuristic level crossover control scheme. The
inclusion of crossover low-level heuristics results in a large im-
provement in performance on average over the six benchmark
problem domains provided in HyFlex for CHeSC2011. It has
been observed that crossover seems to provide a greater benefit
in some problem domains or instances than others. In the
case of MAX-SAT, Bin Packing and Permutation Flow Shop it



seems that explicitly including or removing crossover low-level
heuristics from the set of available heuristics could potentially
lead to improved performance. With the remaining three do-
mains, particularly the Travelling Salesman Problem and the
Vehicle Routing Problem, performance can vary significantly
depending on the instance being solved so making this decision
is less clear cut. Five instances is a small sample from which
to provide general comments on the performance of a hyper-
heuristic, however it is clear that crossover heuristics are ben-
eficial in some problem domains and instances and not others.
An interesting question this raises is that if crossover is only
beneficial in some circumstances, can methods be designed
to recognise when crossover is helpful or not and include it
appropriately in a selection hyper-heuristic framework when
necessary? This is an interesting future research direction that
we intend to pursue further.
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[19] E. López-Camacho, H. Terashima-Marı́n, and P. Ross, “A hyper-
heuristic for solving one and two-dimensional bin packing problems,” in
Proceedings of the Genetic and Evolutionary Computation Conference

(GECCO 2011), P. L. L. Natalio Krasnogor, Ed. Dublin, Ireland: ACM,
2011, pp. 257–258.

[20] H. R. Lourenço, O. Martin, and T. Stützle, Handbook of Metaheuristics
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