406 research outputs found

    Supercomplex-Associated Cox26 Protein Binds to Cytochrome \u3cem\u3ec\u3c/em\u3e Oxidase

    Get PDF
    Here we identified a hydrophobic 6.4 kDa protein, Cox26, as a novel component of yeast mitochondrial supercomplex comprising respiratory complexes III and IV. Multi-dimensional native and denaturing electrophoretic techniques were used to identify proteins interacting with Cox26. The majority of the Cox26 protein was found non-covalently bound to the complex IV moiety of the III–IV supercomplexes. A population of Cox26 was observed to exist in a disulfide bond partnership with the Cox2 subunit of complex IV. No pronounced growth phenotype for Cox26 deficiency was observed, indicating that Cox26 may not play a critical role in the COX enzymology, and we speculate that Cox26 may serve to regulate or support the Cox2 protein. Respiratory supercomplexes are assembled in the absence of the Cox26 protein, however their pattern slightly differs to the wild type III–IV supercomplex appearance. The catalytic activities of complexes III and IV were observed to be normal and respiration was comparable to wild type as long as cells were cultivated under normal growth conditions. Stress conditions, such as elevated temperatures resulted in mild decrease of respiration in non-fermentative media when the Cox26 protein was absent

    A Structural Model of the Cytochrome c Reductase/Oxidase Supercomplex from Yeast Mitochondria

    Get PDF
    Mitochondrial respiratory chain complexes are arranged in supercomplexes within the inner membrane. Interaction of cytochrome c reductase (complex III) and cytochrome c oxidase (complex IV) was investigated in Saccharomyces cerevisiae. Projection maps at 15 Ă… resolution of supercomplexes III2 + IV1 and III2 + IV2 were obtained by electron microscopy. Based on a comparison of our maps with atomic x-ray structures for complexes III and IV we present a pseudo-atomic model of their precise interaction. Two complex IV monomers are specifically attached to dimeric complex III with their convex sides. The opposite sides, which represent the complex IV dimer interface in the x-ray structure, are open for complex IV-complex IV interactions. This could lead to oligomerization of III2 + IV2 supercomplexes, but this was not detected. Instead, binding of cytochrome c to the supercomplexes was revealed. It was calculated that cytochrome c has to move less than 40 Ă… at the surface of the supercomplex for electron transport between complex III2 and complex IV. Hence, the prime function of the supercomplex III2 + IV2 is proposed to be a scaffold for effective electron transport between complexes III and IV.

    Development of xenopus resource centers : the national xenopus resource and the european xenopus resource center

    Get PDF
    Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of John Wiley & Sons for personal use, not for redistribution. The definitive version was published in genesis 50 (2012): 155–163, doi:10.1002/dvg.22013.Xenopus is an essential vertebrate model system for biomedical research that has contributed to important discoveries in many disciplines, including cell biology, molecular biology, physiology, developmental biology and neurobiology. However, unlike other model systems no central repository/stock center for Xenopus had been established until recently. Similar to mouse, zebrafish and fly communities, which have established stock centers, Xenopus researchers need to maintain and distribute rapidly growing numbers of inbred, mutant and transgenic frog strains, along with DNA and protein resources, and individual laboratories struggle to accomplish this efficiently. In the last five years two resource centers were founded to address this need: the European Xenopus Resource Center (EXRC) at the University of Portsmouth in England, and the National Xenopus Resource (NXR) at the Marine Biological Laboratory (MBL) in Woods Hole, MA, USA. These two centers work together to provide resources and support to the Xenopus research community. The EXRC and NXR serve as stock centers and acquire, produce, maintain and distribute mutant, inbred and transgenic X. laevis and X. tropicalis lines. Independently, the EXRC is a repository for Xenopus cDNAs, fosmids and antibodies; it also provides oocytes and wild type frogs within the UK. The NXR will complement these services by providing research training and promoting intellectual interchange through hosting minicourses and workshops and offering space for researchers to perform short-term projects at the MBL. Together the EXRC and NXR will enable researchers to improve productivity by providing resources and expertise to all levels, from graduate students to experienced PIs. These two centers will also enable investigators that use other animal systems to take advantage of Xenopus’ unique experimental features to complement their studies

    WNT signalling in prostate cancer

    Get PDF
    Genome sequencing and gene expression analyses of prostate tumours have highlighted the potential importance of genetic and epigenetic changes observed in WNT signalling pathway components in prostate tumours-particularly in the development of castration-resistant prostate cancer. WNT signalling is also important in the prostate tumour microenvironment, in which WNT proteins secreted by the tumour stroma promote resistance to therapy, and in prostate cancer stem or progenitor cells, in which WNT-β-catenin signals promote self-renewal or expansion. Preclinical studies have demonstrated the potential of inhibitors that target WNT receptor complexes at the cell membrane or that block the interaction of β-catenin with lymphoid enhancer-binding factor 1 and the androgen receptor, in preventing prostate cancer progression. Some WNT signalling inhibitors are in phase I trials, but they have yet to be tested in patients with prostate cancer

    Olfactory ensheathing cells abutting the embryonic olfactory bulb express Frzb, whose deletion disrupts olfactory axon targeting.

    Get PDF
    We and others previously showed that in mouse embryos lacking the transcription factor Sox10, olfactory ensheathing cell (OEC) differentiation is disrupted, resulting in defective olfactory axon targeting and fewer gonadotropin-releasing hormone (GnRH) neurons entering the embryonic forebrain. The underlying mechanisms are unclear. Here, we report that OECs in the olfactory nerve layer express Frzb-encoding a secreted Wnt inhibitor with roles in axon targeting and basement membrane breakdown-from embryonic day (E)12.5, when GnRH neurons first enter the forebrain, until E16.5, the latest stage examined. The highest levels of Frzb expression are seen in OECs in the inner olfactory nerve layer, abutting the embryonic olfactory bulb. We find that Sox10 is required for Frzb expression in OECs, suggesting that loss of Frzb could explain the olfactory axon targeting and/or GnRH neuron migration defects seen in Sox10-null mice. At E16.5, Frzb-null embryos show significant reductions in both the volume of the olfactory nerve layer expressing the maturation marker Omp and the number of Omp-positive olfactory receptor neurons in the olfactory epithelium. As Omp upregulation correlates with synapse formation, this suggests that Frzb deletion indeed disrupts olfactory axon targeting. In contrast, GnRH neuron entry into the forebrain is not significantly affected. Hence, loss of Frzb may contribute to the olfactory axon targeting phenotype, but not the GnRH neuron phenotype, of Sox10-null mice. Overall, our results suggest that Frzb secreted from OECs in the olfactory nerve layer is important for olfactory axon targeting

    Structure-based prediction of Wnt binding affinities for Frizzled-type cysteine-rich domain

    Get PDF
    Wnt signaling pathways are of significant interest in development and oncogenesis. The first step in these pathways typically involves the binding of a Wnt protein to the cysteine-rich domain (CRD) of a Frizzled receptor; Wnt-Frizzled interactions can be antagonized by secreted Frizzled-related proteins (sFRPs), which also contain a Frizzled-like CRD. The large number of Wnts, Frizzleds and sFRPs, as well as the hydrophobic nature of Wnt, pose challenges to laboratory-based investigations of interactions involving Wnt. Here, utilizing structural knowledge of a representative Wnt-Frizzled CRD interaction, as well as experimentally-determined binding affinities for a selection of Wnt-Frizzled CRD interactions, we generate homology models of Wnt-Frizzled CRD interactions and develop a quantitative structure-activity relationship for predicting their binding affinities. The derived model incorporates a small selection of terms derived from scoring functions used in protein-protein docking, as well as an energetic term considering the contribution made by the lipid of Wnt to the Wnt-Frizzled binding affinity. Validation with an external test set suggests that the model can accurately predict binding affinity for 75% of cases, and that the error associated with the predictions is comparable to the experimental error. The model was applied to predict the binding affinities of the full range of mouse and human Wnt-Frizzled and Wnt-sFRP interactions, indicating trends in Wnt binding affinity for Frizzled and sFRP CRDs. The comprehensive predictions made in this study provide the basis for laboratory-based studies of previously unexplored Wnt-Frizzled and Wnt-sFRP interactions, which in turn, may reveal further Wnt signaling pathways

    Single-molecule in vivo imaging of bacterial respiratory complexes indicates delocalized oxidative phosphorylation

    Get PDF
    Chemiosmotic energy coupling through oxidative phosphorylation (OXPHOS) is crucial to life, requiring coordinated enzymes whose membrane organization and dynamics are poorly understood. We quantitatively explore localization, stoichiometry, and dynamics of key OXPHOS complexes, functionally fluorescent protein-tagged, in Escherichia coli using low-angle fluorescence and superresolution microscopy, applying single-molecule analysis and novel nanoscale co-localization measurements. Mobile 100-200nm membrane domains containing tens to hundreds of complexes are indicated. Central to our results is that domains of different functional OXPHOS complexes do not co-localize, but ubiquinone diffusion in the membrane is rapid and long-range, consistent with a mobile carrier shuttling electrons between islands of different complexes. Our results categorically demonstrate that electron transport and proton circuitry in this model bacterium are spatially delocalized over the cell membrane, in stark contrast to mitochondrial bioenergetic supercomplexes. Different organisms use radically different strategies for OXPHOS membrane organization, likely depending on the stability of their environment
    • …
    corecore