367 research outputs found

    Artificial Intelligence and Machine Learning in Prostate Cancer Patient Management-Current Trends and Future Perspectives

    Get PDF
    Artificial intelligence (AI) is the field of computer science that aims to build smart devices performing tasks that currently require human intelligence. Through machine learning (ML), the deep learning (DL) model is teaching computers to learn by example, something that human beings are doing naturally. AI is revolutionizing healthcare. Digital pathology is becoming highly assisted by AI to help researchers in analyzing larger data sets and providing faster and more accurate diagnoses of prostate cancer lesions. When applied to diagnostic imaging, AI has shown excellent accuracy in the detection of prostate lesions as well as in the prediction of patient outcomes in terms of survival and treatment response. The enormous quantity of data coming from the prostate tumor genome requires fast, reliable and accurate computing power provided by machine learning algorithms. Radiotherapy is an essential part of the treatment of prostate cancer and it is often difficult to predict its toxicity for the patients. Artificial intelligence could have a future potential role in predicting how a patient will react to the therapy side effects. These technologies could provide doctors with better insights on how to plan radiotherapy treatment. The extension of the capabilities of surgical robots for more autonomous tasks will allow them to use information from the surgical field, recognize issues and implement the proper actions without the need for human intervention

    Brachytherapy

    Get PDF
    Importance of brachytherapy is currently increasing in cancer therapy. In brachytherapy each treatment is best fitted by physician's' hand, and appropriate arrangement and selection of radiation sources facilitates the fitting. This book is full of essences to make a breakthrough in radiation oncology by brachytherapy. I hope this book will encourage all people related. Contents 1: problem of currently popular dosimetric method; 2: Monte Carlo dose simulation of ruthenim-106/rhodium-106 eyes applicators; 3. Progress in Californium-252 neutron brachytherapy; 4. Clinical aspect of endobronchial brachytherapy in central airway tumor obstruction; 5. Review from principle and techniques of Iodine-125 production at nuclear reactor plant to their clinical practive in prostate cancer treatment; 6. Stereotactic Brachytherapy for Brain Tumors using Iodine-125 seed; 7. A brachytherapy procedure with organ-sparing hyaluronate gel injection for safe and eradicative reirradiation

    Development and evaluation of low-dose rate radioactive gold nanoparticles for application in nanobrachytherapy

    Get PDF
    Depuis les dix dernières années, l’innovation des traitements d’oncologie a fait une utilisation croissante de la nanotechnologie. De nouveaux traitements à base de nanoparticules (NPs) sont notamment rendus au stade de l’essai clinique. Possédant des caractéristiques physico-chimiques particulières, les NPs peuvent être utilisées afin de bonifier l’effet thérapeutique des traitements actuels. Par exemple, l’amélioration de la curiethérapie (c.-à-d. radiothérapie interne) nécessite le développement de nouvelles procédures permettant de diminuer la taille des implants, et ce, tout en augmentant l’homogénéité de la dose déposée dans les tumeurs. Des études théoriques et expérimentales ont démontré que l’injection de NPs d’or à proximité des implants traditionnels de curiethérapie de faible débit de dose (par ex. 125I, 103Pd) permettrait d’augmenter significativement leur efficacité thérapeutique. L'interaction entre l’or et les photons émis par les implants de curiethérapie (c.-à-d. l’effet de radiosensibilisation) génère des rayonnements divers (photoélectrons, électrons Auger, rayons X caractéristiques) qui augmentent significativement la dose administrée. Dans le cadre de cette thèse, l’approche proposée était de développer des NPs d’or radioactives comme nouveau traitement de curiethérapie contre le cancer de la prostate. L’aspect novateur et unique était de synthétiser une particule coeurcoquille (Pd@Au) en utilisant l’isotope actuellement employé en curiethérapie de la prostate: le palladium-103 (103Pd, 20 keV). Dans ce cas-ci, la présence d’atomes d’or permet de produire l’effet de radiosensibilisation et d’augmenter la dose déposée. La preuve de concept a été démontrée par la synthèse et la caractérisation des NPs 103Pd@Au-PEG NPs. Ensuite, une étude longitudinale in vivo impliquant l’injection des NPs dans un modèle xénogreffe de tumeurs de la prostate chez la souris a été effectuée. L’efficacité thérapeutique induite par les NPs a été démontrée par le retard de la croissance tumorale des souris injectées par rapport aux souris non injectées (contrôles). Enfin, une étude de cartographie de la dose générée par les NPs à l’échelle cellulaire et tumorale a permis de comprendre davantage les mécanismes thérapeutiques liés aux NPs radioactives. En résumé, l’ensemble des travaux présentés dans cette thèse font office de précurseurs relativement au domaine de la nanocuriethérapie, et pourraient ouvrir la voie à une nouvelle génération de NPs pour la radiothérapie.The last decade saw the emergence of new innovative oncology treatments based on nanotechnology. New treatments using nanoparticles (NPs) are now translated to clinical trials. NPs possess unique physical and chemical properties that can be advantageously used to improve the therapeutic effect of current treatments. For instance, therapeutic efficiency enhancement related to internal radiotherapy (i.e., brachytherapy), requires the development of new procedures leading to a decrease of the implant size, while increasing the dose homogeneity and distribution in tumors. Several theoretical and experimental studies based on low-dose brachytherapy seeds (e.g., 125I and 103Pd) combined with gold nanoparticles (Au NPs) showed very promising results in terms of dose enhancement. Gold is a radiosensitizer that enhances the efficiency of radiotherapy by increasing the energy deposition in the surrounding tissues. Dose enhancement is caused by the photoelectric products (photoelectrons, Auger electrons, characteristic X-rays) that are generated after the irradiation of Au NPs. In this thesis, the proposed approach was to develop radioactive Au NPs as a new brachytherapy treatment for prostate cancer. The unique and innovative aspect of this strategy was to synthesize core-shell NPs based on the radioisotope palladium-103 (103Pd, 20 keV), which is currently used in low-dose rate prostate cancer brachytherapy. In this concept, the administrated dose is increased via the radiosensitization effect that is generated through the interactions of low-energy photons with the gold atoms. The proof-ofconcept of this approach was first demonstrated by the synthesis and characterization of the core-shell NPs (103Pd@Au-PEG NPs). Then, a longitudinal in vivo study following the injection of NPs in a prostate cancer xenograft murine model was performed. The therapeutic efficiency was confirmed by the tumor growth delay of the treated group as compared to the control group (untreated). Finally, a mapping study of the dose distribution generated by the NPs at the cellular and tumor levels provided new insights about the therapeutic mechanisms related to radioactive NPs. In summary, the studies presented in this thesis are precursors works in the field of nanobrachytherapy, and could pave the way for a new generation of NPs for radiotherapy

    Ablative therapy for people with localised prostate cancer : a systematic review and economic evaluation

    Get PDF
    The research reported in this issue of the journal was funded by the HTA programme as project number 10/136/01. The contractual start date was in April 2012. The draft report began editorial review in October 2013 and was accepted for publication in April 2014. The authors have been wholly responsible for all data collection, analysis and interpretation, and for writing up their work. The HTA editors and publisher have tried to ensure the accuracy of the authors’ report and would like to thank the reviewers for their constructive comments on the draft document. However, they do not accept liability for damages or losses arising from material published in this report. Acknowledgements We thank l the people recruited from the local UCAN for providing valuable consumer insight and advice through their participation as members of the project focus group: - Mark Emberton (Professor of Interventional Oncology), Damian Greene (consultant urologist), Axel Heidenreich (Professor and Director of Department of Urology), Christoph von Klot (specialist in brachytherapy), Roger Kockelbergh (BAUS chairman and Clinical Director of Urology) and Axel Merserburger (Deputy Clinical Director of Urology and Urologic Oncology) for providing their clinical expertise as members of the project advisory group - Edgar Paez (consultant urologist) and Gill Lawrence (Head of Radiotherapy Physics) for providing a list of staff time by grade and specialty involved in EBRT - Debbie Bennett (Radiotherapy Service Manager) for providing estimates for the expected number of uses for EBRT - Ian Pedley (clinical director/clinical oncologist) and Gill Lawrence for providing a list of all resource inputs relevant to brachytherapy - Steve Locks (Consultant Clinical Scientist in Radiotherapy) for providing a list of reusable equipment and consumables used during brachytherapy, along with their unit costs - Sue Asterling (urology research nurse) and Mark Kelly (Acting Divisional General Manager – Theatres) for providing a list of all resource inputs relevant to cryotherapy - Lara Kemp for providing secretarial support. The Health Services Research Unit is core funded by the Chief Scientist Office of the Scottish Government Health Directorates.Peer reviewedPublisher PD

    Segmentierung medizinischer Bilddaten und bildgestützte intraoperative Navigation

    Get PDF
    Die Entwicklung von Algorithmen zur automatischen oder semi-automatischen Verarbeitung von medizinischen Bilddaten hat in den letzten Jahren mehr und mehr an Bedeutung gewonnen. Das liegt zum einen an den immer besser werdenden medizinischen Aufnahmemodalitäten, die den menschlichen Körper immer feiner virtuell abbilden können. Zum anderen liegt dies an der verbesserten Computerhardware, die eine algorithmische Verarbeitung der teilweise im Gigabyte-Bereich liegenden Datenmengen in einer vernünftigen Zeit erlaubt. Das Ziel dieser Habilitationsschrift ist die Entwicklung und Evaluation von Algorithmen für die medizinische Bildverarbeitung. Insgesamt besteht die Habilitationsschrift aus einer Reihe von Publikationen, die in drei übergreifende Themenbereiche gegliedert sind: -Segmentierung medizinischer Bilddaten anhand von vorlagenbasierten Algorithmen -Experimentelle Evaluation quelloffener Segmentierungsmethoden unter medizinischen Einsatzbedingungen -Navigation zur Unterstützung intraoperativer Therapien Im Bereich Segmentierung medizinischer Bilddaten anhand von vorlagenbasierten Algorithmen wurden verschiedene graphbasierte Algorithmen in 2D und 3D entwickelt, die einen gerichteten Graphen mittels einer Vorlage aufbauen. Dazu gehört die Bildung eines Algorithmus zur Segmentierung von Wirbeln in 2D und 3D. In 2D wird eine rechteckige und in 3D eine würfelförmige Vorlage genutzt, um den Graphen aufzubauen und das Segmentierungsergebnis zu berechnen. Außerdem wird eine graphbasierte Segmentierung von Prostatadrüsen durch eine Kugelvorlage zur automatischen Bestimmung der Grenzen zwischen Prostatadrüsen und umliegenden Organen vorgestellt. Auf den vorlagenbasierten Algorithmen aufbauend, wurde ein interaktiver Segmentierungsalgorithmus, der einem Benutzer in Echtzeit das Segmentierungsergebnis anzeigt, konzipiert und implementiert. Der Algorithmus nutzt zur Segmentierung die verschiedenen Vorlagen, benötigt allerdings nur einen Saatpunkt des Benutzers. In einem weiteren Ansatz kann der Benutzer die Segmentierung interaktiv durch zusätzliche Saatpunkte verfeinern. Dadurch wird es möglich, eine semi-automatische Segmentierung auch in schwierigen Fällen zu einem zufriedenstellenden Ergebnis zu führen. Im Bereich Evaluation quelloffener Segmentierungsmethoden unter medizinischen Einsatzbedingungen wurden verschiedene frei verfügbare Segmentierungsalgorithmen anhand von Patientendaten aus der klinischen Routine getestet. Dazu gehörte die Evaluierung der semi-automatischen Segmentierung von Hirntumoren, zum Beispiel Hypophysenadenomen und Glioblastomen, mit der frei verfügbaren Open Source-Plattform 3D Slicer. Dadurch konnte gezeigt werden, wie eine rein manuelle Schicht-für-Schicht-Vermessung des Tumorvolumens in der Praxis unterstützt und beschleunigt werden kann. Weiterhin wurde die Segmentierung von Sprachbahnen in medizinischen Aufnahmen von Hirntumorpatienten auf verschiedenen Plattformen evaluiert. Im Bereich Navigation zur Unterstützung intraoperativer Therapien wurden Softwaremodule zum Begleiten von intra-operativen Eingriffen in verschiedenen Phasen einer Behandlung (Therapieplanung, Durchführung, Kontrolle) entwickelt. Dazu gehört die erstmalige Integration des OpenIGTLink-Netzwerkprotokolls in die medizinische Prototyping-Plattform MeVisLab, die anhand eines NDI-Navigationssystems evaluiert wurde. Außerdem wurde hier ebenfalls zum ersten Mal die Konzeption und Implementierung eines medizinischen Software-Prototypen zur Unterstützung der intraoperativen gynäkologischen Brachytherapie vorgestellt. Der Software-Prototyp enthielt auch ein Modul zur erweiterten Visualisierung bei der MR-gestützten interstitiellen gynäkologischen Brachytherapie, welches unter anderem die Registrierung eines gynäkologischen Brachytherapie-Instruments in einen intraoperativen Datensatz einer Patientin ermöglichte. Die einzelnen Module führten zur Vorstellung eines umfassenden bildgestützten Systems für die gynäkologische Brachytherapie in einem multimodalen Operationssaal. Dieses System deckt die prä-, intra- und postoperative Behandlungsphase bei einer interstitiellen gynäkologischen Brachytherapie ab

    A survey on computational intelligence approaches for predictive modeling in prostate cancer

    Get PDF
    Predictive modeling in medicine involves the development of computational models which are capable of analysing large amounts of data in order to predict healthcare outcomes for individual patients. Computational intelligence approaches are suitable when the data to be modelled are too complex forconventional statistical techniques to process quickly and eciently. These advanced approaches are based on mathematical models that have been especially developed for dealing with the uncertainty and imprecision which is typically found in clinical and biological datasets. This paper provides a survey of recent work on computational intelligence approaches that have been applied to prostate cancer predictive modeling, and considers the challenges which need to be addressed. In particular, the paper considers a broad definition of computational intelligence which includes evolutionary algorithms (also known asmetaheuristic optimisation, nature inspired optimisation algorithms), Artificial Neural Networks, Deep Learning, Fuzzy based approaches, and hybrids of these,as well as Bayesian based approaches, and Markov models. Metaheuristic optimisation approaches, such as the Ant Colony Optimisation, Particle Swarm Optimisation, and Artificial Immune Network have been utilised for optimising the performance of prostate cancer predictive models, and the suitability of these approaches are discussed

    Artificial General Intelligence for Radiation Oncology

    Full text link
    The emergence of artificial general intelligence (AGI) is transforming radiation oncology. As prominent vanguards of AGI, large language models (LLMs) such as GPT-4 and PaLM 2 can process extensive texts and large vision models (LVMs) such as the Segment Anything Model (SAM) can process extensive imaging data to enhance the efficiency and precision of radiation therapy. This paper explores full-spectrum applications of AGI across radiation oncology including initial consultation, simulation, treatment planning, treatment delivery, treatment verification, and patient follow-up. The fusion of vision data with LLMs also creates powerful multimodal models that elucidate nuanced clinical patterns. Together, AGI promises to catalyze a shift towards data-driven, personalized radiation therapy. However, these models should complement human expertise and care. This paper provides an overview of how AGI can transform radiation oncology to elevate the standard of patient care in radiation oncology, with the key insight being AGI's ability to exploit multimodal clinical data at scale
    • …
    corecore