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Pathogenic  palmoplantar keratoderma mutationsFAM83G
inhibit the PAWS1:CK1α association and attenuate Wnt

 signalling. [version 1; peer review: 2 approved]
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       Thomas J. Macartney , Nicola T. Wood , Joby Varghese , Robert Gourlay ,
   Renata F. Soares , James C. Smith , Gopal P. Sapkota 1

Medical Research Council, Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
The Francis Crick Institute, London, UK

Abstract
 Two recessive mutations in the   gene, causingBackground: FAM83G

A34E and R52P amino acid substitutions in the DUF1669 domain of the
PAWS1 protein, are associated with palmoplantar keratoderma (PPK) in
humans and dogs respectively. We have previously reported that PAWS1
associates with the Ser/Thr protein kinase CK1α through the DUF1669
domain to mediate canonical Wnt signalling.

 Co-immunoprecipitation was used to investigate possibleMethods:
changes to PAWS1 interactors caused by the mutations. We also
compared the stability of wild-type and mutant PAWS1 in
cycloheximide-treated cells. Effects on Wnt signalling were determined
using the TOPflash luciferase reporter assay in U2OS cells expressing
PAWS1 mutant proteins. The ability of PAWS1 to induce axis duplication in 

 embryos was also tested. Finally, we knocked-in the A34EXenopus
mutation at the native gene locus and measured Wnt-induced AXIN2 gene
expression by RT-qPCR.

 We show that these PAWS1  and PAWS1  mutants fail toResults:
interact with CK1α but, like the wild-type protein, do interact with CD2AP
and SMAD1. Like cells carrying a PAWS1  mutation, which also
abolishes CK1α binding, cells carrying the A34E and R52P mutants
respond poorly to Wnt signalling to an extent resembling that observed in 

 gene knockout cells. Consistent with this observation, theseFAM83G
mutants, in contrast to the wild-type protein, fail to induce axis duplication in

 embryos. We also found that the A34E and R52P mutant proteinsXenopus
are less abundant than the native protein and appear to be less stable, both
when overexpressed in  -knockout cells and when knocked-in atFAM83G
the native   locus. Ala  of PAWS1 is conserved in all FAM83FAM83G
proteins and mutating the equivalent residue in FAM83H (A31E) also
abolishes interaction with CK1 isoforms.

 We propose that mutations in PAWS1 cause PPKConclusions:
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 We propose that mutations in PAWS1 cause PPKConclusions:
pathogenesis through disruption of the CK1α interaction and attenuation of
Wnt signalling.

Keywords
Wnt signalling, palmoplantar keratoderma, casein kinase, skin, hereditary
footpad hyperkeratosis.
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Introduction
FAM83G (also known as PAWS1; Protein Associated With  
SMAD1) belongs to the FAM83 family of poorly character-
ised proteins with which it shares the conserved DUF1669  
(Domain of Unknown Function) at the N-terminus. The  
primary sequences of FAM83 proteins reveal little about their  
biochemical functions, and although the DUF1669 domains  
of all eight FAM83 members (FAM83A-H) contain pseudo- 
catalytic phospholipase D-like ‘HKD’ motifs, no PLD activity  
in vitro has been reported to date1–3.

The first clue to possible physiological functions of PAWS1  
came in 2013 from a ‘woolly’ mouse phenotype, in which a  
large deletion of the FAM83G gene (probably resulting in a  
severely truncated protein) was linked to a rough and  
matted appearance of the coat4. No further studies analysing  
biochemical or other possible phenotypic abnormalities in 
these mice have been reported. Another study reported a  
single homozygous missense mutation in the FAM83G gene  
(c.155C>G), which results in the substitution of a conserved  
arginine into proline (p.R52P) in the PAWS1 protein. This is 
the causative genetic defect for hereditary footpad hyperkera-
tosis (HFH), an autosomal recessive disease affecting several  
dog breeds, in which gradual thickening of the footpad  
epidermis leads to the development of painful cracks and  
fissures. Dogs with HFH also exhibit a softer, duller coat  
appearance5,6, reminiscent of the “woolly” mouse phenotypes. 
The HFH phenotypes also occur in human patients and are  
broadly described as palmoplantar keratodermas (PPK), which 
represent a group of skin conditions characterised by thick-
ening of the skin on the palms of the hands and soles of the 
feet. PPKs often arise from mutations in genes encoding 
for the keratin cytoskeleton or cell junctions, although there 
are many cases for which the molecular basis has yet to be  
established7,8. Recently, a study reported a single homozygous 
missense mutation in the FAM83G gene (c.101C>A), which  
results in a substitution of a conserved alanine into glutamate 
(p.A34E) on the PAWS1 protein. The two human patients were 
siblings and both presented with palmoplantar keratoderma 
and thick, exuberant scalp hair9. Both A34E (human) and R52P  
(dog) mutations in PAWS1 lie within the conserved DUF1669 
domain. The high degree of similarity between the phenotypes 
seen in mice, dogs, and humans provides compelling genetic 
evidence for the involvement of PAWS1 in skin and hair  
homeostasis.

In the last few years, we have made progress in understanding 
the biochemical functions and regulation of PAWS1 and other  
FAM83 proteins. We discovered that FAM83 proteins, through  
their DUF1669 domains, interact with distinct sets of CK1α, δ, 
and ε isoforms to direct them to distinct subcellular locations,  
thereby, perhaps, regulating the diverse roles of CK1  
isoforms10. In particular, we found that PAWS1 interacts with 
CK1α and that this interaction is essential to promote canonical 
Wnt signalling in human cell lines and Xenopus embryos by 
accentuating the nuclear accumulation of β-catenin1. In the  
nucleus, β-catenin forms a complex with TCF/LEF transcrip-
tion factors to activate Wnt-dependent target gene expression11.  
Because the Wnt signalling pathway plays crucial roles at  

several stages of epithelial and hair development (reviewed 
in 12,13), we asked whether the pathogenic palmoplantar  
keratoderma effects of the PAWS1 mutations might be due to  
dysregulation of Wnt signalling or, alternatively, to other  
activities of the PAWS1 protein. These other activities include 
the ability of PAWS1 to associate with the transcription factor  
SMAD1 to control a subset of non-canonical bone morphoge-
netic protein (BMP)-induced gene transcription, as well as its  
ability to interact with the SH3 adaptor CD2AP to regulate  
actin cytoskeleton remodelling14,15.

Methods
Plasmids and antibodies
All constructs were sequence-verified by the DNA Sequencing 
Service, University of Dundee. For transient expression or  
production of retroviral vectors, the following were cloned into 
pBabe puro plasmids (Cell Biolabs, RTV-001-PURO), with  
slight modifications introduced at the cloning sites: GFP  
(DU32961), PAWS1 (DU33460) PAWS1A34E (DU28382),  
PAWS1R52P (DU24544), PAWS1F296A (DU28044), PAW-
S1S614A (DU33463), PAWS1-GFP (DU29088), PAWS1A34E-GFP  
(DU29572), PAWS1R52P-GFP (DU28090), and PAWS1F296A-GFP 
(DU29571).The following were cloned into pcDNA5-FRT/TO-
FLAG plasmids (Thermo Fisher Scientific, V652020): FLAG- 
FAM83HWT (DU28811), FLAG-FAM83HA31E (DU29553), FLAG 
empty (DU41457). HA-SMAD1 (DU19263) was cloned into 
pCMV5 (DU2865), and CD2AP-FLAG (DU24770) into pcDNA5 
(Thermo Fisher Scientific, V652020). M50 Super 8x TOP-
Flash was a gift from Randall Moon (Addgene plasmid #12456; 
RRID:Addgene_12456). Details of plasmids used for CRISPR/
Cas9 genome editing are provided as referred to in the text. For  
transcription of mRNA used in Xenopus experiments, sequences 
were cloned into pCS2: PAWS1-HA (DU64256), PAWS1A34E-HA 
(DU64302), and PAWS1R52P-HA (DU64303). These constructs 
are available to request from the MRC-PPU reagents webpage  
and the unique identifier (DU) numbers indicated above provide 
direct links to the cloning strategies and sequence details.

Antibodies include PAWS1 (S876C, sheep polyclonal, 1:1000; or 
Abcam, rabbit polyclonal, 1:1000, ab121750), SMAD1 (S618C, 
sheep polyclonal, 1:1000), CK1α (SA527, sheep polyclonal, 
1:1000; or Bethyl Laboratories #A301-991A-M, rabbit poly-
clonal, 1:1000), GFP (MBL #598, rabbit polyclonal, 1:1000),  
GAPDH (CST #5174, rabbit polyclonal, 1:5000), α-tubulin 
(Thermo Fisher Scientific #MA1-80189, rat monoclonal, 1:5000), 
c-Myc (CST #5605, rabbit monoclonal, 1:1000), FAM83H  
(SA273, sheep polyclonal, 1:1000), monoclonal mouse anti-
FLAG M2-HRP (Sigma, A8592, 1:5000), HA-tag (Sigma, H9658, 
mouse monoclonal, 1:10000), CK1ε (Sigma, HPA026288, rabbit  
polyclonal, 1:1000), CK1δ (SA609, sheep polyclonal,  
1:1000) and β-actin (CST, #4967S, 1:1000). Unless stated  
otherwise, antibodies were diluted in TBS buffer (50 mM Tris– 
HCl, pH 7.5, 150 mM NaCl) containing 5% non-fat dry milk.

Secondary antibodies used for immunoblotting are as follows: 
IRDye 800CW Donkey anti-Goat (LI-COR, 926-32214, 1:5000), 
IRDye 800CW Donkey anti-Mouse IgG (LI-COR, 926-32212, 
1:5000), IRDye 800CW Donkey anti-Rabbit IgG (LI-COR, 926-
32213, 1:5000), IRDye 800CW Goat anti-Rat IgG (LI-COR, 
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926-32219, 1:5000), IRDye 680LT Donkey anti-Mouse IgG  
(LI-COR, 926-68022, 1:5000), IRDye 680LT Donkey anti-Rabbit 
IgG (LI-COR, 926-68023, 1:5000), StarBright Blue 700 Goat 
Anti-Rabbit IgG (Bio-Rad, 12004161, 1:5000), StarBright Blue 
700 Goat Anti-Mouse IgG (Bio-Rad, 12004158, 1:5000), Goat  
anti-Rabbit IgG HRP (CST #7074, 1:5000), IRDye 800CW 
Goat anti-Mouse (LI-COR, 926-32210, 1:10,000), IRDye 680LT 
Goat anti-Rabbit (LI-COR, 926-68021, 1:10,000), and Rabbit  
anti-Sheep IgG HRP (Thermo Fisher Scientific, 31480, 1:5000).

Cell culture and transfections
U2OS osteosarcoma (ATCC, HTB-96), HEK293 human  
embryonic kidney (ATCC, CRL-1573), HaCaT human  
keratinocytes (from Joan Massague’s lab at Memorial Sloan  
Kettering Cancer Center, not commercially obtained but can 
be provided on request)16, mouse fibroblast L-cells that stably  
overexpress Wnt3A (ATCC, CRL-2647) or L cells (ATCC,  
CRL-2648) were grown in Dulbecco’s Modified Eagle’s  
Medium (DMEM; Invitrogen, 11960-085) supplemented 
with 10% (v/v) FBS (Sigma, F7524), 2 mM L-glutamine  
(Invitrogen, 25030024), 100 units/ml Penicillin and 100 μg/ml  
Streptomycin (Invitrogen, 15140122). Cells were grown at 
37°C in a humidified incubator at 5% CO

2
. Lipofectamine 

2000 (Thermo Fisher Scientific, 11668019) was used for  
transient transfections with plasmids according to the manu-
facturer’s recommendation, using a ratio of 1 μg plasmid to  
2 μl reagent.

Preparation of protein extracts
Cells were placed on ice and collected by scraping in ice-cold  
PBS. The resulting cell pellet was washed with PBS, and either 
lysed immediately as described below, or stored at -20°C until 
analysis. Cell pellets were thawed on ice and resuspended in a  
suitable volume of lysis buffer (50 mM Tris–HCl pH 7.5, 1 mM 
EGTA, 1 mM EDTA, 1 mM activated Na

3
VO

4
, 10 mM Na  

β-glycerophosphate, 50 mM NaF, 5 mM Na Pyrophosphate,  
270 mM sucrose, 1% (v/v) NP-40 substitute (Merck, 492016) 
and a protease inhibitor cocktail (Merck, 11873580001). After  
10 min incubation on ice, lysates were clarified by centrifuga-
tion at 13,000 × g for 15 min at 4°C. Supernatant was recovered  
(soluble cell extract), and protein concentration was deter-
mined in a 96-well format using Bradford protein assay reagent  
(Pierce, 23236). Absorbance at 595 nm was measured using the 
Epoch microplate spectrophotometer (BioTek).

Xenopus extracts were prepared by titrating with 10 μl/embryo 
of embryo lysis buffer (1% IGEPAL, 150 mM NaCl, 10 mM  
HEPES pH 7.4, 2 mM EDTA, protease inhibitor cocktail  
(Pierce, A32965)). Lipids and yolk were removed by extract-
ing the lysate with an equal volume of 1,1,2-Trichloro-1,2,2- 
trifluoroethane (FREON, Sigma Aldrich, 130400).

Immunoprecipitation and immunoblotting
0.3 – 1 mg of soluble cell extract protein was incubated with  
10 μl of GFP-Trap beads (ChromoTek, gta-10), M2 anti-FLAG 
Sepharose (Sigma, A2220), or PAWS1 antibody and Protein 
G-Sepharose (Sigma, P3296) for 1–2 h at 4°C with gentle  
agitation. Beads were then washed 5 times with lysis buffer.  
Immunoprecipitated proteins and protein extracts (10–20 μg)  

were denatured in SDS sample buffer and then separated by  
SDS-PAGE. Proteins were transferred to 0.2 μM pore size  
nitrocellulose membrane (GE Healthcare, 10600001). The  
membrane was blocked with 5% non-fat dry milk in TBS buffer  
(50 mM Tris–HCl, pH 7.5, 150 mM NaCl) or Odyssey  
Blocking Buffer in TBS (LI-COR, 927-50000) for 1 h and then 
with primary antibody diluted in blocking solution containing  
0.1% (v/v) Tween-20 overnight at 4°C. Blots were incubated  
for 1 h at room temperature with the appropriate IRDye  
(LI-COR), StarBright (Bio-Rad) fluorescently conjugated or  
HRP conjugated secondary antibodies diluted in blocking  
solution, and visualised using the Odyssey Imager (LI-COR) or 
Chemidoc MP system (Bio-Rad, 17001402).

Generation of PAWS1 and FAM83H knockouts and A34E 
knock-in cells by CRISPR/Cas9
To generate PAWS1 knockouts, cells were transfected with  
vectors encoding a pair of guide RNAs (pBabeD-Puro-gRNA1 
(GGACCGCTCCATCCCGCAGC) and pX335-CAS9-D10A-
gRNA2 (GCTGGGGCCAGTACTCCAGGG), DU52480 and 
DU52484 respectively) targeting the first coding exon (Exon 2) 
of PAWS1. A similar approach was used to generate FAM83H  
knockouts, with guide RNAs (DU52010 and DU52026) targeting 
the first coding exon (Exon 2) of FAM83H10. For the knock-in of 
the PAWS1 A34E point mutation, a single guide RNA targeting  
Exon 2 was used (pX459-Puro-CAS9-sgRNA (GCTA-
CAGCGAGGAGCAGCGGC), DU60688). The plasmid donor  
(DU60974) contains a GFP sequence (allowing single cell 
FACS selection for donor integration), and an internal ribosome  
entry site (IRES) upstream of the PAWS1 transcription start site. 
In addition to the point mutation for A34E (c.101C>A), silent  
base substitutions were made to prevent further recognition 
by the gRNA, and to introduce a XhoI restriction site to allow  
screening. 24 h post-transfection with the indicated plasmids,  
cells were cultured with 2 μg/ml puromycin (Sigma, P9620). 
Surviving cells were sorted on an Influx cell sorter (Becton  
Dickinson) equipped with a 488nm laser, using PBS as sheath 
at a pressure of 6 psi through a 140 μm nozzle. Live cells were 
distinguished from debris based on forward scatter-height  
(FSC-H) v side scatter-height (SSC-H) measurements, and  
single cells distinguished from doublets based on FSC-Area  
(A) v FSC-Width (W). Where GFP positive cells were  
collected, the autofluorescence of non-fluorescent control 
cells was assessed by measuring fluorescence emission at  
530±40nm and 580±30nm. GFP positive cells were identified 
in subsequent samples as exhibiting 530±40nm fluorescence 
above that of controls. Viable clones were verified by genomic  
sequencing and immunoblotting.

For verification by DNA sequencing, the region surrounding 
the gRNA target sites were amplified by PCR with KOD Hot  
Start Polymerase (Merck, 71086) according to manufacturer’s 
instructions with the following primer pairs for PAWS1 KO and 
PAWS1A34E knock-in respectively: F: TCTTTCCCGCAGATT-
GCTCATGG, R: TTCTTCTGGGGAACCAGAAACACC; F:  
TGGACGACAACCATGTGAACTGG, R: CGCACCACCTCTTT-
GATGTGG. Cycling conditions: 98°C 2 min, (98°C 10 sec, 
60°C 15 sec, 70°C 30 sec) ×40 cycles, 70°C 5 min. Amplifica-
tion was performed using a DNA Engine thermal cycler (BioRad,  
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ALS-1296G). PCR products were ligated into a sequencing  
vector using the StrataClone Blunt PCR Cloning Kit (Agilent, 
240207) according to manufacturer’s instructions. Resulting  
plasmid clones were sequenced by the DNA Sequencing  
Service, University of Dundee using the M13 Forward primer 
(GTAAAACGACGGCCAGTG).

Retroviral transduction of cells for the stable expression of 
target proteins
Retroviral pBabe-puromycin vectors encoding GFP or the  
desired target protein (6 μg) were co-transfected with pCMV5-
gag-pol (3.2 μg, Cell Biolabs, RV-111) and pCMV5-VSV-G  
(2.8 μg, Cell Biolabs, RV-110) into a 10 cm-diameter dish of  
~70% confluent HEK293-FT cells. Briefly, plasmids were 
added to 1 ml Opti-MEM medium (Thermo Fisher Scientific,  
31985062) to which 24 μl of 1 mg/ml polyethylenimine  
(PEI; diluted in 25 mM HEPES pH 7.5) was added. Following a  
brief vortex mix and incubation at room temperature for  
20 min, the transfection mix was added dropwise to the  
HEK293-FT cells. 16 h post-transfection, fresh medium was  
added to the cells. 24 h later, the retroviral medium was  
collected and passed through 0.45 μm filters. Target PAWS1-
KO HaCaT or U2OS cells (~60% confluent) were infected with 
the optimised titre of the retroviral medium diluted in fresh  
medium (typically 1:5 – 1:10) containing 8 μg/ml polybrene  
(Sigma, H9268) for 24 h. The retroviral infection medium was 
then replaced with fresh medium, and 24 h later, the medium  
was again replaced with fresh medium containing 2 μg/ml  
puromycin (Sigma, P9620) for selection of cells which had  
integrated the rescue constructs.

Mass spectrometry
10.5 mg of protein in soluble cell extract from HaCaT cells was 
pre-cleared by incubation with Protein G-Sepharose for 30 min  
at 4°C, then incubated with GFP-Trap beads (ChromoTek, 
gta-10) for 4 h at 4°C. Beads were washed 5 times with lysis  
buffer, then denatured in LDS sample buffer (Thermo Fisher 
Scientific, NP0007) supplemented with 2% β-mercaptoethanol.  
Samples were filtered through a Spin-X centrifuge tube filters 
(Sigma, CLS8161), resolved by 4–12% gradient SDS–PAGE 
(Thermo Fisher Scientific, NP0323), and stained with colloidal 
Coomassie blue. Gels were destained in Milli-Q H

2
O until 

background staining was minimal. Sections of the gel were  
excised, trypsin digested, and peptides prepared for analysis.

Mass spectrometric analysis was performed by LC-MS-MS  
(Liquid Chromatography-tandem Mass Spectrometry) on a  
Linear ion trap-orbitrap hybrid mass spectrometer (Orbitrap-
VelosPro, Thermo) coupled to a U3000 RSLC HPLC (Rapid  
Separation/High-Performance Liquid Chromatography;  
Thermo). Peptides were trapped on a nanoViper Trap column,  
2cm × 100μm C18 5μm 100Å (Thermo, 164564) then separated 
on a 50cm Thermo EasySpray column (ES803) equilibrated 
with a flow of 300 nl/min of 3% Solvent B. [Solvent A 0.1%  
formic acid; Solvent B 80% acetonitrile, 0.08% formic acid].  
The elution gradient was as follows, Time(min):Solvent B(%);  
0:3, 5:5, 45:35, 47:95, 52:95, 52.5:3, 65:3. The instrument 
was operated with the “lock mass” option to improve the 
mass accuracy of precursor ions and data were acquired in the  

data-dependent mode, automatically switching between MS 
and MS-MS acquisition. Full scan spectra (m/z 400-1600) 
were acquired in the orbitrap with resolution R = 60,000 at m/z 
400 (after accumulation to an FTMS (Fourier Transform Mass  
Spectrometry) Full AGC (Automatic Gain Control) Target; 
1,000,000; FTMS MSn AGC Target; 50,000). The 20 most  
intense ions, above a specified minimum signal threshold  
(2,000), based upon a low resolution (R = 15,000) preview 
of the survey scan, were fragmented by collision induced  
dissociation and recorded in the linear ion trap, (Full AGC  
Target; 30,000. MSn AGC Target; 5,000).

Data files were analysed by Proteome Discoverer 2.0 
(Thermo), using Mascot 2.4.1, and searching against SwissProt 
database allowing for the following peptide modifications,  
Carbamidomethyl (C) – fixed modification, and Oxidation (M), 
Dioxidation (M) as variable modifications. Error tolerances 
were 10ppm for MS1 and 0.6 Da for MS2. Scaffold 4 was also  
used to examine the Mascot result files.

Dual luciferase reporter assays
HEK293 cells (4 × 104/cm2) were seeded in 12-well plates. 24 h 
later, 200 ng of SuperTOPFlash, 20 ng of Renilla luciferase  
(Promega, E2261), and 100 ng of GFP or PAWS1-GFP  
plasmids were co-transfected as described above. After 24 h, 
cells were treated with L-Wnt3A or L-conditioned medium 
for 6 h. Cells were washed with PBS and lysed in Passive Lysis  
Buffer (Promega, E194A). Firefly and Renilla luciferase  
activities were measured as described previously17. Briefly, 
extracts were mixed 1:1 with 2x Luciferase Buffer (50 mM  
Tris/phosphate (pH 7.8), 16 mM MgCl

2
, 2 mM DTT (dithio-

threitol), 30% (v/v) glycerol, 1 mM ATP, 1% BSA, 0.25 mM  
luciferin and 8 μM sodium pyrophosphate) and light emission 
was measured using a Envision 2104 plate reader (PerkinElmer). 
An equivalent volume of 3x Renilla Assay Buffer (45 mM  
Na

2
EDTA, 30 mM sodium pyrophosphate, 1.425 M NaCl,  

60 μM PTC124, 10 μM h-Coelenterazine) was then added, and 
Renilla luciferase emission was measured. The firefly luciferase 
counts were normalised to Renilla for each sample.

Quantitative PCR and primers
Total RNA was isolated from cells using the RNeasy Micro kit 
(Qiagen, 74004). Reverse transcription was performed using  
1 μg of isolated RNA and the iScript cDNA synthesis kit  
(Bio-Rad, 170–8891) according to the manufacturer’s protocol. 
Quantitative PCR was performed in 10 μl reaction volumes 
with three or four technical replicates. Each reaction included  
2 μM forward and reverse primers, PowerUp SYBR Green  
Master Mix (Thermo Fisher Scientific, A25742), and cDNA  
equivalent to 10 ng of RNA, and monitored in a CFX384  
real-time PCR detection system (Bio-Rad, 1855485). Cycling  
conditions: 50°C 2 min, 95°C 2 min, (95°C 10 sec, 60°C 30 sec) 
×45 cycles. Ct values were determined by the CFX Manager  
3.1 software (Bio-Rad, 1845000), and relative gene expression  
was determined using the delta-delta Ct method.

Primers: GAPDH forward (TGCACCACCAACTGCTTAGC), 
GAPDH reverse (GGCATGGACTGTGGTCATGAG), AXIN2 
forward (TACACTCCTTATTGGGCGATCA), AXIN2 reverse 
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(TTGGCTACTCGTAAAGTTTTGGT), PAWS1 forward (CACA-
GAAGGTGATAGCTGTG), PAWS1 reverse (ACTTGACGT-
TACTCTCATCCA). All graphs shown are the result of at least 
three biological replicates.

Cycloheximide block
U2OS cells (2 × 104/cm2) were seeded in 6-well plates. 24 h 
later, cells were transfected with 750 ng pBabe PAWS1 plasmids 
per well. The following day, cells were treated with 100 μg/ml  
cycloheximide (Sigma, C7698) and/or 5 μM bortezomib (Sigma, 
5043140001) for the indicated times prior to collection.

Xenopus laevis assay methodology
All Xenopus laevis work, including general housing and  
husbandry, was undertaken in accordance with The Crick Use of 
animals in research policy, the Animals (Scientific Procedures) 
Act 1986 (ASPA) implemented by the Home Office in the UK  
and the Animal Welfare Act 2006. Consideration was given 
to the ‘3Rs’ in experimental design. Xenopus laevis embryos 
were obtained by in vitro fertilisation and staged according to  
Nieuwkoop and Faber (1975). Embryos were maintained in  
Normal Amphibian Medium (NAM) at 21°C, 18°C or 14°C  
until the 4-cell stage was reached. Embryos were then injected 
into a single ventral blastomere with 500 pg of the indicated  
capped RNA, synthesised using SP6 mMessage mMachine kit  
(Invitrogen, AM1340), in a total volume of 5 nl. Embryos were 
then allowed to develop to approximately stage 34–35 at 21°C,  
before being fixed in 4% paraformaldehyde (PFA). Embryos 
were then counted and scored for the secondary axis phenotype:  
secondary axis complete with 2 × cement gland = complete  
secondary axis; secondary axis apparent but 1 × cement  
gland = partial secondary axis; enlarged cement gland/rostral  
structures = dorsalised; comparable to WT = WT. As phenotypes 
were distinct, no blinding/randomisation was undertaken. For 
each experiment, approximately 35–40 embryos were injected 
to ensure sufficient statistical power and a similar number of  
uninjected embryos were kept under the same conditions as  
controls. The experiment was repeated three times, twice on 
the same day (morning and afternoon) using eggs from two  
different females and testes from the same male, the third  
experiment was undertaken on a separate day using eggs from a 
third female and testes from a second male.

For western blotting, embryos were obtained as described  
above and injected with 500 pg of the indicated capped RNA 
into the animal hemisphere at the one-cell stage. Embryos were  
allowed to develop to stage 10 at 18°C before being snap frozen  
on dry ice and stored at -20°C for later protein extraction.

Statistical analysis
Graphing and statistical tests were performed using Prism 7  
software (GraphPad). Unless otherwise noted, data are  
presented as the mean ± standard deviation of at least three 
biological replicates. Specific tests used are described in the  
respective figure legends. Significance levels are as follows: 
*P<0.05, **P<0.005, ***P<0.001. See underlying data for data 
underlying all presented figures18.

Results
Palmoplantar keratoderma (PPK)-associated PAWS1-A34E 
and R52P mutants interfere with CK1α binding
PAWS1 interacts with CK1α1,10, SMAD115, and CD2AP14. We 
first asked whether the two PPK-associated mutants A34E and  
R52P affect the ability of PAWS1 to interact with these three  
proteins. To this end, we co-expressed PAWS1-GFP in  
HEK293 cells with either HA-SMAD1 or myc-CD2AP. Immu-
noprecipitation (IP) experiments confirmed that PAWS1-GFP 
co-precipitates with HA-SMAD1 (Figure 1A) and myc-CD2AP 
(Figure 1B), as well as with endogenous CK1α. Under these 
conditions, both PAWS1A34E and PAWS1R52P also co-precipitate 
with HA-SMAD1 (Figure 1A) and myc-CD2AP (Figure 1B)  
but did not immunoprecipitate with endogenous CK1α  
(Figure 1A&B). As a control, we made use of the PAWS1F296A 
mutant, which lies within the DUF1669 domain of PAWS1 
and is unable to interact with CK1α1. Like the A34E and 
R52P mutants, PAWS1F296A did not interact with CK1α  
(Figure 1A&B), but did co-precipitate with HA-SMAD1  
(Figure 1A) and myc-CD2AP (Figure 1B).

PPK phenotypes are associated with abnormal epidermis and 
often result from epidermal hyperplasia7,19,20. To investigate the  
impact of the PPK mutants in a physiologically relevant cell 
line model, we used CRISPR/Cas9 genome editing to gener-
ate PAWS1-knockout (KO) HaCaT cells, which are a sponta-
neously transformed human keratinocyte cell line (Figure 1C 
& Figure S1 (extended data18)). These cells were then stably  
restored with near-endogenous levels of wild-type PAWS1, or with  
equivalent levels of the two pathogenic mutants (A34E & 
R52P) and two CK1-interaction deficient mutants (D262A &  
F296A)1 or the GFP control (Figure 1C). As we had previously 
reported with U2OS cells1, PAWS1WT displayed predominantly  
diffused cytoplasmic localisation in HaCaT cells, and no  
obvious differences in localisation patterns were observed 
with PAWS1A34E or PAWS1R52P (Figure S2 (extended data18)).  
Endogenous CK1α was detected in PAWS1 IPs from cells 
rescued with PAWS1WT but not from those rescued with the  
pathogenic mutants or with the CK1-interaction deficient  
mutants (Figure 1D).

To ask whether the pathogenic PPK PAWS1 mutants affect 
PAWS1 function through additional changes to interacting part-
ners, we undertook an unbiased proteomic approach to identify  
interactors of these mutants. To this end, PAWS1-KO HaCaT  
cells were rescued with GFP control, PAWS1-GFP, PAWS1A34E-
GFP, PAWS1R52P-GFP or PAWS1F296A-GFP, and anti-GFP IPs 
were subjected to proteomic analyses. A Coomassie-stained gel  
revealed that the disappearance of a band at ~41 kDa, the  
predicted size of endogenous CK1α, from IPs of PAWS1A34E,  
PAWS1R52P and PAWS1F296A was the only striking difference 
from the wild-type control (Figure 1E). Proteomic analysis of  
interacting proteins from each IP confirmed that the only  
difference between PAWS1WT and the three mutants was in the 
abundance of CK1α (Figure 1F), suggesting that non-interaction 
of the mutants with CK1α is likely to be a key factor in patho-
genesis of PPK. This was further verified by immunoblotting, 

Page 6 of 18

Wellcome Open Research 2019, 4:133 Last updated: 29 NOV 2019

https://www.graphpad.com/


Figure 1. Pathogenic PPK point-mutations in PAWS1 disrupt its interaction with CK1α. A, B: HEK293 cells transiently expressing 
PAWS1-GFP and HA-SMAD1 (A) or myc-CD2AP (B) were subject to GFP immunoprecipitation (IP) and immunoblotting (IB) for the indicated 
proteins. C: Using retroviral transduction, PAWS1 or the indicated mutants were stably re-expressed in HaCaT PAWS1−/− (KO) cells; GFP 
control, wildtype (WT), A34E (AE), R52P (RP), D262A (DA), F296A (FA). Cell extracts were analysed by IB. D: Immunoprecipitation of PAWS1 
was performed from HaCaT cells described in (C). E–G: PAWS1-GFP or the indicated mutants were stably expressed in PAWS1-KO HaCaT 
cells as described in (C), and immunoprecipitated with GFP-Trap beads. GFP IP samples were separated by SDS-PAGE and Coomassie 
stained (E). Each lane was cut into 6 pieces and subsequently processed for protein identification by mass spectrometry. Table showing total 
spectral counts for PAWS1 and CK1α (F). Input and IP samples were analysed by IB with the indicated antibodies (G).

which showed that PAWS1WT interacts with endogenous  
CK1α while the mutants do not (Figure 1G).

Intriguingly, when PAWS1-KO cells were rescued with  
PAWS1WT or with the PPK pathogenic mutants, we consistently  
observed a lower abundance of PAWS1A34E and PAWS1R52P  
proteins compared with PAWS1WT (Figure 1C, D, E & G).  
Furthermore, the mutant proteins had a lower apparent  
molecular weight on SDS-PAGE compared with the WT  
protein (Figure 1C, D, E & G). This suggests that the A34E and  
R52P mutations might affect the stability of PAWS1 protein.

PPK PAWS1 mutants exhibit reduced protein stability
To ask whether the pathogenic mutations of PAWS1 affect its  
stability, we first transiently transfected PAWS1WT, PAWS1A34E, 
and PAWS1R52P into PAWS1-KO U2OS osteosarcoma cells to 
achieve comparable starting levels of the respective proteins.  

The stability of the proteins was tested over 9 h following inhi-
bition of protein synthesis with cycloheximide (Figure 2A&B). 
We found that following cycloheximide treatment, PAW-
S1A34E and PAWS1R52P protein levels declined more rapidly  
(t

1/2
 = 3 h) than PAWS1WT (t

1/2
 > 9 h). After 9 h of cyclohex-

imide treatment, PAWS1A34E and PAWS1R52P protein levels were  
reduced to 10-20% of the levels of their untreated controls  
(0 h), while about 60% of PAWS1WT remained (Figure 2A&B). 
As a control, c-myc protein levels were undetectable within  
3 h of cycloheximide treatment (Figure 2B). The reductions in  
PAWS1A34E, and PAWS1R52P protein levels, as well as that of  
c-myc, was rescued by co-treatment with the proteasome  
inhibitor bortezomib (Figure 2C&D).

One possible explanation for the decreased stability of the  
PAWS1A34E and PAWS1R52P proteins is that inability to interact  
with CK1α prevents their phosphorylation by CK1α. However, 
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Figure 2. PAWS1A34E and PAWS1R52P proteins have a shorter half-life in cells. A, B: U2OS PAWS1-KO cells transiently expressing  
PAWS1WT, PAWS1A34E, or PAWS1R52P were treated with 100 µg/ml cycloheximide for the indicated times prior to sample collection. PAWS1 
band intensities were measured, normalised to GAPDH loading control, and represented relative to the respective 0 h samples (n=3, error 
bars represent ± SD). Representative blots are shown in (B). Two-way ANOVA. C, D: As in (A, B), but indicated cells were treated with 
cycloheximide in the presence or absence of bortezomib (5 µM) for 6 h. Fold changes are shown relative to the respective untreated 
samples. Representative blots are shown in (D). Multiple t-test. E, F: Cycloheximide chase performed as described in (A) with PAWS1WT and 
PAWS1S614A. Representative blots are shown in (F). Two-way ANOVA.

PAWS1S614A is not phosphorylated by CK1α1, and its stability 
is unaffected in the cycloheximide assay (Figure 2E, F), arguing 
that PAWS1 phosphorylation by CK1α does not regulate its  
stability.

Canonical Wnt signalling is impaired by PPK PAWS1 
mutations
The PAWS1-CK1α complex is an important mediator of the  
Wnt signalling pathway, so we sought to determine if 
canonical Wnt signalling is affected by the PAWS1A34E and  
PAWS1R52P mutants. Because HaCaT cells did not respond to  
stimulation with Wnt3a (Figure S3 (extended data18)), we 
turned to the U2OS cells in which we have previously studied  
canonical Wnt signalling1. We co-expressed PAWS1WT,  
PAWS1A34E, PAWS1R52P, or PAWS1F296A with a TOPflash Wnt/ 
β-catenin luciferase reporter in U2OS cells1, and measured  
luciferase reporter activity following stimulation with control- or 
Wnt3A-conditioned medium (Figure 3A&B). Consistent with 
our previous report1, overexpression of PAWS1WT increased both  

basal and Wnt3A-stimulated reporter activity compared with 
GFP and PAWS1F296A controls (Figure 3A&B). Under these  
conditions, overexpression of the PAWS1A34E and PAWS1R52P 
mutants, at similar levels to that of PAWS1WT, did not enhance 
either basal luciferase reporter activity or that induced by Wnt3A 
(Figure 3A, B), suggesting that these mutants are unable to  
mediate Wnt signalling in U2OS cells.

Consistent with its Wnt-activating role, we have previously  
demonstrated that ectopic delivery of PAWS1WT mRNA 
into a single ventral blastomere at the 4-cell stage Xenopus 
embryo results in the formation of a complete secondary axis,  
resembling that formed in response to ectopic xWnt8. This  
axis-inducing ability of PAWS1 requires CK1α-binding because 
the PAWS1D262A and PAWS1F296A mutants fail to induce axis  
duplication1. In order to test the axis-inducing ability of  
PAWS1A34E and PAWS1R52P mutants, we microinjected PAWSWT 
or the mutant mRNAs into Xenopus embryos and assessed the  
formation of a secondary body axis at the tadpole stage. While 
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Figure 3. Pathogenic PPK PAWS1 point mutants impact canonical Wnt signalling. A, B: U2OS cells were transfected with PAWS1-GFP 
or the indicated mutants of PAWS1 or GFP alone. Levels of endogenous (e) or GFP-tagged (g) PAWS1 in protein extracts were analysed 
by immunoblotting (A). TOPflash luciferase activity was measured after treatment with either control conditioned medium (L-CM) or Wnt3A 
conditioned medium (Wnt3a-CM) for 6 h (B). Data are normalised to Renilla luciferase as internal control. Values shown relative to L-CM 
treated GFP control (n=3). Two-way ANOVA. C–E: 500 pg hPAWS1 mRNA was injected into Xenopus embryos at the four-cell stage. Protein 
levels were analysed by IB (C). Representative images showing complete axis duplication and normal phenotypes at tadpole stage in injected 
embryos; scale bar = 1 mm (D). % of embryos showing axis duplication phenotypes were quantified from three independent experiments. 
Error bars show SD; Two-way ANOVA (E).

PAWSWT induced partial or complete axis duplication in 
~80% of embryos, PAWS1A34E and PAWS1R52P mutants did not  
(Figure 3C–E), further confirming the failure of these mutants 
to activate Wnt signalling. We also observed lower levels of  
PAWS1A34E and PAWS1R52P protein relative to PAWS1WT in 
these tadpoles despite the embryos being injected with the same  
amounts of mRNA (Figure 3C).

To circumvent potential artefacts of the overexpression systems 
used above, we used CRISPR/Cas9 genome editing to replace 
the endogenous PAWS1 protein of U2OS cells with PAWS1A34E. 
To achieve this, we used a novel donor strategy to knock in a  
polycistronic cassette consisting of GFP cDNA, an internal 
ribosome entry site (IRES) element, and PAWS1A34E cDNA  
directly downstream of the native FAM83G promoter  
(Figure 4A). GFP-positive clones were isolated and homozygous 
insertion of the PAWS1A34E mutation was verified by PCR 
and genomic sequencing of one of the clones, which was then  

selected for further investigation (Figure S4 (extended data18)). 
Consistent with the destabilising effect of the PAWS1A34E  
mutation demonstrated earlier (Figure 2A–D), PAWS1 protein 
levels but not mRNA levels in U2OSA34E cells were substantially  
lower than in U2OSWT cells (Figure 4B&C). We note, however, 
that this may also be due in part to reduced efficiency of  
translation initiated by the IRES relative to the wildtype 
mRNA sequence21,22. Interestingly, the PAWS1 mRNA levels in  
PAWS1-KO U2OS cells, also generated by CRISPR/Cas9  
genome editing, were much lower than in U2OSWT and  
U2OSA34E cells (Figure 4C), probably because of nonsense- 
mediated decay of the PAWS1-KO transcript caused by a  
premature stop codon.

We measured Wnt-induced expression of the canonical Wnt  
target gene AXIN2 in U2OSWT, U2OSKO, and U2OSA34E cells. Wnt3a 
treatment induced a robust 5-fold upregulation of AXIN2 mRNA 
in U2OSWT cells relative to control (Figure 4D). In contrast, in 
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Figure 4. PAWS1A34E knock-in reduces protein levels and impairs Wnt signalling. A: Schematic overview of CRISPR/Cas9 knock-in strategy. 
A GFP coding sequence, internal ribosome entry site (IRES), and mutations to the PAWS1 coding sequence in Exon2 were introduced by 
homology-directed repair with a plasmid donor. Further details are available in the Materials and methods section. LH, left homology arm; 
RH, right homology arm. B: U2OS, PAWS1-KO, and PAWS1A34E KI cell extracts were analysed by IB with the indicated antibodies. C: PAWS1 
transcript levels relative to GAPDH control in asynchronously growing cultures were assessed by RT-qPCR (n=3), and represented as fold-
change relative to U2OSWT. One-way ANOVA. D: Cells were treated with L-CM or Wnt3a-CM for 3 h. Expression of AXIN2 was assessed by 
RT-qPCR relative to GAPDH, and represented as the fold-change over L-CM treated U2OSWT (n=3). Two-way ANOVA.

both U2OSKO and U2OSA34E cells, Wnt3A-induced upregulation of 
AXIN2 mRNA was significantly reduced compared with U2OSWT 
cells; p<0.001 (Figure 4D).

Alanine 34 of PAWS1 is conserved in FAM83 proteins and 
appears functionally analogous in FAM83H
Both Ala34 and Arg52 of PAWS1 lie in the DUF1669 domain,  
which is conserved and located at the N-terminus of FAM83  
proteins and is required for binding to CK1 kinases10. Whilst 
the Arg52 residue of PAWS1 is conserved only in FAM83D 
and FAM83E, Ala34 is completely conserved across all FAM83  
members, and may therefore serve a similar and important  
function for all FAM83 members (Figure 5A). With this in 
mind, we made an analogous mutation on FAM83H (A31E) and  
introduced FLAG-FAM83HWT or FLAG-FAM83HA31E into  
FAM83HKO U2OS cells. Interestingly, we observed lower  
levels of FAM83HA31E protein than of FAM83HWT (Figure 5B),  
reminiscent of the observation that PAWS1A34E is less  
stable than PAWS1WT. Consistent with our previous report10, 
IPs of FAM83HWT co-precipitated endogenous CK1α, δ, and 

ε isoforms (Figure 5B). However, FAM83HA31E IPs did not  
co-precipitate CK1α, δ, or ε isoforms (Figure 5B), suggesting  
that this residue in FAM83 proteins is necessary for binding to  
CK1 isoforms.

Discussion
The almost identical hyperproliferative epidermis and hair 
phenotypes reported in human PPK patients carrying the  
homozygous PAWS1A34E mutation9 and in HFH dogs carrying 
the PAWS1R52P mutation5,6 hint at a common mechanism for 
disease pathogenesis. Our results strongly suggest that this  
common mechanism involves the inability of PAWS1A34E and  
PAWS1R52P to associate with CK1α, which reduces their ability  
to activate Wnt signalling.

CK1α (and other CK1 isoforms) regulates Wnt signalling both 
positively and negatively by phosphorylating many components  
of the pathway. For example, CK1α phosphorylates cytoplas-
mic β-catenin at Ser45, which allows GSK3β to phosphorylate  
Thr41, Ser37 and Ser33 and mark it for proteasomal degradation, 
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Figure 5. Conservation of the PAWS1 alanine 34 in FAM83A-H. A: Multiple sequence alignments were performed using Clustal Omega 
(EMBL-EBI) and visualised using BoxShade Server (EMBnet). Letters boxed in black indicate identical residues and letters shaded in grey 
indicate similar residues. Residues that are identical or similar in at least 50% of the FAM83 members are shaded. B: FLAG empty vector (-), 
FLAG-FAM83HWT (WT) and FLAG-FAM83HA31E (AE) were transiently expressed in FAM83H-KO U2OS cells. Cells were lysed, FLAG IPs were 
performed and IPs were analysed by immunoblotting for CK1 isoforms.

thus down-regulating Wnt/β-catenin signalling23,24. In contrast,  
CK1 kinases can also positively regulate Wnt signalling25. 
For example, in response to the binding of Wnt ligand to the 
LRP5/6 receptor, CK1α phosphorylates LRP5/6 and p120- 
catenin at the plasma membrane, both of which events are  
needed for full activation of signalling26,27.

We have previously shown that CK1α can exist in distinct com-
plexes with all FAM83 members in addition to PAWS110.  
Individual FAM83 proteins deliver CK1α or other CK1 isoforms 
to distinct subcellular compartments, and potentially to specific 
CK1 substrates, to influence specific cellular processes. For  
example, FAM83D delivers CK1α to the mitotic spindle to  
ensure proper spindle orientation and timely mitotic progression28. 
The PAWS1-CK1α complex appears to regulate Wnt signalling 
by controlling the nuclear accumulation of β-catenin downstream 
of the β-catenin destruction complex through as-yet-unknown  
mechanisms1. Establishing PAWS1-dependent CK1α sub-
strates involved in mediating Wnt signalling will shed light on 
the mechanisms by which the pathogenic PPK PAWS1 mutants  
malfunction in Wnt signalling.

Despite the diverse functions of CK1α and associated FAM83 
complexes, it is interesting to note that the ablation of CK1α from  
keratinocytes in mice resulted in palmoplantar and hair  
phenotypes similar to those associated with the two PAWS1  

mutations29. Although these phenotypes were not characterised in 
detail, it would be interesting to compare them morphologically 
and at the molecular level with those from PAWS1-mutant PPK  
phenotypes from human patients and dogs. As chemical  
inhibitors of CK1 isoforms are known to affect Wnt30–33 and 
p53 signalling34, it is not surprising that complete ablation of  
CK1α from keratinocytes leads to the activation of both Wnt and 
p53 signalling. We suggest that differences in the relative levels 
of Wnt signalling components that are positively or negatively  
regulated by CK1α between cell types/tissues may ultimately  
determine the phenotype caused by PAWS1-CK1α dysregu-
lation. We also cannot rule out the contributions of other  
signalling pathways known to be active in skin, including, but 
not limited to, TGF-β/BMP, FGF, and YAP/TAZ12,35–37. Given 
that PAWS1 is highly expressed in the epidermal layer and inner  
root sheath of hair follicles9,38, it may be that PAWS1 is required 
for tissue-specific regulation of CK1α activity and modulation 
of signalling responses in these compartments. Characterisa-
tion of PAWS1 function in animal models or skin organotypic  
cultures will hopefully provide more definitive evidence of this  
in the future.

Finally, we also report here that PAWS1 mutant proteins have 
significantly shorter half-lives in cells. Consistent with these  
findings, immunostaining of skin sections revealed reduced  
levels of PAWS1A34E protein in a patient suffering from PPK9.  
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Computational structure predictions suggest that residue A34 
is positioned at the centre of an alpha helix, and R52 at the  
amino-terminal boundary of the following alpha helix39,40. 
Taken together with the radical nature of the A-E and R-P amino 
acid substitutions—hydrophobic to negative/hydrophilic, and  
positive/hydrophilic to hydrophobic respectively—it is likely 
that PAWS1A34E and PAWS1R52P are misfolded and subsequently 
degraded in a proteasome-dependent manner. Determination  
of the structure of PAWS1 or DUF1669 in complex with CK1α 
will allow accurate mapping of the residues that directly form 
the interface, and, given the high degree of conservation of 
the DUF1669, will no doubt be invaluable in understanding  
broader aspects of FAM83 and CK1 kinase biology.

Data availability
Underlying data
Open Science Framework: Pathogenic FAM83G palmoplantar 
keratoderma mutations inhibit the PAWS1:CK1α association  
and attenuate Wnt signalling. https://doi.org/10.17605/OSF.IO/
ZGYUR18
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luciferase assay data presented in Figure 3B)

•     qPCR

°     Figure 4.xlsx (Excel spreadsheet containing raw  
Ct values for qPCR)

•     DNA sequencing

°     12-HGKO-B19-M13 Fwd-150617-12-56.ab1 
(Sequence trace for HaCaT PAWS1 KO, Allele 1)

°     16-HGKO-B19-M13 Fwd-130617-10-34.ab1 
(Sequence trace for HaCaT PAWS1 KO, Allele 2)

°     21-HGKO-B19-M13 Fwd-130617-10-39.ab1(Sequence 
trace for HaCaT PAWS1 KO, Allele 3)

°     A34E C3-7-M13 Fwd-231018-01-29.ab1 (Sequence 
trace for U2OS PAWS1 A34E Knock-in)

°     UGKO_KW_14-M13 Fwd-160718-01-14.ab1 
(Sequence trace for U2OS PAWS1 KO, Allele 1)

°     UGKO_KW_16-M13 Fwd-160718-01-16.ab1 
(Sequence trace for U2OS PAWS1 KO, Allele 2)

°     UGKO_KW_24-M13 Fwd-160718-01-24.ab1 
(Sequence trace for U2OS PAWS1 KO, Allele 3)

•     Coomassie

°     Figure 1E – SDS-PAGE Coomassie.pptx (PowerPoint 
file containing raw Coomassie stained gel image)

•     Supplementary

°     Fig_S2_Immunofluorescence.zip (Raw DeltaVision 
.dv image files for Figure S2)

°     Figure S3 - qPCR.xlsx (Excel spreadsheet containing 
raw Ct values for qPCR)

°     Figure S4 – DNA agarose gel.pptx (PowerPoint file 
containing raw agarose gel image for Figure S4)

•     Mass spectrometry

°     KWu 181203.sf3 (Scaffold file of mass spectrometry 
data shown in Figure 1E–G)

•     Flow cytometry

°     Flow cytometry.pptx (Flow cytometry plots showing 
gating strategy for single cell sorting of PAWS1 KO 
and A34E KI CRISPR clones)

°     U2OS A34E KI.fcs (Raw output file for A34E KI 
sort)

°     U2OS WT control.fcs (Raw output file for GFP nega-
tive population used as the control for the A34E KI 
sort)

°     U2OS PAWS1 KO.fcs (Raw output file for single cell 
sort)

Extended data
Open Science Framework: Pathogenic FAM83G palmoplantar  
keratoderma mutations inhibit the PAWS1:CK1α association 
and attenuate Wnt signalling. https://doi.org/10.17605/OSF.IO/
ZGYUR18

This project contains the following extended data:
•     Supplementary

°     Wu_et_al_Supplementary.pdf (PDF containing  
supplementary figures)

Data are available under the terms of the Creative Commons  
Attribution 4.0 International license (CC-BY 4.0).
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This well-written research article comes from Wu and colleagues, and builds on some of their own earlier
ground-breaking work. It helps us understand more about fundamental (classical) work looking at
canonical Wnt signalling in human cells and in   embryos. It also reveals very interestingXenopus laevis
biological effects of disease-associated FAM83G mutations in vertebrates; there is a hint at the end that
these mutations might function through a common mechanism in other FAM83 genes also.

The work brings together the recent genetic data from dog and human FAM83G/PAWS1 mutations (Ref
9), which are associated with keratoderma and excess hair. The study is essentially complete, is high
quality, has an excellent Materials and Methods section, and raises lots of interesting questions for the
future that will be useful for various groups interested in CK1, other FAM83 gene members and broader
Wnt and CK1-dependent signalling mechanisms.

The major output is to evaluate the interesting, potentially disruptive point mutations in the
PAWS1/FAM83G 'DUF' (more likely CK1-binding) domain (R52P and A34E) by putting them through their
paces in the context of CK1 and CD2AP/SMAD1 binding, broader proteomic interactomes, FAM83G
cellular stability in several cellular models, axis duplication in frog embryos in vivo and also through
generation of a very useful panel of knock-out/A34E knock-in lines. 

I do not have any specific criticisms, the work is of a high quality, well explained and (most importantly) is
very well controlled (often using previously characterized D262A/F296A FAM83G/PAWS1 mutants), and
comes to sensible conclusions, clearly implicating the conserved Ala residue in the DUF domain of other
FAM83 members as being involved in CK1 isoform targeting.   

Discussion point:
The reduced stability of A34E and R52P FAM83G might have been compared side-by-side/or titrated at
the mRNA level with D262A/F296A (or similar) in the Xenopus model, since the lack of phenotype here
could, in theory, be explained by the decreased amount of FAM83G protein present (certainly <1/2 of the
WT). The F296A is also 'more' stable (based on data in Figure 1C/E/G, all other things being equal).
Obviously, it will be interesting to learn more about FA83G turnover, and how this might be controlled by
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PAWS1 mutants tested in Figure 1C/D (HACAT KO cells) is distinct from the lack of change in shifting in
Figure 1A/B (HEK-293), where the endogenous PAWS1 is presumably present.
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In this study Wu and co-workers present data, clearly showing that pathogenic FAM83G palmoplanar
keratoderma mutations either leading to the expression of PAWS1  or PAWS1  with reduced
half-life compared to wt PAWS1. Both PAWS1 mutants are unable to interact with CK1a finally resulting in
attenuation of Wnt signalling.

The manuscript is well written, provides very interesting and novel findings regarding mechanisms
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2.  

3.  

4.  

The manuscript is well written, provides very interesting and novel findings regarding mechanisms
involved in the regulation CK1a, a central player in Wnt signalling. Considering the importance of the Wnt
pathway in regulating developmental processes, understanding of the functional consequences of
PAWS1-CK1a interaction is of general interest.

Overall, the work is carefully performed and clearly structured. Relevant literature is cited and the
experimental part and data are sufficiently documented. However, the following few points should be
addressed/discussed:

The authors state “(i)…we consistently observed a lower abundance of  PAWS1  and PAWS1
 proteins compared with PAWS1 .”

The experiments performed provide clear evidence that stability of mutant proteins are abolished.
However, pulse-chase experiments could further underline the conclusions drawn by the authors.
 
(ii) “Furthermore, the mutant proteins had a lower apparent molecular weight on SDS PAGE
compared with the WT protein. This suggests that the A34E and R52P might affect the stability of
PAWS1 protein.”
Differences in molecular weight are often due to post-translational modifications, among them
site-specific phosphorylation. Although the authors provide evidence that PAWS1 protein is not
phosphorylated by CK1, it could still be phosphorylated by other kinases. To proof this assumption,
PAWS1 WT could be separated by SDS PAGE after phosphatase treatment assuming that
phosphate treatment results in conformational changes and faster migration of PAWS1 in SDS
PAGE.
 
In the discussion the authors write “As chemical inhibitors of CK1 isoforms are known to affect Wnt
and p53 signalling,”. The following citation could be added: García-Reyes   (2018 ).et al.
 
Finally, the authors suggest that structural analysis of PAWS1-CK1a complexes will allow accurate
mapping of the residues that directly form the interface. In addition, the authors could discuss
additional methods which could be used to determine the protein-protein interface which are
described e.g. in Dolde   (2018 ), Harnos   (2018 ), Kruger   (2016 ) and Huart et al. et al. et al. et al.
(2012 ).
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