11 research outputs found

    Overexpression of miR-128 specifically inhibits the truncated isoform of NTRK3 and upregulates BCL2 in SH-SY5Y neuroblastoma cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Neurotrophins and their receptors are key molecules in the regulation of neuronal differentiation and survival. They mediate the survival of neurons during development and adulthood and are implicated in synaptic plasticity. The human neurotrophin-3 receptor gene <it>NTRK3 </it>yields two major isoforms, a full-length kinase-active form and a truncated non-catalytic form, which activates a specific pathway affecting membrane remodeling and cytoskeletal reorganization. The two variants present non-overlapping 3'UTRs, indicating that they might be differentially regulated at the post-transcriptional level. Here, we provide evidence that the two isoforms of <it>NTRK3 </it>are targeted by different sets of microRNAs, small non-coding RNAs that play an important regulatory role in the nervous system.</p> <p>Results</p> <p>We identify one microRNA (miR-151-3p) that represses the full-length isoform of <it>NTRK3 </it>and four microRNAs (miR-128, miR-485-3p, miR-765 and miR-768-5p) that repress the truncated isoform. In particular, we show that the overexpression of miR-128 - a brain enriched miRNA - causes morphological changes in SH-SY5Y neuroblastoma cells similar to those observed using an siRNA specifically directed against truncated <it>NTRK3</it>, as well as a significant increase in cell number. Accordingly, transcriptome analysis of cells transfected with miR-128 revealed an alteration of the expression of genes implicated in cytoskeletal organization as well as genes involved in apoptosis, cell survival and proliferation, including the anti-apoptotic factor <it>BCL2</it>.</p> <p>Conclusions</p> <p>Our results show that the regulation of <it>NTRK3 </it>by microRNAs is isoform-specific and suggest that neurotrophin-mediated processes are strongly linked to microRNA-dependent mechanisms. In addition, these findings open new perspectives for the study of the physiological role of miR-128 and its possible involvement in cell death/survival processes.</p

    Pro-apoptotic Bid is required for the resolution of the effector phase of inflammatory arthritis

    Get PDF
    Rheumatoid arthritis is an autoimmune disease characterized by hyperplasia of the synovial lining and destruction of cartilage and bone. Recent studies have suggested that a lack of apoptosis contributes to the hyperplasia of the synovial lining and to the failure in eliminating autoreactive cells. Mice lacking Fas or Bim, two pro-apoptotic proteins that mediate the extrinsic and intrinsic death cascades, respectively, develop enhanced K/BxN serum transfer-induced arthritis. Since the pro-apoptotic protein Bid functions as an intermediate between the extrinsic and intrinsic apoptotic pathways, we examined the role that it plays in inflammatory arthritis. Mice deficient in Bid (Bid-/-) show a delay in the resolution of K/BxN serum transfer-induced arthritis. Bid-/- mice display increased inflammation, bone destruction, and pannus formation compared to wild-type mice. Furthermore, Bid-/- mice have elevated levels of CXC chemokine and IL-1β in serum, which are associated with more inflammatory cells throughout the arthritic joint. In addition, there are fewer apoptotic cells in the synovium of Bid-/- compared to Wt mice. These data suggest that extrinsic and intrinsic apoptotic pathways cooperate through Bid to limit development of inflammatory arthritis

    Human Herpesvirus 8 Interferon Regulatory Factor-Mediated BH3-Only Protein Inhibition via Bid BH3-B Mimicry

    Get PDF
    Viral replication efficiency is in large part governed by the ability of viruses to counteract pro-apoptotic signals induced by infection of host cells. For HHV-8, viral interferon regulatory factor-1 (vIRF-1) contributes to this process in part via inhibitory interactions with BH3-only protein (BOP) Bim, recently identified as an interaction partner of vIRF-1. Here we recognize that the Bim-binding domain (BBD) of vIRF-1 resembles a region (BH3-B) of Bid, another BOP, which interacts intramolecularly with the functional BH3 domain of Bid to inhibit it pro-apoptotic activity. Indeed, vIRF-1 was found to target Bid in addition to Bim and to interact, via its BBD region, with the BH3 domain of each. In functional assays, BBD could substitute for BH3-B in the context of Bid, to suppress Bid-induced apoptosis in a BH3-binding-dependent manner, and vIRF-1 was able to protect transfected cells from apoptosis induced by Bid. While vIRF-1 can mediate nuclear sequestration of Bim, this was not the case for Bid, and inhibition of Bid and Bim by vIRF-1 could occur independently of nuclear localization of the viral protein. Consistent with this finding, direct BBD-dependent inactivation by vIRF-1 of Bid-induced mitochondrial permeabilization was demonstrable in vitro and isolated BBD sequences were also active in this assay. In addition to Bim and Bid BH3 domains, BH3s of BOPs Bik, Bmf, Hrk, and Noxa also were found to bind BBD, while those of both pro- and anti-apoptotic multi-BH domain Bcl-2 proteins were not. Finally, the significance of Bid to virus replication was demonstrated via Bid-depletion in HHV-8 infected cells, which enhanced virus production. Together, our data demonstrate and characterize BH3 targeting and associated inhibition of BOP pro-apoptotic activity by vIRF-1 via Bid BH3-B mimicry, identifying a novel mechanism of viral evasion from host cell defenses

    Bilateral Anterior Cerebral Artery Occlusion in an Alcohol Abuser with Sickle-Cell Trait

    No full text
    The contribution of ethanol ingestion to brain infarction is unclear, although many studies suggest that the two may be causally related. We report an unusual case of bilateral anterior cerebral artery occlusion in a young female ethanol abuser with sickle-cell trait whose platelets showed hyperaggregability during epinephrine and adenosine diphosphate-induced aggregation experiments. It is concluded that ethanol withdrawal and dehydration along with direct effects of ethanol on platelet aggregation may result in cerebral artery thrombosis. Sickling of red blood cells in the distal circulation also may be a compounding factor, but this is not proven

    Acetaminophen inhibits cytochrome c redox cycling induced lipid peroxidation

    No full text
    Cytochrome (cyt) c can uncouple from the respiratory chain following mitochondrial stress and catalyze lipid peroxidation. Accumulating evidence shows that this phenomenon impairs mitochondrial respiratory function and also initiates the apoptotic cascade. Therefore, under certain conditions a pharmacological approach that can inhibit cyt c catalyzed lipid peroxidation may be beneficial. We recently showed that acetaminophen (ApAP) at normal pharmacologic concentrations can prevent hemoprotein-catalyzed lipid peroxidation in vitro and in vivo by reducing ferryl heme to its ferric state. We report here, for the first time, that ApAP inhibits cytochrome c-catalyzed oxidation of unsaturated free fatty acids and also the mitochondrial phospholipid, cardiolipin. Using isolated mitochondria, we also showed that ApAP inhibits cardiolipin oxidation induced by the pro-apoptotic protein, tBid. We found that the IC(50) of the inhibition of cardiolipin oxidation by ApAP is similar in both intact isolated mitochondria and cardiolipin liposomes, suggesting that ApAP penetrates well into the mitochondria. Together with our previous results, the findings presented herein suggest that ApAP is a pleiotropic inhibitor of peroxidase catalyzed lipid peroxidation. Our study also provides a potentially novel pharmacological approach for inhibiting the cascade of events that can result from redox cycling of cyt c

    The MRE11 complex: starting from the ends

    No full text

    BAX to basics: How the BCL2 gene family controls the death of retinal ganglion cells

    No full text
    corecore