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Abstract

In the service industry, it is crucial to efficiently allocate scarce resources

to perform tasks and meet particular service requirements. What consider-

ably complicates matters is when these resources, for example skilled techni-

cians, nurses, and home carers have to visit different customer locations. This

paper provides a comprehensive survey on resource constrained routing and

scheduling that unveils the problem characteristics with respect to resource

qualifications, service requirements and problem objectives. It also identifies

the most effective exact and heuristic algorithms for this class of problems.

The paper closes with several research prospects.
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1. Introduction

Vehicle Routing Problems (VRP) are emblematic in the transportation

logistics and operations research literature, with major practical relevance.

Research on “rich” and “multi-attribute” VRPs is very active (Vidal et al.,

2013, 2014; Drexl, 2012b; Schmid et al., 2013), especially for problems with re-

alistic settings and combinations of practical constraints that raise theoretical

challenges and also capture real-world needs (Lahyani et al., 2015; Caceres-

Cruz et al., 2015). Problems in the field of combined routing and scheduling of

resources has recently emerged and gained significant interest. The so-called

technician routing and scheduling problem, the skill VRP, the field service

planning problem, and the home care crew scheduling and routing problem

are typical examples. The distinctive feature of these problems is that they in-

corporate various resources to meet specific customer requirements and other

service specifications.

In resource constrained routing and scheduling problems, customers have

specific requirements that can only be met by specialised resources (e.g., skilled

technicians, nurses and operators, vehicles, machinery and equipment) who

have to travel and deliver products or service to the customer locations.

The available resources may differ in terms of skills and qualifications. For

example, if the product is very heavy to carry, one will need a vehicle equipped

with an elevator, in addition to a technician capable of operating the elevator.

In some multi-cultural urban environments, customers appreciate dealing with

drivers who speak their mother tongue, while in some extreme cases this is

the only way of communication. Perishable products need special care when

being transported by specialised vehicles, and special skills are required to

assemble furniture or install white goods. Having a limited number of these

resources complicates matters further, and the goal is then to allocate the

resources to vehicle routes in such a way that all the customer requirements

are met considering various objectives.

This review paper focuses on resource constrained routing and scheduling

problems, in which the resources are mainly renewable (vehicles, machinery,

manpower). Renewable resources in a vehicle routing context with cross-

docking were also considered in Grangier et al. (2017). The consideration

of resource allocation is prevalent in other fields, such as shop and project

scheduling (Slowinski, 1978; Demeulemeester and Herroelen, 2002). The re-

sources can be renewable (e.g., machines, manpower, vehicles), non-renewable

(e.g., money, raw materials), or doubly constrained (e.g., electric energy, steam

power) (Tiwari et al., 2009; Beşikci et al., 2015). Project scheduling problems

may also involve multiple activity execution modes, in which the activity du-

ration and resource consumption vary accordingly (Naber and Kolisch, 2014;
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Van Peteghem and Vanhoucke, 2014). These multi-mode project scheduling

problems are usually associated with multiple objectives e.g., the minimisa-

tion of the resource idle time and the makespan (Slowinski, 1981; Gutjahr,

2015). Interested readers may refer to Hartmann and Briskorn (2010) for a

comprehensive survey of variants and extensions of project scheduling prob-

lems.

There also exists a rich literature on personnel scheduling and rostering

problems, as witnessed by the thorough review of Van den Bergh et al. (2013).

In addition, Castillo-Salazar et al. (2014) presented a survey on routing and

scheduling problems that summarises the key characteristics of the problems

as well as the corresponding solution methodologies developed and applied to

realistic problem settings. Compared to this review paper, our definition of

resource constrained problems is broader since it covers all possible types of

resources, including vehicles, machinery, specialised equipment and anything

that can enable the delivery of service and products to the customers, i.e., not

only skilled personnel as in the Castillo-Salazar et al. (2014) survey. Also, to

the best of our knowledge no comprehensive and up-to-date survey on resource

constrained routing and scheduling problems yet exists.

Taxonomies and classification schemes are essential tools to consolidate

knowledge in a more user-friendly manner (Reisman, 1992). They are also

dynamic and need to be reconsidered, renewed and updated with the publica-

tion of new papers and research trends, thus enabling knowledge building and

expansion. Vehicle routing has been a well-established research field since

the late 1950s, and there exist several survey papers on different classes of

problems (Parragh et al., 2008a,b; Laporte, 2009; Drexl, 2012a; Schmid et al.,

2013; Coelho et al., 2014; Toth and Vigo, 2014; Bektaş et al., 2014; Demir

et al., 2014; Koç et al., 2016). Lately, the works of Lahyani et al. (2015),

Vidal et al. (2013), Drexl (2012b), and Caceres-Cruz et al. (2015) presented

various surveys and taxonomies for rich VRPs with multiple combinations of

constraints, features, and objectives.

Our paper focuses on a class of realistic routing and scheduling problems

and contributes to the existing body of knowledge by (a) introducing a new

taxonomy and a base model, (b) presenting the latest advances in the field and,

most importantly, (c) identifying, discussing and analysing research prospects

from a modelling, methodological and problem-specification point of view. We

exclusively examine resource constrained routing and scheduling problems, as

opposed to pure scheduling problems that have been thoroughly discussed in

Van den Bergh et al. (2013). A key feature for the unity and solidity of our

proposed taxonomy is the consideration of different types of resources that

can enable the service and delivery of products, which is why we believe that

the introduction of the broad family of the resource constrained routing and
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scheduling problems is essential.

The remainder of this paper is organised as follows. Section 2 introduces

important problem variants, with a focus on the two most prominent ones, the

Skill VRP and Technician Routing and Scheduling problems. It also provides

a base model and a motivating example to illustrate the impact of the resource

feasible routes on solution quality and structure. Section 3 discusses popular

applications of resource constrained routing and scheduling problems. Sec-

tion 4 presents a brief overview of the literature and introduces a taxonomy.

The taxonomy paves the ground for Section 5, which reviews several prob-

lem characteristics based on personnel qualifications, service requirements,

and objectives. Exact and heuristic algorithms for various deterministic and

stochastic problem settings are discussed in Section 6. The paper closes with

conclusions and research prospects in Section 7. We present in the Appendix

a list of abbreviations used in the paper.

2. Preliminaries and base model

In the broader field of resource constrained vehicle routing and scheduling

problems, the Skill VRP and the Technician Routing and Scheduling Prob-

lem are the most popular variants and have been used as the basis for most

theoretical, modelling and algorithmic developments. The first flow-based

mathematical formulation for the asymmetric Skill VRP was introduced by

Cappanera et al. (2011). In this archetypal problem setting it is assumed

that each customer (or service call) requires one technician (or resource) to

provide the service with an adequate skill level. Cappanera et al. (2013) later

extended and improved their model. Specifically, technicians with given skills

must perform routes to serve customers, each of whom requires a set of skills.

The aim is to minimise the total routing costs while satisfying constraints

defining the available and required skill levels.

The model of Cappanera et al. (2013) is defined as follows. Consider

a complete directed graph G = (V,A), where V = {1, ..., n} is the vertex

set, vertex 1 is the depot, and the remaining vertices are customers; A =

{(i, j) : 1 ≤ i, j ≤ n, i ̸= j} is the arc set. Each customer i requires service

from a technician possessing a set of skills Si. Also consider a crew T of

available technicians, and let St denote the set of the skills of technician

t ∈ T . Technician t can service vertex i only if Si ⊆ St. Lastly, a non-

negative technician-dependent travel cost ctij is associated with each arc (i, j)

and each technician t.

In this so-called aggregated model, Cappanera et al. (2013) introduced two

groups of variables. The first contains the route design binary variables xt
ij

for each (i, j) ∈ A and t ∈ T , such that (Si ∪ Sj) ⊆ St, which determine
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the visiting sequence and the assignment of technicians to customers. The

binary variable xt
ij is equal to 1 if and only if customer i immediately precedes

customer j visited in the tour of technician t. The second group of continuous

non-negative variables, denoted by yij models the flow of each arc (i, j). The

goal is to design minimum cost depot-returning tours for the technicians and

to determine the visiting sequence of customers, such that all customers are

served by exactly one technician and the skill level requirements are satisfied.

The objective of the asymmetric Skill VRP can be written as follows:

minimize
x,y

∑
(i,j)∈A

∑
t∈T :(Si∪Sj)⊆St

ctijx
t
ij. (1)

There exist two sets of constraints. The first set is composed by the degree

constraints. These characterise the flow on the path to be followed by each

technician; they ensure the continuity of each tour and force each customer

to be served by exactly one technician:∑
i∈V

∑
t∈T :(Si∪Sj)⊆St

xt
ij = 1 j ∈ V \ {1} (2)

∑
i∈V :Si⊆St

xt
ij =

∑
i∈V :Si⊆St

xt
ji j ∈ V \ {1}, t ∈ T : Sj ⊆ St. (3)

The second set of constraints is widely used in single-commodity flow ve-

hicle routing formulations and prevents subtours. Note that the flow yij in-

dicates the remaining number of customers to be visited after traversing arc

(i, j): ∑
(1,j)∈A

y1j = n− 1 (4)

∑
(i,j)∈A

yij −
∑

(j,i)∈A

yji = 1 j ∈ V \ {1} (5)

yij ≤ (n− 1)
∑

t∈T :(Si∪Sj)⊆St

xt
ij (i, j) ∈ A. (6)

In the work of Cappanera et al. (2013) two levels of hierarchical disaggre-

gation are performed on the flow variables in an effort to strengthen the LP

bounds of the above model. The first level splits the flow by destination. This

corresponds to the multi-commodity reformulation of the aggregated model.

The second level adopts a skill-based split of the flow variables and seeks to

combine disaggregation by destination with disaggregation by technician. The

resulting model produces very tight LP bounds, but the number of variables

and constraints increases significantly with the number of skills and techni-
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cians, and thus, the computational effort for solving the model is high.

Various extensions of the Skill VRP have been studied. Schwarze and

Voss (2015) presented the so-called Bi-Criteria Skill VRP with (hard) Time

Windows for pushback tractors in airport terminals. Let ai, bi ≥ 0 denote

the earliest and the latest times during the planning period that service at

vertex i ∈ V \ {1} can take place, and let oi denote the time needed to

carry out the service at i. The pushback vehicles can carry out service only

within the predefined time window [ai, bi]. Let wt
i denote the time at which

vehicle t starts servicing customer i. These service start times must respect the

corresponding time windows, i.e., ai ≤ wt
i ≤ bi for every t ∈ T and i ∈ V \{1}.

In addition to the routing cost, the minimisation of the total completion time

(i.e., minw

∑
i∈V \{1}

∑
t∈T wt

i) is considered as another objective. Both single-

and multi-objective settings are examined, assuming a hierarchical ordering

of the objectives.

The archetypal asymmetric Skill VRP described above assumes that the

tour of each technician corresponds to a vehicle route, or similarly to a path in

G that starts and ends at the depot. Paraskevopoulos et al. (2015) described

a more generalised setting, referred to as the Resource Constrained VRP. The

service of each customer requires one or more resources (e.g., operators, vehi-

cles and equipment) with particular specifications. The resources of each type

are limited, and each of them is assigned to one route. Importantly, a route

can be paired with one or more resources. The goal is to minimise the total

travelled distance under resource availability and compatibility constraints.

Figure 1 shows in which ways the solution of the Resource Constrained

VRP is different compared to the solution of the typical VRP. The left part

depicts a typical VRP solution, without considering the limitations of the re-

sources and the special requirements of the customers. For this example, there

are sets of customers with different shapes representing different requirements

A, B, AB and C. Note that the doughnut customers require both the A and

B resources to be serviced, while the full circle ones do not have any partic-

ular requirements (they can be served by any resource). Also, the available

resources are limited, i.e., two units for A, two units for B and one unit of

the combined resource BC. The combined resource means that the particular

resource is equivalent to having one resource B and one C together (e.g., a

vehicle with an elevator and a fridge compartment).

When designing the resource constrained vehicle routes, one has to con-

sider the customer requirements and the limited resources to satisfy these

requirements. This means that sometimes less efficient routes are generated

(compared to the VRP with no resources) at the expense of meeting all cus-

tomer requirements. For example, because the resource BC is unique (only

one unit of BC resource is available), BC has to serve all customers that have

6



C requirements, even if the resulting route (shown in the right part of the

figure) is not very cost efficient and a subset of C customers could have been

better served by another route. The resource allocation is shown in the legend

at the bottom of the figure.

✁ ✂✄☎ ✆ ✝

�✞✟✠✡☛☞✌ ✍☞✎✞✏✌☞☛☞✑✠✟

✒✓✔✕

✖☞✗✏✘✙☞ ✍✡✞✠☞✟

✍☞✟✡✞✌✘☞ ✚ ✛ ✜✢✣✏✙✣✤✏✙✏✠✥ ✦ ✞✑✏✠✟

✍☞✟✡✞✌✘☞ ✧ ✛ ✜✢✣✏✙✣✤✏✙✏✠✥ ✦ ✞✑✏✠✟

✍☞✟✡✞✌✘☞ ✧�★ ✏✑✠☞✩✌✣✠☞✟ ✌☞✟✡✞✌✘☞ ✧ ✛ ✜✢✣✏✙✣✤✏✙✏✠✥ ✪ ✞✑✏✠

✣✑✫ ✣✑✡✠✗☞✌ ✌☞✟✡✞✌✘☞ �

✍☞✟✡✞✌✘☞ �✡✑✟✠✌✣✏✑☞✫ ✖☞✗✏✘✙☞ ✍✡✞✠☞✟

✆✝ ✁

✂✄✆ ✆

Figure 1: Solution of the Resource Constrained VRP (Paraskevopoulos et al., 2015)

Another problem setting that can be seen as a generalisation of the Skill

VRP with multiple resource constraints is captured by the Technician Rout-

ing and Scheduling Problem (TRSP) introduced by Pillac et al. (2013). Each

technician possesses a set of skills and may carry a set of tools and spare

parts, while each customer requires a subset of them. Each service request

has a service time window; if the technician arrives earlier he must wait until

the opening of the time window. The goal is to design minimum duration tours

for the technicians so that all customer requests are served by one technician

with the required skills, tools, and spare parts. The compatibility constraints

between technicians and requests refer to all types of resources. Besides tech-

nicians and their known skill levels, tools can be seen as renewable resources,

and spare parts as non-renewable resources that are consumed when the tech-

nician serves a request. As described by Pillac et al. (2013), technicians start

their tour with a set of spare parts and tools, and they also have the option

to replenish their tools and spare parts at any time at the depot.

In the broader area of field service and technician routing problems, there

exist various more specialised variants involving mainly a single type of re-

source with no tools or spare parts. Applications are provided in Cordeau et

al. (2010) and Xu and Chiu (2001). In the former work, discrete skill levels

are assumed for the technicians (i.e., different sets of skills with different pro-
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ficiency levels) and every customer may demand multiple different skills with

given levels. In the latter work, no compatibility restrictions are assumed;

however, the technician’s proficiency levels are used to weigh the task assign-

ment in the objective function. Kovacs et al. (2012) extended the technician

task scheduling problem by considering the routing aspect. In the special case

where technicians are grouped into teams, each of these completes all tasks

assigned to it.

Tricoire et al. (2013) studied a multi-period field service problem in which

the availability of technicians varies during the planning period. According to

their definition, a resource is a pair that associates a technician with a day.

During the day a technician is available only for a given time interval. There is

also a validity period (i.e., one or more consecutive days) during which a given

request must be served. To facilitate this, a matrix with compatibility restric-

tions among requests and resources can be used, similar to that of technician

skills and proficiency levels. Finally, we mention the papers of Bredström and

Rönnqvist (2008) and Rasmussen et al. (2012) which do not consider skills but

instead introduce temporal dependencies and synchronisation constraints be-

tween technician visits. We refer readers to the survey paper of Drexl (2012a)

for multiple synchronization constraints in VRPs.

As mentioned in the introduction section, our survey focuses only on

resource constrained routing and scheduling problems as opposed to pure

scheduling problems. For example, Firat and Hurkens (2011) introduced a

technician task scheduling problem with hierarchical skill levels and produced

competitive results for well-known benchmark instances. However, the rout-

ing component is missing from that paper and therefore we do not include it

into our survey. Similar papers are those of Bellenguez-Morineau et al. (2005),

Yoshimura et al. (2006), Gutjahr et al. (2008), Heimerl and Kolisch (2010).

3. Overview of important applications

There exists a wide variety of applications in resource constrained routing

and scheduling problems. We have classified the applications into four main

categories: home and health care, installations maintenance and repairs, forest

management, and airport operations. In the following, we discuss the basic

characteristics of these applications with an emphasis on common elements

and differences.

3.1. Home and health care

Home health care routing and scheduling problems can be seen as special

cases of the Skill VRP and of the Technician Routing Problem. Most of these

problems are multi-period in nature. Furthermore, besides matching supply
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with demand, complying with skill levels and other service qualifications for

the care givers, hard or soft synchronisation and priority constraints often

appear in home health care delivery problems. Speaking in VRP terms, home

care delivery problems often involve multiple depots, heterogeneous vehicles,

customer and vehicle time windows, complex cost functions for outsourcing,

reimbursement or overtime for the resources, visit requirements, breaks, mul-

tiple shifts or multiple sessions per day, and other constraints (Begur et al.,

1997).

Specifically, home and health care problems involve the assignment of op-

erators to residences and the execution of tasks requiring specific skills within

a time frame. These tasks may involve the nursing of patients at their home

(health care) and helping elderly or disabled people with housekeeping and

other daily activities (home care). These two families of problems share com-

mon characteristics, although the service time in home care is much larger

than in home health care. For example, in health care an injection may take

a few minutes, while in home care bathing elderly people may take an hour.

The main element of these problems is that nurses and carers travel inde-

pendently using their own vehicles or public transport, or just walk to reach

the patients’ residences. Furthermore, because of this flexibility, the routes

may be open, and the start and end locations may vary. For example, nurses

usually start from medical centres and return home at the end of the day. A

particular skill set is required to perform the tasks and sometimes more than

one operator is needed to complete the service, and therefore they often work

in teams. Multi-period scheduling also occurs and precedence constraints de-

termine the sequence of visits. For example, when multi-dose medications

are involved, specific time intervals must be imposed between two consecutive

doses. Lastly, priorities are given to specific patients according to the require-

ments imposed. For example, a diabetic patient will be prioritised over elderly

or disabled people.

3.2. Installation, maintenance and repairs

A wide variety of resource routing and scheduling problems arise in the

installation and maintenance of equipment, such as elevators, heating devices,

and photocopiers. Similarly, in telecommunications such tasks have to be per-

formed by a set of engineers (Tsang and Voudouris, 1997; Weigel and Cao,

1999; Cordeau et al., 2010; Hashimoto et al., 2011; Barz and Kolisch, 2014).

To that end, operators with particular skills must travel to customer loca-

tions and deliver the service, usually within time windows. Technicians vary

in terms of experience and knowledge, thus there are different skill levels as-

signed to them as well as different costs and overtime rates. The execution

of a task may require more than one technician, and various other resources,
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and therefore teams are formed to deliver the service. Furthermore, synchro-

nisation constraints are imposed to enable the formation of teams at customer

locations rather than at the depot (Drexl, 2012a).

3.3. Forest management

Resource routing and scheduling problems are often encountered in forest

management. These involve two stages: harvesting and forwarding. Two

types of operations take place in harvest areas. First, the harvesters fell the

trees and sort them into piles. Forwarders then pick them up and transport

them to mills and terminals. Different types of vehicles and resources are used

to complete these operations. Trucks with or without cranes can be used as

well as other vehicles, such as loaders that integrate cranes. Synchronisation

constraints apply when trucks and loaders have to be at the harvest area at the

same time. Precedence constraints also apply since the forwarding must take

place within a specific time after the harvesting has been completed. There are

also teaming constraints since forwarders and harvesters form separate teams.

Time windows can also be relevant, since the harvest areas are available and

open only during a certain time of year. The goal is to determine the resource

allocation and truck routing so as to minimise total costs. Interested readers

may refer to Palmgren et al. (2003) and Karlsson et al. (2004) for details on

models and solution methods.

3.4. Airports

Schwarze and Voss (2013) applied a Skill VRP with Time Windows to sort

push-back operations at airports. Because airplanes are not allowed for safety

reasons to move backwards by using their turbines, one must use tugs for these

operations. Each tug requires a certain skill, and time window constraints

apply according to flight plan restrictions. Also, each airplane requires a

minimum tug skill. The goal is to assign tugs to push-back operations so

as to minimise the total routing cost and the completion time needed of the

operation.

4. Taxonomy and prominent properties

In total, we selected 51 papers published since 1997. In order to classify

the key elements and characteristics of the relevant problems, we follow a

three-field system: the resources’ qualifications, the service requirements, and

the objectives. Our taxonomy is presented in Table 1 and the three main

fields are summarised below:

• Resource qualifications: These are the special qualifications that the

resources (e.g., personnel) may have, in a hierarchical fashion or not.
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For example, when the resources qualifications differ in terms of the

level of proficiency, this is represented by different hierarchical levels,

and thus column “Skill levels” is ticked. Also, when there are not levels

of proficiency, only the “Skills” column is ticked.

• Service requirements: The service requirements include all the re-

quirements that customers may have, not directly related to resource

qualifications. Note that Table 1 includes the most common constraints,

but more details are given in Section 5.2.

• Objectives: Various objectives are considered. The prevalent one is the

minimisation of the total service time. For the sake of completeness, we

also included a column “Other and several” for some special cases e.g.,

the minimisation of the number of resources used or the maximisation of

the satisfied requests within a day, which we discuss in detail throughout

the paper.

To construct Table 1, we have considered only those papers in which math-

ematical models and algorithmic details are included, as opposed to less tech-

nical managerial papers but we refer to them if appropriate. We generally

focus on journal papers and we review some selected conference proceedings.

It is worth mentioning that in Table 1 we included some papers that do not

consider skills, for the sake of completeness. In the following sections, the

taxonomy fields are analysed.

5. Prominent properties

We now describe the key elements and characteristics of relevant problems

by means of a three-field system: the resources’ qualifications, the service

requirements, and the objectives. The first two fields are usually expressed as

constraints, and in some cases are part of the objective function.

5.1. Resources’ qualifications

Delivering high quality service requires qualified personnel. The daily pay

rates for qualified personnel are typically higher than the average employee

rates, and thus efficient allocation of employees to tasks is critical in terms

of costs to the company. Sometimes, more than one resource (e.g., nurses)

may be needed to perform a task, each having different set of skills, but most

importantly at a different level of proficiency. Braekers et al. (2016) solved

a home care routing and scheduling problem in which nurses and carers are

allowed to take lunch breaks under specific working regulations.

Personnel may also use different transportation means, work full or part

time, require breaks, have variable pay rates, etc. (Van den Bergh et al.,
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2013). Nevertheless, in this survey we are more interested in the personnel

qualifications and skills needed to serve customers with special requirements.

Chen et al. (2016) introduced an interesting extension of the personnel

skills in which the technicians are scheduled throughout a time horizon (e.g.,

a week) and their skills proficiency improves over time as they learn how

to perform the tasks, and thus the service times become smaller. The au-

thors conducted extensive experiments and showed that explicitly considering

experience-based learning significantly improves the routing solutions in terms

of the total cost, compared with solutions obtained when learning is ignored.

It is common to use a team of technicians to perform a task, especially

when the service is delivered in a multi-stage fashion. Team building is appro-

priate in these cases, where individual skills matching or complementing takes

place (Li et al., 2005; Kim et al., 2010; Kovacs et al., 2012). On the other hand,

the paper by Goel and Meisel (2013) considers homogeneous workers, which

means that all workers can perform all tasks. This problem does not comply

with our definition for the resource constrained vehicle routing and scheduling

problem; i.e., specialised resources that can satisfy specific customer require-

ments. Hiermann et al. (2015) solved a multi-modal home health care problem

where incompatibility constraints between nurses and patients apply. In par-

ticular, nurses may refuse to visit specific patients who, for example, own dogs

or cats, or are smokers, male or female etc.

It is worth mentioning that because site-dependency constraints are very

similar to compatibility constraints between resources and customers, in our

survey we also include site-dependent VRPS (SDVRPs). In SDVRPs, there

exist compatibility constraints between resources (e.g., vehicles) and cus-

tomers (e.g., sites), a fixed-fleet of heterogeneous vehicle types is used and

there exist a vehicle-dependent variable cost. The general class of heteroge-

neous VRPs is not considered, because there is not any link between vehicles

types and specific requirements of the customers. Nevertheless, interested

readers may refer to Koç et al. (2016) for the Heterogeneous VRP. Nag et al.

(1988) were the first to consider site dependencies as compatibility constraints

between customers’ sites and specific vehicle types.

5.2. Service requirements

Another distinctive feature of the class of problems we examine is that

customers have special requirements that can only be met by specialised re-

sources. The service requirements include, among others, a specific set of skills

that the resources (e.g., personnel) must have. The skill requirements have

already been discussed in Section 5.1. The focus of this section is thus on the

other service requirements the customers may have.
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5.2.1. Planning horizon and temporal constraints

Time windows are prevalent, as shown in Table 1, and can be either as

hard or soft. In the case time windows are softly imposed the goal is typically

to minimise the deviations from the desired time window. This is typically

reflected through penalty terms in the objective function.

Table 2 summarises the papers that involve time constraints. Most of the

authors have modelled the problem as a Vehicle Routing Problem with Time

Windows (VRPTW), i.e., hard time windows are considered. The VRPTW

usually involves route duration constraints as well, by assigning a time window

to the depot. Nevertheless, some papers consider separately route duration

restrictions and we therefore report them in Table 2. Tricoire et al. (2013)

considered a validity period of several days for the execution of a task within

a time horizon, during which the tasks must be executed by one of the avail-

able resources. Therefore, the validity period can be considered as a hard

time window. Different resources are available at different validity periods,

therefore compatibility constraints apply between customers and resources,

even though the technicians can perform all tasks. Shao et al. (2012) con-

sidered flexible and fixed customers, imposing soft and hard time windows,

respectively.

Pellegrini et al. (2007) addressed a rich vehicle routing problem, where

customers require to be serviced by a specific type of vehicle and have multiple

time windows within a day and throughout the days of a week. Regarding the

problem addressed by Trautsamwieser et al. (2011), nurses can work several

shifts per day, as long as the work force-related constraints are not violated.

The jobs performed at the customer locations may involve a degree of un-

certainty which is modelled as stochastic service times (Souyris et al., 2012;

Yuan et al., 2015). Nevertheless some papers also consider stochastic travel

times (Binart et al., 2016). Thus, Weintraub et al. (1999) studied the routing

and scheduling of technicians to repair breakdowns, where customer locations

and demands are dynamic. Similarly, Pillac et al. (2012) looked at the dy-

namic technician routing and scheduling problem, where new requests appear

while service is taking place.

5.2.2. Precedence

Contrary to the classical vehicle routing problems that the customers are

visited only once by exactly one vehicle (resource), in the class of problems we

examine the customers may be visited multiple times by different resources.

Also there exist often precedence constraints that dictate the sequence that

these resource must visit specific customers. Note that precedence constraints

often come with a maximum or minimum allowed time interval between two

consecutive tasks. For example, to install a boiler, the electrician usually
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Table 2: Classification of the papers according to the time window constraints

Reference
Time windows

Route duration
Hard Soft

Xu and Chiu (2001) X X
Cordeau and Laporte (2001) X X
Cordeau et al. (2004) X X
Lim et al. (2004) X
Bertels and Fahle (2006) X
Tang et al. (2007) X
Akjiratikarl et al. (2007) X
Pellegrini et al. (2007) X X
Goel and Gruhn (2008) X X
Alonso et al. (2008) X
Baldacci and Mingozzi (2009) X
Ceselli et al. (2009) X
Goel (2010) X
Trautsamwieser et al. (2011) X X
Amorim et al. (2012) X X
Cordeau and Maischberger (2012) X X
Kovacs et al. (2012) X
Rasmussen et al. (2012) X
Nickel et al. (2012) X
Shao et al. (2012) X X X
Pillac et al. (2013) X
Allaoua et al. (2013) X
Tricoire et al. (2013) X
Cortéz et al. (2014) X
Vidal et al. (2014) X X X
Yuan et al. (2015) X
Cappanera and Scutellà (2015) X X
Reisabadi and Mirmohammadi (2015) X
Misir et al. (2015) X
Schwarze and Voss (2015) X
Hiermann et al. (2015) X
Braekers et al. (2016) X X
Chen et al. (2016) X

comes first and then the plumber has to arrive within approximately one hour

to finish the job. The constraint is also applicable in home care services, where

the time between consecutive visits from carers or nurses has to be at least a

week or so. In a nutshell, upper and lower time bounds between visits may

be imposed, in addition to the precedence relations.

Table 3 summarises the papers dealing with precedence constraints. Al-

though the majority of these papers consider hard precedence constraints,

Misir et al. (2015) introduced a class of home care scheduling problems where

precedence relations come as soft constraints. Specifically, the authors used

the penalty incurred upon a violation of a precedence constraint, for exam-

ple, when one of the two connected visits does not start within the desired

time interval. Also, Bredström and Rönnqvist (2008) considered temporal

precedence and synchronisation constraints, but we do not include this paper

since it does not consider different resources that meet specific customer re-

quirements. Rasmussen et al. (2012) considered different precedence relations

with temporal dependencies. In particular, different time constraints were
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imposed between two jobs, which include synchronisation, overlap, minimum

difference of the starting times, maximum difference of the starting times and

a combination of the two.

Table 3: Classification of the papers according to precedence constraints

Reference
Precedence constraints

Hard Soft
Time

restrictions
Li et al. (2005) X
Kim et al. (2010) X
Rasmussen et al. (2012) X X
Goel (2010) X
Mankowska et al. (2014) X X X
Cappanera and Scutellà (2015) X
Misir et al. (2015) X

5.2.3. Importance

Servicing all customers is not always feasible given the available resources,

e.g., technicians or nurses, or the time horizon, e.g., a day shift. This a

typical characteristic of orienteering problems and vehicle routing problems

with profits (Archetti et al., 2014). Therefore, a subset of customers must be

selected. For this purpose, in some cases some priorities are associated with

customers according to their importance.

In Rasmussen et al. (2012), customers have priorities and the goal is to

schedule as many high priority customers as possible. In Binart et al. (2016)

there are two types of customers: mandatory and optional. The former must

be served within a specific time window, whereas the latter do not have to be

served within the time horizon. The goal is to serve as many optional cus-

tomers as possible under the constraints imposed. However, note that Binart

et al. (2016) did not consider customers with specific resource requirements.

5.3. Objectives

The routing and scheduling problems we examine in this survey mainly

stem from real-life applications, and therefore, there exist a plethora of ob-

jective functions. In the following, we list the most popular components of

the objectives used in the problems classified in Table 1, and we discuss some

special cases.

5.3.1. Priorities

The focus typically tends to be more on customer satisfaction than on

cost minimisation. Moreover, when timing restrictions are involved, the goal

is to deliver the service on time. Because most of the times the resources are

limited, not all customers can be served within a given day. The selection

of customers to service first is modelled through the use of priorities, and
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different weights are assigned to customers according to their priority. These

weights are multiplied by the time at which service starts for each particular

customer, e.g., the earlier a high priority customer is served, the better it is

in terms of the value of the objective function.

In home care routing and scheduling problems, patients usually have pref-

erences for specific the nurses and carers. Braekers et al. (2016) modelled these

preferences according to three levels: a preferred, moderately preferred and

a non-preferred nurse for the execution of a job, and they assigned penalties

accordingly.

5.3.2. Outsourcing and overtime

In order to service the unscheduled customers some papers consider over-

time or the possibility of hiring extra resources rather than rolling these visits

to the next days of the time horizon. Cordeau and Laporte (2001) dealt with

the technicians scheduling problem and explicitly considered outsourcing costs

if the available resources are not sufficient to service the selected customers.

Table 4 summarises the papers dealing with overtime and outsourcing costs.

The purpose of having an outsourcing budget in this problem setting is to get

rid of so-called bottleneck jobs, although there exists a skill-feasible team for

every job in the problem instances.

Table 4: Classification of the papers according to overtime and outsourcing

Reference Outsourcing Overtime
Tsang and Voudouris (1997) X
Zäpfel and Bögl (2008) X X
Trautsamwieser et al. (2011) X
Amorim et al. (2012) X X
Nickel et al. (2012) X
Kovacs et al. (2012) X
Shao et al. (2012) X
Misir et al. (2015) X
Hiermann et al. (2015) X
Cappanera and Scutellà (2015) X
Braekers et al. (2016) X

5.3.3. Workload balancing

Workload balancing is important both in terms of vehicle fuel consumption

(Zachariadis et al., 2015), and in terms of fair distribution of tasks and routes

to technicians and drivers (Schwarze and Voss, 2013). Because the focus is

more on the service delivered to the customers than on products delivered or

collected, the goal is to balance the workload instead of balancing the weight

or volume among vehicles. Although one should expect that this aspect of the

problem deserves attention very few papers consider it.
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5.3.4. Service completion time and delays

The time dimension plays a significant role in cases when the goal is cus-

tomer satisfaction and on-time service delivery. Problems that include time

in the objective function minimise delays from a desired (soft) time window

or aim to minimise the total time needed to serve the customers.

5.3.5. Other or several objectives

Beyond the popular objectives discussed above, alternative objectives have

been used as well. For example, some papers (Lim et al., 2004, Li et al., 2005,

Allaoua et al., 2013) minimise the number of resources required to serve a

given set of customers (e.g., technicians, home carers). Alternatively, other

authors such as Nickel et al. (2012) minimised the number of unscheduled

tasks given a limited number of resources available. Braekers et al. (2016)

considered a home care routing and scheduling problem with a bi-objective

function. The first objective is the minimisation of cost, while the second is

the maximisation of the convenience of the patients. The authors conducted

extensive computational experiments and concluded that with even small in-

crements of costs, a significant improvement in the convenience of the patients

can be achieved.

Ceselli et al. (2009) solved a rich vehicle routing problem with site - depen-

dencies and a multi-criteria objective function. The cost of each vehicle was

calculated according to fees that depend on the particular visits, the vehicle

load, the distance travelled and the number of stops of the route. Another

vehicle routing problem was presented by Goel and Gruhn (2008) and Goel

(2010), where the objective is to maximise profits. In particular, revenue is

generated by servicing customer requirements and the goal is to maximise

revenue and minimise travelling costs. Similarly, Amorim et al. (2012) solved

a rich food distribution problem where the goal is to minimise costs, com-

posed by vehicle renting costs, driver costs and variable travelling costs. The

authors considered the option of hiring extra vehicles if the eight-hour shift

is not sufficient for the current fleet of vehicles. In the domain of food dis-

tribution, Song and Ko (2016) solved a rich vehicle problem that uses both

refrigerated and regular vehicles for servicing specific requirements of the cus-

tomers for both dry and fresh or frozen food. The objective is to maximise

customer satisfaction, expressed by the freshness condition of the products

they receive. The food is assumed to be fresh at the depot and then along

the route the freshness decreases in a non-linear fashion. When refrigerated

vehicles are used, the freshness deterioration rate becomes smaller.

Kim et al. (2010) solved a combined manpower-vehicle routing problem

where technicians form teams that can perform different tasks. The objective

is to minimise the makespan and the total travelled distance as well as the total
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team waiting time. Towards maximising customer satisfaction, Rasmussen et

al. (2012) and Cortéz et al. (2014), among other objectives, minimise the

unsatisfied demand.

6. Solution methods

The combinatorial nature and intrinsic complexity of VRPs have given rise

to major contributions during the last three decades. A comprehensive review

of early and recent developments in theory building and application of exact

and heuristic solution methods for VRPs can be found in the first chapters

of the book edited by Toth and Vigo (2014). For the majority of well-known

VRP variants it is evident that instances with more than 150 customers are

typically intractable. This is also the case for the Skill VRP, the TRSP, and

other resource-constrained routing and scheduling problems.

Below, we provide an overview of exact and heuristic algorithms for deter-

ministic problems. This is followed by stochastic programming and robust op-

timisation methods for stochastic problems, as well as periodic re-optimisation

algorithms and Markov decision processes for dynamic problems. At the be-

ginning of each section we provide a table summarising for each reference the

algorithm (in chronological order), the main algorithmic features, the appli-

cation domain and the data set used.

6.1. Exact algorithms

This section describes exact solution methods developed for solving a va-

riety of deterministic resource constrained routing and scheduling problems.

Table 5 provides an overview.

Rasmussen et al. (2012) developed a branch-and-price algorithm for the

Home Care Crew Scheduling Problem. The problem involved soft preference

constraints between carers and patients, time window constraints, as well as

temporal dependencies between the starting times of the visits. The authors

applied Dantzig-Wolfe decomposition and modelled the problem as a set parti-

tioning problem with side constraints. A dynamic column generation was used

within the branch-and-price framework. The authors took advantage of the

preference constraints to group visits and applied a clustering scheme before

solving the problem. Computational experiments on real-life data and on ran-

domly generated instances showed that the clustering approach substantially

reduces the running times without a significant loss of solution quality.

Cappanera et al. (2013) developed a cutting plane algorithm for the Skill

VRP, based on a multi-commodity flow mathematical formulation with dis-

aggregation of the flow variables by destination or by technician. These pro-

jections lead to tighter formulations. However, as the level of disaggregation
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Table 5: Overview of exact algorithms
Reference Algorithm Algorithmic Features Application Data Set
Baldacci and
Mingozzi
(2009)

B&C&P Set partitioning, reduc-
tion rules

N/A (SD-
VRP)

Nag et al. (1988)
benchmark data set

Rasmussen et
al. (2012)

B&P Dantzig-Wolfe decompo-
sition, set-partitioning

Home health
care

Real-life data, ran-
domly generated
data, Bredström and
Rönnqvist (2008) data
set

Cappanera et
al. (2013)

Cutting
planes

Disaggregation of the
flow variables, separation
of two-cycle inequalities

Field service Randomly gener-
ated up to 71 service
requests

Tricoire et al.
(2013)

B&P Local search, dynamic
programming

Field service Randomly generated
data, 5 days horizon,
3 technicians, 100
customers

Schwarze and
Voss (2015,
2013)

B&B Bicriteria Field service Randomly generated
data using Solomon
(1987) instances, ran-
domly generated data
for airport application,
3 skills, 17 gates, 6
tugs

B&C&P : Branch and cut and price, B&P: Branch and price, B&B: Branch and bound

increases, the number of cuts increases exponentially. Also, the valid inequal-

ities that are implied by the models having a stronger LP relaxation can be

added to weaker and less detailed models, which leads to substantially lower

bounding improvements. In the case where the flow variables are split by

destination, the LP relaxation exhibits two cycles in the subgraphs associ-

ated with the technicians. Valid inequalities, whose number is polynomial,

are added to eliminate part of the two-cycle structures, i.e., a cycle of type

(i, j, i), while a heuristic separation procedure is used to find other subsets

of violated two-cycle inequalities. Computational experiments with up to 71

service requests and nine skills showed the trade-off in terms of LP bound

quality and computational burden.

Based on the mathematical models described in Section 2, enhanced bi-

criteria variants of the single-period Skill VRP with load balancing and time

windows were studied in the works of Schwarze and Voss (2013), Schwarze and

Voss (2015). In Schwarze and Voss (2013), a minmax approach was proposed

by minimising the maximal tour without consideration of total routing costs,

and minimising the routing cost while taking the length of a maximal tour

as an upper bound on the tour lengths within a distance constrained model.

This minmax model improves resource utilisation and load balancing com-

pared with the ordinary Skill VRP. In Schwarze and Voss (2015), the routing

cost and the total completion time were enforced as hierarchical objectives.

As reported by the authors, the total completion time objective leads to re-

duced integrality gaps, while it appears that if a routing cost is adopted as
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the primary objective, the increase in total completion time (with respect to

the optimal value) is smaller than that in the routing cost in the reverse case.

Tricoire et al. (2013) considered a field service problem and proposed both

exact and metaheuristic algorithms. The problem can be seen as a multi-

period multi-depot uncapacitated VRP with specific requirements. Regarding

the exact algorithm, a set covering formulation was adopted and the problem

was solved by a column generation scheme. The pricing subproblem corre-

sponds to the well-known elementary shortest path problem with resource

constraints and lunch break constraints (see also Feillet et al. (2004)). Both

the exact algorithms and the local search algorithms were applied to solve

the pricing subproblem optimally or to generate good upper bounds. Overall,

three single-point trajectory local search frameworks were presented, namely

steepest descent iterative improvement, tabu search (TS), and iterated local

search (ILS), using insertion, removal, moving and swapping neighbourhoods.

Computational experiments for small and large sale problem instances were

conducted based on realistic data adapted from an industrial application.

Lastly, research on exact approaches for the SDVRP has been rather lim-

ited. Currently, the most effective approach is the branch-and-cut-and-price

algorithm of Baldacci and Mingozzi (2009) in which the columns are associated

with elementary routes. Capacity cuts and clique inequalities are separated.

The core of the algorithm consists of two bounding procedures based on three

relaxations. Also two reduction methods are applied to resize and define both

lower and upper bounds on the number of vehicles of each type to be used

in the solution. The reduced set partitioning problem was fed into a mixed

integer programming solver. Computational experiments on 13 test instances

involving up to 108 customers are conducted.

6.2. Heuristic algorithms

This section discusses heuristic algorithms for a variety of resource con-

strained routing and scheduling problems. It covers three groups of contribu-

tions, namely local search algorithms, evolutionary algorithms, and matheuris-

tic and decomposition algorithms. Among them local search algorithms are

the most prevalent. Tables 6, 7 and 8 provide overviews for each group of

algorithms. Note also that many problem instances stem from real-life appli-

cations and often use real data.

6.2.1. Local search algorithms

Early works in the field of heuristics for the TRSP are those of Xu and

Chiu (2001) and Tsang and Voudouris (1997). Both papers are motivated

by service providers in the telecommunications industry. Specifically, Xu and
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Table 6: Overview of local search based metaheuristic algorithms
Reference Algorithm Algorithmic features Application Data Set
Tsang and
Voudouris (1997)

GLS Fast hill climbing, swap Telecoms
(TRSP)

Real-life data, 118 engi-
neers, 250 jobs

Chao et al. (1999) LP-
relaxation
based heuris-
tic

Local search N/A (SDVRP) Randomly generated data,
benchmark instances ≤325
customers, up to three
types of vehicles

Xu and Chiu
(2001)

GRASP Semi-exact construction, ex-
change, swap

Telecoms
(TRSP)

Randomly generated data,
≤ 999 jobs, ≤ 166 techni-
cians

Cordeau and La-
porte (2001)

TS Relocate, exchange, GENI N/A (SDVRP) Benchmark instances,
≤1008 customers

Lim et al. (2004) TS, SA,
SWO

3-edge-swapping, shift, ex-
change and rearrange opera-
tors, multi-objective

Service work at
ports

Solomon (1987) based in-
stances, ≤ 42 servicemen,
100 customers

Cordeau et al.
(2004)

TS Infeasible region, exchange,
relocate

N/A (SDVRP) http://people. brunel.
ac. uk/∼ mastjjb/ jeb/
info.html, benchmark in-
stances, ≤288 customers

Chao and Liou
(2005)

TS Exchange, relocate, inten-
sification and diversification
strategies

N/A (SDVRP) Randomly generated data,
benchmark instances ≤325
customers, up to three
types of vehicles

Li et al. (2005) SA Block-transposition and
block-reverse neighbour-
hoods, greedy heuristics

Maintenance Data from ports of Singa-
pore and Hong Kong, 300
jobs

Bertels and Fahle
(2006)

TS, SA, CP LP, pool of solutions Home health
care

Randomly generated data,
≤ 600 jobs, 50 nurses, 200
patients

Pisinger and
Ropke (2007)

ALNS Fix and optimise operators N/A (SDVRP) http://neumann.hec.ca/
chairedistributique/ data/
sdvrp, benchmark in-
stances, ≤ 1008 customers

Goel and Gruhn
(2008)

LNS, VNS Swap, relocate, exchange EU airports Real-case data, ≤ 1500
customers, ≤ 500 vehicles

Alonso et al.
(2008)

TS GENIUS N/A (SDVRP) Randomly generated data,
http://people. brunel.
ac. uk/∼ mastjjb/jeb/ or-
lib/sdmtpvrpinfo.html, ≤
1000 customers

Trautsamwieser
et al. (2011)

VNS SA, Segment relocation,
cross-exchange and 3-opt
neighbourhoods

Home health
care

Randomly generated data
≤ 100 jobs and 20 nurses,
real data ≤ 411 clients, 512
jobs, 75 nurses

Amorim et al.
(2012)

ALNS Destroy and repair neigh-
bourhoods

Food distribu-
tion

Real-case data ≤ 366 cus-
tomers

Kovacs et al.
(2012)

ALNS Destroy and repair neigh-
bourhoods

Field service Real data, data based on
Solomon (1987) instances,
http://prolog.univie.ac.at
/research/STRSP/ ≤ 627
tasks

Shao et al. (2012) Parallel
GRASP

Insertion and swap neigh-
bourhoods

Home health
care

Randomly generated and
real data, ≤ 140 patients
and 16 therapists

Cordeau and
Maischberger
(2012)

ILS, TS Perturbation, GENI operator N/A (SDVRP) VRP Bench-
mark instances,
http://www.bernabe.
dorronsoro.es/
vrp/index.html? VRP-
Intro.html, ≤ 1008 cus-
tomers

Nickel et al.
(2012)

Two-stage
decomposi-
tion

TS , ALNS, CP heuristic Home health
care

Real data, ≤ 361 tasks, 7
days, 12 nurses

Mankowska et al.
(2014)

Adaptive
VNS

Matrix representation Home health
care

Randomly generated data
with 300 patients, 40 em-
ployees, and six types of
skills.

Misir et al. (2015) Hyper-
heuristics

Adaptive list based TA Home care, se-
curity, mainte-
nance

Randomly generated data,
≤ 74 patients,154 tasks
and 15 carers

Braekers et al.
(2016)

Multi-
directional
local search

Biobjective, LNS Home health
care

Real and randomly
generated data,
http://alpha.uhasselt.be/
kris.braekers ≤ 300 jobs, 6
skill levels, 8-hour shift

GLS: Guided local search, GRASP: Greedy randomised adaptive search procedure, TS: Tabu search, SA: Simulated
annealing, swo: Squeaky wheel optimisation, LP: Linear programming, CP: Constraint programming, ALNS: Adaptive
large neighbourhood search, LS: Local search, LNS: Large neighbourhood search, VNS: Variable neighbourhood search,
ILS: Iterated local search, TA: Threshold accepting
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Chiu (2001) maximised the number of requests served considering skill con-

straints and request urgency. They developed a greedy randomised adaptive

search procedure (GRASP) consisting of a semi-exact greedy-plus construction

heuristic algorithm and of an iterative improvement local search method. An

extended model formulation and various upper bounds were also presented.

Fast hill climbing and guided local search (GLS) approaches were developed

by Tsang and Voudouris (1997). In the proposed GLS implementation, the

number of unallocated jobs is penalised.

Lim et al. (2004) and Li et al. (2005) proposed local search algorithms

for routing and scheduling technicians. More specifically, Lim et al. (2004)

developed a hybrid TS and simulated annealing (SA) algorithm as well as

a squeaky wheel optimisation (SWO) algorithm (Joslin and Clements, 1999)

combined with local search for a manpower allocation problem with time

windows and a composite objective. Similarly, Li et al. (2005) presented an SA

algorithm for a manpower allocation problem with time windows and teaming

constraints. The proposed method is coupled with greedy insertion heuristics

as well as the so-called block-reverse and block-transposition neighbourhood

structures. Block-reverse reverses the order in the permutation of a randomly

selected sequence (block) of jobs, while block-transposition swap two blocks

of jobs in the permutation.

More recent works regarding the field service domain are those of Kovacs

et al. (2012) and Shao et al. (2012). More specifically, Kovacs et al. (2012)

developed an adaptive large neighbourhood search (ALNS) metaheuristic al-

gorithm for the field service routing problem with and without team building.

For both problem variants various solution destroy and repair neighbourhood

structures were proposed, as well as a new adaptive mechanism. The authors

ran computational experiments on real-life and benchmark data sets with up

200 customers. Shao et al. (2012) developed a parallel GRASP to construct

weekly schedules and routing plans for a set of heterogeneously skilled thera-

pists and a set of jobs with known preferences. The aim is to match patients’

demands with therapist skills, while minimising treatment, travel, adminis-

trative and mileage reimbursement costs. In the first phase of the GRASP,

the treatment patterns for every patient are selected and the corresponding

daily therapist assignment and routing subproblems are solved in parallel.

This subproblem can be seen as multi-Travelling Salesman Problem (TSP)

with time windows, lunch breaks, and piecewise-linear mileage reimbursement

rates. The second phase applies a local search improvement procedure based

on insertion and swap neighbourhood structures. Computational experiments

were conducted on both randomly generated and real life data provided by a

United States rehabilitation agency.

Another very popular class of problems is the home health care routing and
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scheduling problem. Bertels and Fahle (2006) proposed a solution framework

consisting of linear programming (LP) and constraint programming (CP), as

well as SA and TS metaheuristic algorithms. The problem is solved via a

two-stage framework: in the first stage, sets of jobs are assigned to nurses and

in the second stage the execution order of jobs for each nurse is determined.

The authors use a pool of solutions where they store good quality local optima

met during local search. The information extracted from this pool guides the

CP to improve the solutions produced. The authors tested their framework

on randomly generated instances of up to 50 nurses and 600 jobs.

Trautsamwieser et al. (2011) considered the daily planning of home health

care services that occur during or following a natural disaster such as an earth-

quake, a flood or an epidemic. The authors proposed a mixed integer pro-

gramming formulation that takes into account various operational realities,

including assignment constraints, working time restrictions, time windows,

and mandatory break times. The model uses a weighted objective function

that minimises the driving and waiting times as well as the dissatisfaction

level of both clients and nurses (it considers a total of seven components in

the objective function). The authors reported computational experiments on

artificial data sets and on real-life instances provided by the Austrian Red

Cross. Small instances are solved optimally using the Xpress solver, while a

variable neighbourhood search (VNS) is also developed for real-life-sized in-

stances with up to 512 jobs and 75 nurses. The VNS algorithm is equipped

with segment relocation, cross-exchange and 3-opt neighbourhood structures.

During the local search process non-improving solutions are accepted to di-

versify the search. For this purpose, an acceptance criterion similar to that of

SA algorithms is used.

Nickel et al. (2012) solved short- and mid-term planning problems arising

in home health care services. Initially, the authors focused on formulating and

solving the detailed weekly routing, scheduling and nurse rostering problem.

The goal is to provide a service plan with nurses and patients, such that

the patients are served by the provided nurses. Four objectives are combined

through a weighted sum: the patient-nurse loyalty, the number of unscheduled

tasks, the overtime costs, and the travelling distance. This model is solved via

a two-stage solution framework. Patients-nurses loyalty is measured through

preference index for a particular nurse with whom a patient is familiar. First, a

CP heuristic is used to generate a feasible solution. An ALNS is then applied

for further improvement. The authors also examined a mid-term planning

problem, referred to as the master scheduling problem. In this model, the

requirement to provide rosters for the nurses is relaxed. On this basis, a so-

called operational planning problem is also formulated to assign nurses to the

master schedule and to incorporate last minute changes into the existing plan.

24



The objective of this model is to limit the perturbations of the plans. As in

the previous hybrid algorithm, the authors used a CP heuristic layer to insert

the new jobs in the current best positions, and then applied a TS algorithm

to improve the solution until a time limit or a move limit was reached. They

performed computational experiments on real-life data sets.

In the domain of home health care, Mankowska et al. (2014) developed a

mixed integer LP formulation for the resource routing and scheduling prob-

lem with precedence constraints on activities and services. They applied an

adaptive VNS to realistic-scale problem instances. The method is based on

a new solution representation, which is a matrix with as many rows as the

number of the operators and as many columns as the number of patients. The

proposed representation stores all the information needed and enables local

search operators to perform local moves effectively. Extensive experiments

were conducted on randomly generated instances with up to 300 patients, 40

employees, and six types of skills.

Braekers et al. (2016) solved a bi-objective home care routing and schedul-

ing problem with various side constraints, such as qualifications, work regu-

lations, overtime costs, multi-mode travel costs and time windows. The first

objective is to minimize the operating costs, while the second is to maximize

the offered service level based on the client preferences. The authors em-

ployed the so-called multi-directional local search framework (Tricoire, 2012)

to generate a set of efficient solutions. A solution is selected iteratively from

the efficient set and two single objective local searches are performed via a

subordinate LNS algorithm. Non-dominance checks are applied to decide

whether to update the set, while the overall process is repeated until a ter-

mination condition is met. Computational experiments on real and randomly

generated data sets are performed. Optimal solutions on small instances are

also reported. The analysis revealed a considerable trade-off between costs

and client convenience; however, as the authors report, even small additional

costs can improve the inconvenience levels drastically.

Misir et al. (2015) considered a general class of problems that involve

the routing and scheduling of resources via a hyper-heuristic solution frame-

work. This framework uses a set of low-level heuristics guided by problem-

independent strategies which are appropriately utilised for different problem

settings and specifications. The goal is to provide an analysis of the perfor-

mance for the different components of the hyper-heuristic. In particular, the

authors presented a selection hyper-heuristic, which rather than progressively

building the low level heuristics (generation-hyper-heuristics), chooses one or

more low-level heuristics to produce or amend a solution at each decision step.

For this purpose, a score is used that indicates how well a heuristic performs

with regards to the solution cost and the computing time. Pairs or single
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heuristics are selected at each decision step and an adaptive list-based thresh-

old accepting strategy is used as a high-level strategy. The computational

experiments show that the planning horizon, the number of activities and the

number of resources seem to affect the performance of different heuristics.

Nag et al. (1988) were the first to consider site dependencies as compati-

bility constraints between customers sites and vehicle types. There now exists

a rich literature on the SDVRP. Cordeau and Laporte (2001) developed a

TS algorithm for the SDVRP with time windows. This algorithm was later

adapted to solve the multi-depot and the multi-period VRP in Cordeau et al.

(2004), and was enhanced to consider both the infeasible and feasible regions

of the solution space. Another TS algorithm was proposed by Chao and Liou

(2005), which uses exchange and relocate operators along with intensification

and diversification strategies to guide the search. Chao et al. (1999) intro-

duced an LP-relaxation-based heuristic for producing initial solutions for the

SDVRP and integrated a local search algorithm to improve solution quality.

The above papers used the benchmarks of Nag et al. (1988) as the test-bed

for their experiments and presented results on other randomly generated data.

Alonso et al. (2008) solved a multi-period multi-trip SDVRP by means of a

TS algorithm, which uses the GENIUS heuristic for inserting and removing

customers from routes (Gendreau et al., 1994). Computational experiments

were conducted on randomly generated data with up to 1000 customers.

Pisinger and Ropke (2007) proposed an ALNS algorithm for a variety

of routing problems, including the SDVRP. The authors adopted the LNS

framework of Shaw (1998) and enhanced it with an adaptive mechanism that

controls the number of insertion and removal operators used to intensify and

diversify the search. A transformation to a rich pick up and delivery vehicle

routing problem enables solving the VRPTW, the CVRP and the multi-depot

VRP, the SDVRP and the open VRP within a unified ALNS solution frame-

work. Instead of the standard ruin and recreate functions of a typical ALNS

framework, the authors present a fix and optimise procedure. The fix opera-

tion fixes some variables and the optimise operation tries to apply improve-

ments to the remaining unfixed variables. The operators for each function

(fix and optimise) are chosen independently according to a separate adap-

tive probability. Computational experiments were conducted on benchmark

instances.

Goel and Gruhn (2008) considered a general vehicle routing problem with

real-life constraints, i.e., compatibility constraints between specific customers

orders, heterogeneous vehicle types, and the presence of vehicles having two

drivers in the case of long-haul shipments. This problem is an excellent ex-

ample of our resource constrained vehicle routing and scheduling family of

problems, a combination of resources (e.g., drivers and vehicles) is used to
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enable the fulfilment of a particular customer order. The authors developed

an LNS and a VNS algorithm and used a tour dependent customer closeness

function to assist the ruin and recreate function in the selection of customers

to remove and reinsert. Computational experiments are reported on real-case

data with up to 1500 customers and 500 vehicles.

Cordeau and Maischberger (2012) proposed an iterated local search frame-

work that combines a TS algorithm and a perturbation strategy to solve a vari-

ety of routing problems including the SDVRP with and without time windows,

which is relevant to our survey. The proposed TS uses well-known neighbour-

hood operators, including the GENI heuristic of Gendreau et al. (1994) to

apply local search. A diversification mechanism considers the frequency of

each solution attribute (e.g., an arc) during the search. For intensification

purposes, a route refinement procedure is applied which tries to post-optimise

the intra-route sequence. The authors implemented their algorithm in a par-

allel fashion and conducted runs on a cluster computer with 128 processors.

Extensive experiments were conducted and results on small- to large-scale

benchmark instances.

Amorim et al. (2012) developed an ALNS algorithm for a real-life vehicle

routing problem for food distribution in Portugal. The problem involves a

heterogeneous fleet of vehicles, and customers may require dry products and

perishable products that need to be transported in refrigerated vehicles. This

feature is modelled as a site-dependency constraint; if there is a customer re-

quirement for both types of products, dry and fresh or frozen, a new dummy

customer is created to accommodate the second commodity. The ALNS ap-

plied on this problem was adapted from Kovacs et al. (2012) for the technician

routing and scheduling problem. The authors presented ruin and recreate op-

erators that take into account distance, time and load to respect route duration

and vehicle capacity constraints. Computational experiments were conducted

on the real-case data and demonstrated the efficiency of the proposed method.

In the same domain, Song and Ko (2016) modelled a vehicle routing problem

that involves both refrigerated and regular vehicles for perishable food prod-

ucts delivery. The goal of the problem is to maximise customer satisfaction,

expressed by the freshness of the products that they receive. At the depot,

the products are considered fresh; as they travel their freshness decreases in

a non-linear fashion. When the refrigerated vehicles were used, the freshness

decrease rate was smaller. A greedy construction heuristic was proposed and

computational experiments were conducted on randomly generated data with

up to 500 customers.
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Table 7: Overview of evolutionary algorithms
Reference Algorithm Algorithmic Features Application Data Set
Tang et al. (2007) AMP-TS Upper bounds Maintenance Real-data, two techni-

cians, 4659 tasks, 90
buildings

Akjiratikarl et al.
(2007)

PSO Edge-exchange, swap,
and insertion neighbour-
hoods

Home health
care

Real data, 100 tasks,
50 customers, 12 care
workers

Pellegrini et al.
(2007)

ACO TS, Edge-exchange Food distri-
bution

Randomly generated
and real-data, ≤ 80
customers

Zäpfel and Bögl
(2008)

GA TS, edge-exchange Maintenance Randomly generated
data, ≤ 279 customers

Kim et al. (2010) PSO CPLEX, triple represen-
tation

Maintenance Randomly gen-
erated data,
http://logistics.postech.
ac.kr/
CMVRP benchmark.
html, ≤ 480 customers

Vidal et al. (2014) Unified
hybrid GA

i-CROSS, generic split N/A (SD-
VRP)

A wide variety of
benchmark problems

Hiermann et al.
(2015)

Hyper-
heuristic

SS, MA, VNS, SA Home health
care

Real-data, ≤ 509
nurses and 717 jobs

Reisabadi and Mir-
mohammadi (2015)

ACO, TS Pheromone strategies, 2-
opt, cross-over

N/A (SD-
VRP)

Randomly generated
data based on Solomon
(1987) instances, ≤
150 customers

AMP-TS: Adaptive memory programming - Tabu search, PSO: Particle swarm optimisation, ACO: Ant colony
optimisation, GA: Genetic algorithm, TS: Tabu search, SS: Scatter search, VNS: Variable neighbourhood search, SA:
Simulated annealing

6.2.2. Evolutionary algorithms

Early works on evolutionary algorithms for maintenance and personnel

planning problems are provided by Tang et al. (2007) and Zäpfel and Bögl

(2008). Requests with different urgency levels are considered in the work

of Tang et al. (2007) for a planned maintenance scheduling problem. These

authors developed an adaptive memory programming (AMP) method cou-

pled with TS. The adaptive memory structure maintains a set of diversified

high-quality solutions. Greedy randomised procedures were also employed to

explore small and large neighbourhoods during the local search process. The

authors performed experiments on large scale real-life data sets. Zäpfel and

Bögl (2008) developed a generalised guided metaheuristic framework for a

combined tour and personnel planning problem that can be seen as a multi-

period vehicle routing and crew scheduling problem with outsourcing.

Akjiratikarl et al. (2007) developed a particle swarm optimisation (PSO)

algorithm for a home care delivery and care-worker scheduling problem. The

goal is to design minimum-cost routes for the care workers, while satisfying

the duration and service time window constraints. The algorithm applies

a heuristic assignment scheme to descretise the time in the schedule, while

the so-called earliest start time priority with minimum distance assignment

technique is employed to guide the search direction of the particles. The pro-
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posed evolutionary framework is also coupled with a local search improvement

method that explores edge-exchanges and insertion neighbourhoods. Compu-

tational experiments and a parameter study were performed on real demand

data sets. Similarly, Kim et al. (2010) presented a PSO algorithm for the

combined routing and scheduling of manpower teams performing multi-stage

tasks at customer locations. The proposed PSO operates on a solution repre-

sentation based on three lists: the vehicle list, the available team list, and the

customer-demanded team list. The authors performed computational experi-

ments on randomly generated benchmark instances.

Hiermann et al. (2015) solved a real-life multi-modal home care schedul-

ing problem faced by an Austrian home health care provider. Their model

takes into account various side constraints, such as (preferred) time windows,

employer, nurse and patient satisfaction levels, and travel times dependent on

the transportation mode employed. Overall, 13 penalty terms are considered

in the objective function, reflecting hard and soft constraint violations. The

authors proposed a two-stage solution approach. CP and a random procedure

are used to generate initial solutions in the first stage, while four metaheuristic

algorithms compete to improve these solutions: a VNS algorithm, a memetic

algorithm (MA), a scatter search (SS) algorithm, and a SA hyper-heuristic

algorithm. The authors report computational results on real-life data sets.

Overall, the MA consistently outperformed all other metaheuristic algorithms.

Site-dependencies are usually encountered in rich vehicle routing problems

within a wider range of constraints. Pellegrini et al. (2007) developed two

ant colony optimisation (ACO) algorithms for a rich vehicle routing problem

involving multi-period, multiple time windows for customers for the day and

across the week, maximum route duration, heterogeneous fleet, and multiple

visits for each customer. Most importantly, the features that are relevant

to our survey are that the vehicle fleet is heterogeneous and customers may

require to be serviced by different types of vehicles. The ACOs use edge ex-

change to perform local search while two hierarchical objectives are used, i.e.,

the minimisation of the number of vehicles and the minimisation of the total

route time. The authors compared the efficiency of their algorithm with that

of a TS, and used randomly generated data based on real-case data as the test-

bed for their experiments. Similarly, Reisabadi and Mirmohammadi (2015)

proposed an ACO algorithm that applies local search and a TS algorithm

for the SDVRP with soft time windows. Computational experiments were

performed on randomly generated data based on those of Solomon (1987).

Vidal et al. (2014) presented a unified genetic metaheuristic for a wide

variety of problems with rich vehicle routing features. The proposed frame-

work uses non-problem-specific strategies and mechanisms and applies diver-

sity management methods to move efficiently in the search space. The solution
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is represented by a giant tour that includes all customers, but no depots. The

depots are then reinserted in the solution by solving a shortest path problem

on an auxiliary graph. Widely used neighbourhood operators are used to de-

fine the local moves, including i-CROSS and 2-opt*. During the evolution of

generations, sub-populations are managed independently to ensure diversity

and to avoid premature convergence. Extensive experiments on a very wide

variety of benchmark instances were conducted, proving the efficiency of the

proposed unified solution methodology.

6.2.3. Overview of matheuristics and decomposition algorithms

Table 8: Overview of decomposition algorithms
Reference Algorithm Algorithmic Features Application Data Set
Ceselli et al.
(2009)

Column
generation

Bidirectional dynamic
programming algorithm

N/A (rich
VRP)

Real-data sets

Goel (2010) Column
generation

Removal and insertion
procedure

N/A (SD-
VRP)

Randomly generated
data

Allaoua et al.
(2013)

ILP, two-
stage
decompo-
sition

Set partitioning,
rostering-first, route-
second scheme

Home health
care

Randomly generated
data, 30 services, 9
staff, 3 skills

Cortéz et al.
(2014)

CP based
B&P

CP for the pricing prob-
lem

Technician
routing

Real data, up to 70 ser-
vice requests

Yalçindăg et al.
(2014)

Two-stage
decompo-
sition

Kernel regression tech-
nique

Home health
care

Real-data, ≤ 56 pa-
tients

Cappanera and
Scutellà (2015)

ILP multi-period, pattern
generation policies

Home health
care

Real-data, Nickel et al.
(2012) data set

Yalçindăg et al.
(2016)

Pattern-
based
two-phase
decompo-
sition

Different levels of flexibil-
ity

Home health
care

Real data, 34 problem
instances, up to 300
patients, 16 operators
and 2 skills

ILP: Integer linear programming, CP: Constraint programming, B&P: Branch and price,

Ceselli et al. (2009) and Goel (2010) developed column generation algo-

rithms. In particular, Ceselli et al. (2009) described a very rich variant with

multiple capacities, time windows, incompatibility constraints, duration re-

strictions, driving upper bounds and rest periods, the possibility of skipping

some customers and using express courier services, split delivery, and open

routes. The objective function considers a cost based on fees, the distance

traveled, the vehicle load, and the number of stops along the route. The pro-

posed multi-phase column generation scheme employs a bounded bidirectional

dynamic programming algorithm to compute optimal solutions for the pric-

ing subproblem, while a heuristic pricing algorithm with modified dominance

criteria is also applied. Computational results are reported on a real-data set

obtained from a software company. Goel (2010) used a simpler scheme for the

so-called General VRP with compatibility constraints. The author applied
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a heuristic removal and insertion procedure to identify negative reduced-cost

routes.

Allaoua et al. (2013) developed exact and matheuristic algorithms. An

integer linear programming formulation was first used to capture the routing

and rostering of the staff. The resulting mathematical model is similar to

that of the VRPTW with multiple depots, where the objective is to minimise

the number of operators in the solution. Based on this model, a rostering-

first route-second heuristic decomposition scheme was adopted. The first part

can be viewed as a set partitioning problem, i.e., the assignment of staff to

shifts and the clustering of the set of services. The second part corresponds

to a multi-depot TSP with time windows for each cluster. Two methods

were used to solve the assignment and partitioning problem, while the routing

counterpart was solved optimally.

Cortéz et al. (2014) put forward a CP-based branch-and-price method for

a technician routing problem with soft time windows faced by a company that

provides repair services of office machines in Chile. To solve the subproblems,

the authors devised a set partitioning based branch-and-price algorithm that

uses the constraint branching strategy of Ryan and Foster (1981), along with

the CP method of Yunes et al. (2005) to solve the subproblem. Compared to

graph-inspired dynamic programming methods, the CP requires fewer vari-

ables and takes advantage of the fact that each technician visits only a small

fraction of the overall daily clients. Computational experiments on real data

sets were conducted.

Yalçindăg et al. (2014) developed a two-stage decomposition algorithm

for an assignment and routing problem arising in home health care. Instead

of solving simultaneously the assignment and routing problem, the authors

first determined the assignment of operators to patients, followed by the cor-

responding routes. In order to appropriately decompose the problem, it is

essential to have an estimation of the travel time. Instead of using the aver-

age value approach, they used a kernel regression technique and then applied

a genetic algorithm to the associated assignment problem. Subsequently, the

corresponding TSPs, which are as many as the number of operators used, are

solved. The authors report that more extensive experimentation should be

conducted to draw solid conclusions about the proposed method.

Cappanera and Scutellà (2015) studied a challenging multi-period home

care routing and scheduling problem and extended the bicriteria minmax and

maxmin approach of Schwarze and Voss (2013). A multiple-day planning

horizon is assumed, and balancing is achieved with respect to both routing

and service times accumulated by an operator in the planning horizon. This

is in contrast with the work of Schwarze and Voss (2013) who considered a

daily planning horizon and performed balancing only with respect to routing
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costs. Furthermore, the focus was the operator utilisation factor: in maxmin

the objective is the maximisation of the minimum operator utilisation factor,

whereas in minmax the goal is the minimisation of the maximum utilisa-

tion factor. The authors introduced the concept of “pattern” to handle the

incumbent optimisation problems. A pattern is a possible schedule for the

operators that satisfies all skill compatibility constraints and coordinates all

the routing and scheduling decisions. Both heuristics and exact procedures

are used to generate the patterns. The exact procedures are based on a multi-

commodity flow problem using an auxiliary layered network. The layers of this

network represent days in the time horizon, and directed source-destination

paths within the network correspond to potential patterns. By determining

which arcs should be selected for these paths, the model minimises the number

of used arcs, and therefore it implicitly minimises the number of generated

patterns. Extensive computational experiments were conducted on real-life

data. The maxmin approach returns more balanced solutions, but minmax is

more suitable for minimising the operating costs.

Lastly, a new family of two-phase methods, based on patterns and different

levels of flexibility, are introduced for human resource planning in home health

care services in the paper of Yalçindăg et al. (2016). The problem addressed

is characterized by skill qualifications, continuity of care, and multi-period

planning horizon. The main concept is to decompose the linked decisions

and constraints of each planning level, i.e., assignment (A), scheduling (S)

and routing (R), in two steps coordinated by means of a pattern mechanism,

as defined by Cappanera and Scutellà (2015). Overall, the authors evaluated

four schemes, considering cost minimization and the balancing of the operator

workload under different conditions of skill management. The most flexible

scheme incorporates all decisions and linking constraints into a single phase

scheme (A + S + R), and it is shown to be affordable only for small-size

instances and only when a balancing criterion is considered. The most rigid

two-phase scheme is guided only by assignment decisions (A|S + R), and it

failed to generate feasible solutions. On the other hand, the intermediate

two-phase schemes (A + R|S) and (A + S|S + R) provided a good trade-

off between computational efficiency and solution quality in terms of balance

between workload and total travel time. Especially, the (A + S|S + R) was

capable to produce near-optimal solutions even when short time limits were

imposed.

6.3. Stochastic programming and robust optimisation algorithms

Souyris et al. (2012) formulated a robust optimisation model for the VRP

with soft time windows and uncertain service times. They did not consider

compatibility restrictions in terms of technician skills, but only correlations
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Table 9: Overview of stochastic programming and robust optimization methods
Reference Algorithm Algorithmic Features Application Data Set
Souyris et al. (2012) B&C CP, robust service times Home health

care
Real data set, 41 cus-
tomers and 15 techni-
cians

Yuan et al. (2015) B&P Label algorithm, acceler-
ation strategies, stochas-
tic service times

Home health
care

Solomon (1987) in-
stances, 50 customers,
3 skills

Binart et al. (2016) Two-stage
B&C

Lagrangian, dynamic
programming, stochastic
service and travel times,
simulation

Field service TOP data set, real
data set, up to 50 cus-
tomers and 3 vehicles

B&C: Branch and cut, CP: Constraint programming, B&P: Branch and price

between the service times that the technicians face. In particular, closed,

convex, and bounded uncertainty sets were considered for each technician.

The main assumption is that the worst case will not concentrate on a sin-

gle technician, and thus, the uncertainty can be distributed uniformly across

technicians. The resulting robust counterparts lead to slightly more compli-

cated models compared to the deterministic equivalent. The authors proposed

a branch-and-price method to solve the robust problem coupled with a CP

method for the pricing subproblem, and performed computational experiments

on real data sets with 41 customers and 15 technicians.

Yuan et al. (2015) developed column generation algorithms for a home

health care routing and scheduling problem with stochastic service times and

skill requirements. They first presented a stochastic programming with re-

course model to minimise the total travel cost, the fixed cost of care-givers,

the expected service cost and the expected penalty cost for late arrivals. The

stochastic customer service times are treated as independently normally dis-

tributed random variables. On this basis, they provided approximate expres-

sions for the expected service cost and arrival time delays. The authors pro-

posed an equivalent set partitioning formulation and solved it by alternating

between a master problem and a pricing subproblem. A labeling algorithm

was used to solve optimally the pricing problem with new dominance rules.

Overall, a multi-phase scheme was applied to perform the column generation

process. Various acceleration strategies are also applied. The authors per-

formed computational experiments with up to 50 customers and care-givers

divided into two and three skill levels.

Binart et al. (2016) solved a field service routing problem with stochas-

tic travel and service times, as well as mandatory and optional customers.

The goal is to maximise the number of optional customers served given the

limited available resources. Overall, the problem can be viewed as an unca-

pacitated Multi-Depot VRPTW with stochastic service and travel times and

with priority, and is solved in two stages. During the planning stage, routes
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are initially generated with mandatory customers using branch-and-cut, and

optional customers are then inserted by applying a Lagrangian heuristic. At

the execution stage (real-time modification of the planned route), two dy-

namic programming algorithms are used to define the optimal policy to face

stochasticity. The concept is to use the optional customers as buffer to absorb

the variations. The stochastic travel and service times are modelled assuming

discrete triangular distributions. Computational experiments are reported us-

ing benchmark data sets for team orienteering problems (TOP) as well as on

realistic data sets with up to 50 customers and three vehicles.

6.4. Algorithms for dynamic problems

Weintraub et al. (1999) proposed a periodic re-optimization method for the

real-time routing and scheduling of service technicians for energy providers in

Chile. The problem is dynamic in the sense that customer service requests

(with different priority levels) are not known in advance, and service tech-

nicians have to be dynamically assigned to these requests. The objective

is to minimise the weighted total response time of all routes. Note that the

weights assigned to the blackouts reflect their priority level. An initial solution

is constructed following a cluster-first route-second framework. To this end,

a generalised insertion method is employed to generate the routing for each

technician, while an initial forecast of the daily demands for each geographical

zone is derived using an exponential smoothing method. A post-optimisation

heuristic is also applied to balance the load (i.e., number of service requests

and total travel times) of the technicians. This two-phase heuristic is executed

periodically in fixed time intervals or whenever new high priority requests are

received.

Table 10: Overview of re-optimization methods and Markov Decision Processes
Reference Algorithm Algorithmic Features Application Data Set
Weintraub et al.
(1999)

Periodic
re-
optimization

Cluster-first route-
second, GENI

Technician
routing and
scheduling

Real data

Pillac et al. (2013) ALNS Parallel algorithm,
set covering, post-
optimization

Technician
routing and
scheduling

Data based on
Solomon (1987) in-
stances, up to 100
service requests

Chen et al. (2016) Markov
decision
process

Record-to-record travel Technician
routing and
scheduling

Randomly generated
data

ALNS: Adaptive large neighbourhood search

Pillac et al. (2013) developed a parallel ALNS algorithm for the rout-

ing and scheduling of heterogeneously skilled and equipped technicians who

must serve requests with compatibility constraints, tools and spare parts. Be-

sides the parallel implementation itself, one prominent feature of the proposed
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ALNS framework is the maintenance of a shared pool of promising solutions.

The solutions are selected not only according to their quality, but also with

respect to a diversification metric that counts which arcs were removed from

the solution. A post-optimization procedure based on a set covering model

was used to optimally design the best possible solution considering all tours

generated during the ALNS iterations. Computational experiments on prob-

lem instances with up to 100 service requests are reported. Pillac et al. (2012)

adapted the above ALNS for periodic re-optimization of the problem with

dynamic service requests.

Chen et al. (2016) developed a rolling horizon procedure for the multi-

period technician routing and scheduling problem with experience-based ser-

vice times. In this problem setting, the technicians learn through experience

and the productivity increases (or equivalently the service time decreases)

over the multi-day planning horizon. The daily demand is not known a priori

and is revealed on the day of service. The objective is to minimise the total

daily makespan (completion time of the last task) over a finite horizon. The

problem was modelled using a Markov decision process, and a myopic solution

framework (i.e., minimising the current state costs while ignoring information

about the future) was adopted. Given the observed daily demand realisa-

tion, a sequence of deterministic daily routing problems are solved and the

technician productivity is updated according to the experience gained on the

previous day in a roll-out fashion. Specifically, the routing problem is solved

using a record-to-record travel algorithm (Li et al, 2010), which is a two-phase

local search algorithm. In the first phase non-improving neighbouring solu-

tions are accepted according to a particular threshold of the record, towards

diversification. In the second phase, only improving moves are accepted.

7. Conclusions and research prospects

We have presented a survey of resource constrained routing and scheduling

problems where the use of various resources is essential to complete the service

according to special customer requirements. Our review has revealed that

there exist several interesting variants of such problems, the Skill VRP and

the Technician Routing and Scheduling problems being the most prominent.

We also showed that maintenance activities and home health care are the

main areas where routing and scheduling of resources is crucial not only in

terms of customer satisfaction, but also in terms of operational efficiency.

The research topic considered in this survey, is still open, raises various

challenges and has interesting applications with high socio-economic impact.

Although significant work has been conducted on this field, we believe that

the field has not yet reached a high level of maturity, and therefore many
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challenges still stand while new ones emerge. Below we provide a list of

potential directions for further research:

• Combined product and service delivery: The only work that looked

at product as well as service delivery was by Paraskevopoulos et al.

(2015). If the product delivered needs installation, configuration or as-

sembly, determining how many resources and what types are needed to

accommodate this service and what the capacity of the vehicle should

be are two relevant questions.

• Multi-mode on the tasks: A prevalent feature in project schedul-

ing problems (Naber and Kolisch, 2014; Van Peteghem and Vanhoucke,

2014) is the multi-mode nature of the tasks according to the different

availability of the resources (Hartmann and Briskorn, 2010). For exam-

ple, painting a wall takes less time when more workers are used, but this

generates additional costs and the gain in efficiency is not necessarily

linear. Tsang and Voudouris (1997) considered that the more experi-

enced is the technician the less it takes to finish a particular job. To the

best of our knowledge, no study has yet considered the different combi-

nations of resources needed to minimise the service times, and there is

therefore room for research in this area.

• Soft time windows: Because the type of the service delivered at the

customer locations is most of the times highly variable and unknown

with precision, it does not make much sense to consider hard time win-

dow constraints, since these would rarely be satisfied in practice. It is

also evident that very few papers consider soft time windows. There-

fore, we believe there is scope for more research on modelling and solving

problems with soft time windows.

• Stochastic elements: Even though stochastic environments are preva-

lent in real-life routing and scheduling problem settings, there exists only

a very limited literature on this topic, which suggests fruitful research

opportunities.

• Workload balancing: We believe that since the main focus of routing

and scheduling of resources is the efficient use of resources, workload

balancing should be of high priority in relevant problem settings. Nev-

ertheless, very few papers have considered resource balancing (Schwarze

and Voss, 2013; Cappanera and Scutellà, 2015).

• Working regulations: Operators may have their own preferences,

breaks, different shifts, days of leave, and other restrictions. However,

36



very few studies have looked at resource routing and scheduling prob-

lems with working regulations (Trautsamwieser et al., 2011; Braekers et

al., 2016).

• Multiple products and vehicle qualifications: Some vehicles can

carry several different types of products (e.g. fresh and freezed, perish-

able), or they can be dedicated to a particular product category. They

can also involve multiple compartments for the storage of non-mixable

products. To our knowledge, very little research has been conducted on

settings with heterogeneous vehicle qualifications and multiple products.

• Synchronization: Even though some temporal constraints are con-

sidered by researchers in the field, synchronisation has not thoroughly

explored in the resource constrained vehicle routing and scheduling prob-

lems, as discussed in the review paper of Drexl (2012a).

From a practical perspective, it is also important to consider combinations

of additional constraints that are likely to appear in joint scheduling and rout-

ing problems. These constraints can be related to the locations of customers,

to the vehicle fleets, to number of depots, or to the order and frequency of

customer visits over a given time horizon. They can also result from the as-

signment of customers and routes to resources, to the sequence choices and to

the evaluation of objective functions. We refer to the multilevel taxonomy of

Caceres-Cruz et al. (2015) for a comprehensive discussion on VRP constraints

and future methodological trends.

Most of the suggestions listed above create room for further research re-

garding mathematical models as well as computationally efficient solution

methodologies. However, routing and scheduling of resources define a class

of problems with realistic specifications and a wide variety of real-life appli-

cations. We therefore believe that it is essential to develop efficient solution

methods that will produce high quality solutions very fast. This is in line

with the existing literature since there exists a wide body of research on exact

methods for deterministic and stochastic problem settings. However, the focus

of most researchers has been on the design and implementation of heuristics

capable of yielding high quality solutions for medium and large-scale problem

instances within short computational times.
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Appendix A. List of abbreviations

Abbreviation Full name
VRP Vehicle routing problem
TRSP Technician routing and scheduling problem
SDVRP Site dependent vehicle routing problem
VRPTW Vehicle routing problem with time windows
TOP Team orienteering problem
B&C&P Branch and cut and price
B&P Branch and price
B&B Branch and bound
GLS Guided local search
GRASP Greedy randomised adaptive search procedure
TS Tabu search
SA Simulated annealing
SWO Squeaky wheel optimisation
LP Linear programming
CP Constraint programming
ALNS Adaptive large neighbourhood search
LS Local search
LNS Large neighbourhood search
VNS Variable neighbourhood search
ILS Iterated local search
TA Threshold accepting
AMP Adaptive memory programming
PSO Particle swarm optimisation
ACO Ant colony optimisation
GA Genetic algorithm
SS Scatter search
ILP Integer linear programming
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