2 research outputs found

    Gait Analysis Using Wearable Sensors

    Get PDF
    Gait analysis using wearable sensors is an inexpensive, convenient, and efficient manner of providing useful information for multiple health-related applications. As a clinical tool applied in the rehabilitation and diagnosis of medical conditions and sport activities, gait analysis using wearable sensors shows great prospects. The current paper reviews available wearable sensors and ambulatory gait analysis methods based on the various wearable sensors. After an introduction of the gait phases, the principles and features of wearable sensors used in gait analysis are provided. The gait analysis methods based on wearable sensors is divided into gait kinematics, gait kinetics, and electromyography. Studies on the current methods are reviewed, and applications in sports, rehabilitation, and clinical diagnosis are summarized separately. With the development of sensor technology and the analysis method, gait analysis using wearable sensors is expected to play an increasingly important role in clinical applications

    Scanning Spaces: Paradigms for Spatial Sonification and Synthesis

    Get PDF
    In 1962 Karlheinz Stockhausen’s “Concept of Unity in Electronic Music” introduced a connection between the parameters of intensity, duration, pitch, and timbre using an accelerating pulse train. In 1973 John Chowning discovered that complex audio spectra could be synthesized by increasing vibrato rates past 20Hz. In both cases the notion of acceleration to produce timbre was critical to discovery. Although both composers also utilized sound spatialization in their works, spatial parameters were not unified with their synthesis techniques. This dissertation examines software studies and multimedia works involving the use of spatial and visual data to produce complex sound spectra. The culmination of these experiments, Spatial Modulation Synthesis, is introduced as a novel, mathematical control paradigm for audio-visual synthesis, providing unified control of spatialization, timbre, and visual form using high-speed sound trajectories.The unique, visual sonification and spatialization rendering paradigms of this disser- tation necessitated the development of an original audio-sample-rate graphics rendering implementation, which, unlike typical multimedia frameworks, provides an exchange of audio-visual data without downsampling or interpolation
    corecore