288 research outputs found

    NATURAL REGENERATION OF MIXED BEECH STANDS

    Get PDF
    Natural regeneration is very common in Romanian forests. One of the most important tree species is Fagus sylvatica. It is know that beech juveniles have greater abilities to survive and grow in shade so shelterwood regeneration methods are common for natural regeneration of this tree species. In order to put in evidence the best regeneration method, 15 mixed beech stands have been analyses in a hilly and mountain area from the West part of Romania. The aim of this research is to highlight the best regeneration methods in order to assure a successful reestablishment by natural means. Research showed that uniform shelterwood system is better that group shelterwood system for beech natural regeneration

    Learned-Norm Pooling for Deep Feedforward and Recurrent Neural Networks

    Full text link
    In this paper we propose and investigate a novel nonlinear unit, called LpL_p unit, for deep neural networks. The proposed LpL_p unit receives signals from several projections of a subset of units in the layer below and computes a normalized LpL_p norm. We notice two interesting interpretations of the LpL_p unit. First, the proposed unit can be understood as a generalization of a number of conventional pooling operators such as average, root-mean-square and max pooling widely used in, for instance, convolutional neural networks (CNN), HMAX models and neocognitrons. Furthermore, the LpL_p unit is, to a certain degree, similar to the recently proposed maxout unit (Goodfellow et al., 2013) which achieved the state-of-the-art object recognition results on a number of benchmark datasets. Secondly, we provide a geometrical interpretation of the activation function based on which we argue that the LpL_p unit is more efficient at representing complex, nonlinear separating boundaries. Each LpL_p unit defines a superelliptic boundary, with its exact shape defined by the order pp. We claim that this makes it possible to model arbitrarily shaped, curved boundaries more efficiently by combining a few LpL_p units of different orders. This insight justifies the need for learning different orders for each unit in the model. We empirically evaluate the proposed LpL_p units on a number of datasets and show that multilayer perceptrons (MLP) consisting of the LpL_p units achieve the state-of-the-art results on a number of benchmark datasets. Furthermore, we evaluate the proposed LpL_p unit on the recently proposed deep recurrent neural networks (RNN).Comment: ECML/PKDD 201

    Further advantages of data augmentation on convolutional neural networks

    Full text link
    Data augmentation is a popular technique largely used to enhance the training of convolutional neural networks. Although many of its benefits are well known by deep learning researchers and practitioners, its implicit regularization effects, as compared to popular explicit regularization techniques, such as weight decay and dropout, remain largely unstudied. As a matter of fact, convolutional neural networks for image object classification are typically trained with both data augmentation and explicit regularization, assuming the benefits of all techniques are complementary. In this paper, we systematically analyze these techniques through ablation studies of different network architectures trained with different amounts of training data. Our results unveil a largely ignored advantage of data augmentation: networks trained with just data augmentation more easily adapt to different architectures and amount of training data, as opposed to weight decay and dropout, which require specific fine-tuning of their hyperparameters.Comment: Preprint of the manuscript accepted for presentation at the International Conference on Artificial Neural Networks (ICANN) 2018. Best Paper Awar

    From neural PCA to deep unsupervised learning

    Full text link
    A network supporting deep unsupervised learning is presented. The network is an autoencoder with lateral shortcut connections from the encoder to decoder at each level of the hierarchy. The lateral shortcut connections allow the higher levels of the hierarchy to focus on abstract invariant features. While standard autoencoders are analogous to latent variable models with a single layer of stochastic variables, the proposed network is analogous to hierarchical latent variables models. Learning combines denoising autoencoder and denoising sources separation frameworks. Each layer of the network contributes to the cost function a term which measures the distance of the representations produced by the encoder and the decoder. Since training signals originate from all levels of the network, all layers can learn efficiently even in deep networks. The speedup offered by cost terms from higher levels of the hierarchy and the ability to learn invariant features are demonstrated in experiments.Comment: A revised version of an article that has been accepted for publication in Advances in Independent Component Analysis and Learning Machines (2015), edited by Ella Bingham, Samuel Kaski, Jorma Laaksonen and Jouko Lampine

    Assessment of algorithms for mitosis detection in breast cancer histopathology images

    Get PDF
    The proliferative activity of breast tumors, which is routinely estimated by counting of mitotic figures in hematoxylin and eosin stained histology sections, is considered to be one of the most important prognostic markers. However, mitosis counting is laborious, subjective and may suffer from low inter-observer agreement. With the wider acceptance of whole slide images in pathology labs, automatic image analysis has been proposed as a potential solution for these issues. In this paper, the results from the Assessment of Mitosis Detection Algorithms 2013 (AMIDA13) challenge are described. The challenge was based on a data set consisting of 12 training and 11 testing subjects, with more than one thousand annotated mitotic figures by multiple observers. Short descriptions and results from the evaluation of eleven methods are presented. The top performing method has an error rate that is comparable to the inter-observer agreement among pathologists

    XNet: A convolutional neural network (CNN) implementation for medical X-Ray image segmentation suitable for small datasets

    Full text link
    X-Ray image enhancement, along with many other medical image processing applications, requires the segmentation of images into bone, soft tissue, and open beam regions. We apply a machine learning approach to this problem, presenting an end-to-end solution which results in robust and efficient inference. Since medical institutions frequently do not have the resources to process and label the large quantity of X-Ray images usually needed for neural network training, we design an end-to-end solution for small datasets, while achieving state-of-the-art results. Our implementation produces an overall accuracy of 92%, F1 score of 0.92, and an AUC of 0.98, surpassing classical image processing techniques, such as clustering and entropy based methods, while improving upon the output of existing neural networks used for segmentation in non-medical contexts. The code used for this project is available online.Comment: 11 pages, 5 figures, 2 table

    Hardening against adversarial examples with the smooth gradient method

    Get PDF
    Commonly used methods in deep learning do not utilise transformations of the residual gradient available at the inputs to update the representation in the dataset. It has been shown that this residual gradient, which can be interpreted as the first-order gradient of the input sensitivity at a particular point, may be used to improve generalisation in feed-forward neural networks, including fully connected and convolutional layers. We explore how these input gradients are related to input perturbations used to generate adversarial examples and how the networks that are trained with this technique are more robust to attacks generated with the fast gradient sign method

    A deep learning approach to identify local structures in atomic-resolution transmission electron microscopy images

    Get PDF
    Recording atomic-resolution transmission electron microscopy (TEM) images is becoming increasingly routine. A new bottleneck is then analyzing this information, which often involves time-consuming manual structural identification. We have developed a deep learning-based algorithm for recognition of the local structure in TEM images, which is stable to microscope parameters and noise. The neural network is trained entirely from simulation but is capable of making reliable predictions on experimental images. We apply the method to single sheets of defected graphene, and to metallic nanoparticles on an oxide support.Comment: v2: Typo in author list correcte

    An incremental learning framework to enhance teaching by demonstration based on multimodal sensor fusion

    Get PDF
    Though a robot can reproduce the demonstration trajectory from a human demonstrator by teleoperation, there is a certain error between the reproduced trajectory and the desired trajectory. To minimize this error, we propose a multimodal incremental learning framework based on a teleoperation strategy that can enable the robot to reproduce the demonstration task accurately. The multimodal demonstration data are collected from two different kinds of sensors in the demonstration phase. Then, the Kalman filter (KF) and dynamic time warping (DTW) algorithms are used to preprocessing the data for the multiple sensor signals. The KF algorithm is mainly used to fuse sensor data of different modalities, and the DTW algorithm is used to align the data in the same timeline. The preprocessed demonstration data are further trained and learned by the incremental learning network and sent to a Baxter robot for reproducing the task demonstrated by the human. Comparative experiments have been performed to verify the effectiveness of the proposed framework
    corecore