1,271 research outputs found

    Individual shifts toward safety explain age-related foraging distribution in a gregarious shorebird

    Get PDF
    Although age-related spatial segregation is ubiquitous, the underlying mechanisms are poorly understood. Here, we aim to elucidate the processes behind a previously established age-related foraging distribution of red knots (Calidris canutus canutus) in their main wintering area in West Africa (Banc d’Arguin, Mauritania). Based on 10 years of observations of 1232 uniquely color-ringed individuals of 1 to 18+ years old, we examined whether the observed age-related foraging distribution resulted from 1) spatial differences in mortality or 2) age-related shifts in habitat use. Using multistate capture–recapture modeling, we showed that with age foraging red knots moved away from the shoreline, that is, to areas with fewer surprise attacks by raptors. Considering uncertainties in the subjective gradient in predation danger with increasing distance from shore (as assessed from correlations between vigilance and distance from shore in foraging birds), we applied 2 different danger zone boundaries, at 40 m and 500 m from shore. Between years, red knots had a much higher chance to move from the dangerous nearshore area to the “safe” area beyond (71–78% and 26% for 40-m and 500-m danger zone boundary, respectively), than vice versa (4% and 14%). For neither danger zone boundary value did we find differences in annual mortality for individuals using either dangerous or safe zone, so the move away from the shore with age is attributed to individual careers rather than differential mortality. We argue that longitudinal studies like ours will reveal that ontogenetic shifts in habitat use are more common than so far acknowledged

    Adsorption-desorption kinetics in nanoscopically confined oligomer films under shear

    Get PDF
    The method of molecular dynamics computer simulations is employed to study oligomer melts confined in ultra-thin films and subjected to shear. The focus is on the self-diffusion of oligomers near attractive surfaces and on their desorption, together with the effects of increasing energy of adsorption and shear. It is found that the mobility of the oligomers near an attractive surface is strongly decreased. Moreover, although shearing the system forces the chains to stretch parallel to the surfaces and thus increase the energy of adsorption per chain, flow also promotes desorption. The study of chain desorption kinetics reveals the molecular processes responsible for the enhancement of desorption under shear. They involve sequences of conformations starting with a desorbed tail and proceeding in a very fast, correlated, segment-by-segment manner to the desorption of the oligomers from the surfaces.

    Burrowing Behavior of a Deposit Feeding Bivalve Predicts Change in Intertidal Ecosystem State

    Get PDF
    Behavior has a predictive power that is often underutilized as a tool for signaling ecological change. The burrowing behavior of the deposit feeding bivalve Macoma balthica reflects a typical food-safety trade-off. The choice to live close to the sediment surface comes at a risk of predation and is a decision made when predation danger, food intake rates or future fitness prospects are low. In parts of the Dutch Wadden Sea, Macoma populations declined by 90% in the late 1990s, in parallel with large-scale mechanical cockle-dredging activities. During this decline, the burrowing depth of Macoma became shallow and was correlated with the population decline in the following year, indicating that it forecasted population change. Recently, there has been a series of large recruitment events in Macoma. According to the food-safety trade-off, we expected that Macoma should now live deeper, and have a higher body condition. Indeed, we observed that Macoma now lives deeper and that living depth in a given year forecasted population growth in the next year, especially in individuals larger than 14 mm. As living depth and body condition were strongly correlated in individuals larger than 14 mm, larger Macoma could be living deeper to protect their reproductive assets. Our results confirmed that burrowing depth signals impending population change and, together with body condition, can provide an early warning signal of ecological change. We suggest that population recovery is being driven by improved intertidal habitat quality in the Dutch Wadden Sea, rather than by the proposed climate-change related effects. This shift in ecosystem state is suggested to include the recovery of diatom habitat in the top layer of the sediment after cockle-dredging ended

    Sign Rules for Anisotropic Quantum Spin Systems

    Full text link
    We present new and exact ``sign rules'' for various spin-s anisotropic spin-lattice models. It is shown that, after a simple transformation which utilizes these sign rules, the ground-state wave function of the transformed Hamiltonian is positive-definite. Using these results exact statements for various expectation values of off-diagonal operators are presented, and transitions in the behavior of these expectation values are observed at particular values of the anisotropy. Furthermore, the effects of sign rules in variational calculations and quantum Monte Carlo calculations are considered. They are illustrated by a simple variational treatment of a one-dimensional anisotropic spin model.Comment: 4 pages, 1 ps-figur

    Environmental factors influencing red knot (Calidris canutus islandica) departure times of relocation flights within the non-breeding period

    Get PDF
    Deciding when to depart on long-distance, sometimes global, movements can be especially important for flying species. Adverse weather conditions can affect energetic flight costs and navigational ability. While departure timings and conditions have been well-studied for migratory flights to and from the breeding range, few studies have focussed on flights within the non-breeding season. Yet in some cases, overwintering ranges can be large enough that ecological barriers, and a lack of resting sites en route, may resist movement, especially in unfavorable environmental conditions. Understanding the conditions that will enable or prohibit flights within an overwintering range is particularly relevant in light of climate change, whereby increases in extreme weather events may reduce the connectivity of sites. We tracked 495 (n = 251 in 2019; n = 244 in 2020) overwintering red knots (Calidris canutus islandica) in the Dutch Wadden Sea and investigated how many departed towards the UK (on westward relocation flights), which requires flying over the North Sea. For those that departed, we used a resource selection model to determine the effect of environmental conditions on the timing of relocation flights. Specifically, we investigated the effects of wind, rain, atmospheric pressure, cloud cover, and migratory timing relative to sunset and tidal cycle, which have all been shown to be crucial to migratory departure conditions. Approximately 37% (2019) and 36% (2020) of tagged red knots departed on westward relocation flights, indicating differences between individuals' space use within the overwintering range. Red knots selected for departures between 1 and 2.5 h after sunset, approximately 4 h before high tide, with tailwinds and little cloud cover. However, rainfall and changes in atmospheric pressure appear unimportant. Our study reveals environmental conditions that are important for relocation flights across an ecological barrier, indicating potential consequences of climate change on connectivity

    Central-West Siberian-breeding Bar-tailed Godwits (<i>Limosa lapponica</i>) segregate in two morphologically distinct flyway populations

    Get PDF
    Long-distance migratory species often include multiple breeding populations, with distinct migration routes, wintering areas and annual-cycle timing. Detailed knowledge on population structure and migratory connectivity provides the basis for studies on the evolution of migration strategies and for species conservation. Currently, five subspecies of Bar-tailed Godwits Limosa lapponica have been described. However, with two apparently separate breeding and wintering areas, the taxonomic status of the subspecies L. l. taymyrensis remains unclear. Here we compare taymyrensis Bar-tailed Godwits wintering in the Middle East and West Africa, respectively, with respect to migration behaviour, breeding area, morphology and population genetic differentation in mitochondrial DNA. By tracking 52 individuals from wintering and staging areas over multiple years, we show that Bar-tailed Godwits wintering in the Middle East bred on the northern West-Siberian Plain (n = 19), while birds from West Africa bred further east, mostly on the Taimyr Peninsula (n = 12). The two groups differed significantly in body size and shape, and also in the timing of both northward and southward migrations. However, they were not genetically differentiated, indicating that the phenotypic (i.e. geographical, morphological and phenological) differences arose either very recently or without current reproductive isolation. We conclude that the taymyrensis taxon consists of two distinct populations with mostly non-overlapping flyways, which warrant treatment as separate taxonomic units. We propose to distinguish a more narrowly defined taymyrensis subspecies (i.e. the Bar-tailed Godwits wintering in West Africa and breeding on Taimyr), from a new subspecies (i.e. the birds wintering in the Middle East and breeding on the northern West-Siberian Plain)

    Single hadron response measurement and calorimeter jet energy scale uncertainty with the ATLAS detector at the LHC

    Get PDF
    The uncertainty on the calorimeter energy response to jets of particles is derived for the ATLAS experiment at the Large Hadron Collider (LHC). First, the calorimeter response to single isolated charged hadrons is measured and compared to the Monte Carlo simulation using proton-proton collisions at centre-of-mass energies of sqrt(s) = 900 GeV and 7 TeV collected during 2009 and 2010. Then, using the decay of K_s and Lambda particles, the calorimeter response to specific types of particles (positively and negatively charged pions, protons, and anti-protons) is measured and compared to the Monte Carlo predictions. Finally, the jet energy scale uncertainty is determined by propagating the response uncertainty for single charged and neutral particles to jets. The response uncertainty is 2-5% for central isolated hadrons and 1-3% for the final calorimeter jet energy scale.Comment: 24 pages plus author list (36 pages total), 23 figures, 1 table, submitted to European Physical Journal
    • …
    corecore