246 research outputs found

    1H NMR Metabolic Fingerprinting to Probe Temporal Postharvest Changes on Qualitative Attributes and Phytochemical Profile of Sweet Cherry Fruit

    Get PDF
    Sweet cherry fruits (Prunus avium cvs. ‘Canada Giant’, ‘Ferrovia’) were harvested at commercial maturity stage and analyzed at harvest and after maintenance at room temperature (storage at ~ 20°C, shelf life) for 1, 2, 4, 6 and 8 days, respectively. Fruit were initially analyzed for respiration rate, qualitative attributes and textural properties: ‘Canada Giant’ fruit were characterized by higher weight losses and stem browning index, being more intense over the late stages of shelf life period; meanwhile ‘Ferrovia’ possessed appreciably better performance even after extended shelf life period. A gradual decrease of respiration rate was monitored in both cultivars, culminated after 8 days at 20°C. The sweet cherry fruit nutraceutical profile was monitored using an array of instrumental techniques (spectrophotometric assays, HPLC, 1H-NMR). Fruit antioxidant capacity was enhanced with the progress of shelf life period, concomitant with the increased levels of total anthocyanin and of phenolic compounds. ‘Ferrovia’ fruit presented higher contents of neochlorogenic acid and p-coumarolquinic acid throughout the shelf life period. We further developed an 1H-NMR method that allows the study of primary and secondary metabolites in a single running, without previous separation and isolation procedures. Diagnostic peaks were located in the aliphatic region for sugars and organic acids, in the aromatic region for phenolic compounds and at 8.2 to 8.6 ppm for anthocyanins. This NMR-based methodology provides a unifying tool for quantitative and qualitative characterization of metabolite changes of sweet cherry fruits; it is also expected to be further exploited for monitoring temporal changes in other fleshy fruits

    Electronic sculpting of ligand-GPCR subtype selectivity:the case of angiotensin II

    Get PDF
    GPCR subtypes possess distinct functional and pharmacological profiles, and thus development of subtype-selective ligands has immense therapeutic potential. This is especially the case for the angiotensin receptor subtypes AT1R and AT2R, where a functional negative control has been described and AT2R activation highlighted as an important cancer drug target. We describe a strategy to fine-tune ligand selectivity for the AT2R/AT1R subtypes through electronic control of ligand aromatic-prolyl interactions. Through this strategy an AT2R high affinity (<i>K</i><sub>i</sub> = 3 nM) agonist analogue that exerted 18,000-fold higher selectivity for AT2R versus AT1R was obtained. We show that this compound is a negative regulator of AT1R signaling since it is able to inhibit MCF-7 breast carcinoma cellular proliferation in the low nanomolar range

    17O NMR and FT-IR study of the ionization state of peptides in aprotic solvents Application to Leu-enkephalin

    Get PDF
    AbstractThe ionization state of Leu-enkephalin in DMSO and MeCN/DMSO (4/1) solution was studied by the combined use of 17O NMR and FT-IR spectroscopy. After lyophilization or an aqueous solution at nearly neutral pH, Leu-enkephalin essentially exists in the uncharged state in MeCN/DMSO (4/1) solution. In pure DMSO, only 40% of the Leu-enkephalin molecules are in the zwitterionic state under the same conditions

    17O NMR: A "Rare and Sensitive" Probe of Molecular Interactions and Dynamics

    Get PDF
    This review summarizes recent developments in the area of liquid-state Nuclear Magnetic Resonance spectroscopy of the 17O nucleus. It is structured in Sections, respectively covering (a) general background information, with special emphasis on spin relaxation phenomena for quadrupolar nuclei and in paramagnetic environments, (b) methods for the calculation of 17O NMR parameters, with illustrative results, (c) applications in chemistry and materials science, (d) application to biomolecules and biological systems, (e) relaxation phenomena, including contrast agents for Magnetic Resonance Imaging (MRI). The 17O nucleus emerges as a very sensitive probe of the local environment ─ including both bonding and non-bonding interactions ─ and molecular motions

    Proton-coupled electron transfer reactivities of electronically divergent heme superoxide intermediates: a kinetic, thermodynamic, and theoretical study.

    Get PDF
    From Europe PMC via Jisc Publications RouterHistory: epub 2021-05-27, ppub 2021-07-01Publication status: PublishedFunder: Biotechnology and Biological Sciences Research Council; Grant(s): BB/J014478/1Heme superoxides are one of the most versatile metallo-intermediates in biology, and they mediate a vast variety of oxidation and oxygenation reactions involving O2(g). Overall proton-coupled electron transfer (PCET) processes they facilitate may proceed via several different mechanistic pathways, attributes of which are not yet fully understood. Herein we present a detailed investigation into concerted PCET events of a series of geometrically similar, but electronically disparate synthetic heme superoxide mimics, where unprecedented, PCET feasibility-determining electronic effects of the heme center have been identified. These electronic factors firmly modulate both thermodynamic and kinetic parameters that are central to PCET, as supported by our experimental and theoretical observations. Consistently, the most electron-deficient superoxide adduct shows the strongest driving force for PCET, whereas the most electron-rich system remains unreactive. The pivotal role of these findings in understanding significant heme systems in biology, as well as in alternative energy applications is also discussed
    corecore