611,437 research outputs found

    Experimental validation and physical modelling of vocal folds pathologies

    Full text link
    Voiced sounds involve self-sustained vocal folds oscillations due to the interaction between the airflow and the vocal folds. Common vocal folds pathologies like polyps and anatomical asymmetry degrade the mechanical vocal fold properties and consequently disturb the normal oscillation pattern resulting in an abnormal sound production. Treatment of voice abnormalities would benefit from an improved understanding between the pathology and the resulting oscillation pattern which motivates physical vocal folds modelling. The current study applies a theoretical vocal folds model to vocal folds pathologies. The theoretical vocal folds model is validated using an experimental set-up simulating the human phonatory apparatus. It consists in a pressure reservoir, a self-oscillating latex replica of the vocal folds and an acoustical resonator. The effects of pathologies are simulated by modifying the replica's geometry, elasticity, and homogeneity under controlled experimental conditions. In general, we observed a close match between measurements and theoretical predictions, which is all the more surprising considering the crudeness of the theoretical mode

    Recital: Piano/Vocal Duos

    Get PDF

    Concert: Piano/Vocal Duos

    Get PDF

    Student Recital: Piano/Vocal Duos

    Get PDF

    Vocal Jazz Ensemble

    Get PDF

    A comparative study of the function of heterospecific vocal mimicry in European passerines

    Get PDF
    Although heterospecific vocal imitation is well documented in passerines, the evolutionary correlates of this phenomenon are poorly known. Here, we studied interspecific variation in vocal mimicry in a comparative study of 241 European songbirds. We tested whether vocal mimicry is a mode of repertoire acquisition or whether it resulted from imperfect song learning. We also investigated the effect of the degree of contact with the vocal environment (with species having larger ranges, abundance, or being long lived having a higher degree of mimicry) and a possible link with cognitive capacity (an overall larger brain in species with mimicry). Finally, we determined the potential evolutionary role of vocal mimicry in different interspecific contexts, predicting that mimicry may affect the intensity of brood parasitism, predation, or degree of hybridization. While controlling for research effort and phylogenetic relationships among taxa, we found that effect sizes for intersong interval, brain size, breeding dispersal, abundance, age-dependent expression of repertoires, and predation risk reached a level that may indicate evolutionary importance. Vocal mimicry seems to be a consequence of song continuity rather than song complexity, may partially have some cognitive component but may also be dependent on the vocal environment, and may attract the attention of predators. However, estimates of sexual selection and interspecific contacts due to brood parasitism and hybridization varied independently of vocal mimicry. Therefore, mimicry may have no function in female choice for complex songs and may be weakly selected via interspecific associations. These findings provide little evidence for vocal mimicry having evolved to serve important functions in most birds

    Atypical neural responses to vocal anger in attention-deficit/hyperactivity disorder

    Get PDF
    Background Deficits in facial emotion processing, reported in attention-deficit/hyperactivity disorder (ADHD), have been linked to both early perceptual and later attentional components of event-related potentials (ERPs). However, the neural underpinnings of vocal emotion processing deficits in ADHD have yet to be characterised. Here, we report the first ERP study of vocal affective prosody processing in ADHD. Methods Event-related potentials of 6–11-year-old children with ADHD (n = 25) and typically developing controls (n = 25) were recorded as they completed a task measuring recognition of vocal prosodic stimuli (angry, happy and neutral). Audiometric assessments were conducted to screen for hearing impairments. Results Children with ADHD were less accurate than controls at recognising vocal anger. Relative to controls, they displayed enhanced N100 and attenuated P300 components to vocal anger. The P300 effect was reduced, but remained significant, after controlling for N100 effects by rebaselining. Only the N100 effect was significant when children with ADHD and comorbid conduct disorder (n = 10) were excluded. Conclusion This study provides the first evidence linking ADHD to atypical neural activity during the early perceptual stages of vocal anger processing. These effects may reflect preattentive hyper-vigilance to vocal anger in ADHD
    corecore