22 research outputs found

    ВИДЕОСПЕКТРАЛЬНАЯ СИСТЕМА ДЛЯ ДИСТАНЦИОННОГО ЗОНДИРОВАНИЯ ЗЕМЛИ С БОРТА МЕЖДУНАРОДНОЙ КОСМИЧЕСКОЙ СТАНЦИИ

    Get PDF
    A videospectral system for Earth's remote sensing from space has been developed. The operating principle, optical scheme, basic and assist modules of the system are described. The specific requirements to device for ecological monitoring tasks at space experiments are presented. The main optical parameters of the experimental prototype have been analyzed. The method of gratings astigmatism correction has been developed. Optical parameters of the system have been improved.Разработана видеоспектральная система для дистанционного зондирования Земли из космоса. В работе описаны принцип работы, оптическая схема, основные и вспомогательные системы прибора, изложены основные требования к прибору для специфических задач экологического мониторинга в рамках космических экспериментов. Исследованы основные технические характеристики созданного образца. Разработаны методы улучшения оптических характеристик.

    A Critical Examination of the X-Wind Model for Chondrule and Calcium-rich, Aluminum-rich Inclusion Formation and Radionuclide Production

    Full text link
    Meteoritic data, especially regarding chondrules and calcium-rich, aluminum-rich inclusions (CAIs), and isotopic evidence for short-lived radionuclides (SLRs) in the solar nebula, potentially can constrain how planetary systems form. Intepretation of these data demands an astrophysical model, and the "X-wind" model of Shu et al. (1996) and collaborators has been advanced to explain the origin of chondrules, CAIs and SLRs. It posits that chondrules and CAIs were thermally processed < 0.1 AU from the protostar, then flung by a magnetocentrifugal outflow to the 2-3 AU region to be incorporated into chondrites. Here we critically examine key assumptions and predictions of the X-wind model. We find a number of internal inconsistencies: theory and observation show no solid material exists at 0.1 AU; particles at 0.1 AU cannot escape being accreted into the star; particles at 0.1 AU will collide at speeds high enough to destroy them; thermal sputtering will prevent growth of particles; and launching of particles in magnetocentrifugal outflows is not modeled, and may not be possible. We also identify a number of incorrect predictions of the X-wind model: the oxygen fugacity where CAIs form is orders of magnitude too oxidizing; chondrule cooling rates are orders of magnitude lower than those experienced by barred olivine chondrules; chondrule-matrix complementarity is not predicted; and the SLRs are not produced in their observed proportions. We conclude that the X-wind model is not relevant to chondrule and CAI formation and SLR production. We discuss more plausible models for chondrule and CAI formation and SLR production.Comment: Accepted for publication in The Astrophysical Journa

    Melting and differentiation of early-formed asteroids: The perspective from high precision oxygen isotope studies

    Get PDF
    A number of distinct methodologies are available for determining the oxygen isotope composition of minerals and rocks, these include laser-assisted fluorination, secondary ion mass spectrometry (SIMS)and UV laser ablation. In this review we focus on laser-assisted fluorination, which currently achieves the highest levels of precision available for oxygen isotope analysis. In particular, we examine how results using this method have furthered our understanding of early-formed differentiated meteorites. Due to its rapid reaction times and low blank levels, laser-assisted fluorination has now largely superseded the conventional externally-heated Ni “bomb” technique for bulk analysis. Unlike UV laser ablation and SIMS analysis, laser-assisted fluorination is not capable of focused spot analysis. While laser fluorination is now a mature technology, further analytical improvements are possible via refinements to the construction of sample chambers, clean-up lines and the use of ultra-high resolution mass spectrometers. High-precision oxygen isotope analysis has proved to be a particularly powerful technique for investigating the formation and evolution of early-formed differentiated asteroids and has provided unique insights into the interrelationships between various groups of achondrites. A clear example of this is seenin samples that lie close to the terrestrial fractionation line (TFL). Based on the data from conventional oxygen isotope analysis, it was suggested that the main-group pallasites, the howardite eucrite diogenite suite (HEDs) and mesosiderites could all be derived from a single common parent body. However,high precision analysis demonstrates that main-group pallasites have a Δ17O composition that is fully resolvable from that of the HEDs and mesosiderites, indicating the involvement of at least two parent bodies. The range of Δ17O values exhibited by an achondrite group provides a useful means of assessing the extent to which their parent body underwent melting and isotopic homogenization. Oxygen isotope analysis can also highlight relationships between ungrouped achondrites and the more well-populated groups. A clear example of this is the proposed link between the evolved GRA 06128/9 meteorites and the brachinites. The evidence from oxygen isotopes, in conjunction with that from other techniques, indicates that we have samples from approximately 110 asteroidal parent bodies (∼60 irons, ∼35 achondrites and stony-iron, and ∼15 chondrites) in our global meteorite collection. However, compared to the likely size of the original protoplanetary asteroid population, this is an extremely low value. In addition, almost all of the differentiated samples (achondrites, stony-iron and irons) are derived from parent bodies that were highly disrupted early in their evolution. High-precision oxygen isotope analysis of achondrites provides some important insights into the origin of mass-independent variation in the early Solar System. In particular, the evidence from various primitive achondrite groups indicates that both the slope 1 (Y&R) and CCAM lines are of primordial significance. Δ17O differences between water ice and silicate-rich solids were probably the initial source of the slope 1 anomaly. These phases most likely acquired their isotopic composition as a result of UV photo-dissociation of CO that took place either in the early solar nebula or precursor giant molecular cloud. Such small-scale isotopic heterogeneities were propagated into larger-sized bodies, such as asteroids and planets, as a result of early Solar System processes, including dehydration, aqueous alteration,melting and collisional interactions

    A VIDEOSPECTRAL SYSTEM FOR EARTH'S REMOTE SENSING ON BOARD OF THE INTERNATIONAL SPACE STATION

    No full text
    A videospectral system for Earth's remote sensing from space has been developed. The operating principle, optical scheme, basic and assist modules of the system are described. The specific requirements to device for ecological monitoring tasks at space experiments are presented. The main optical parameters of the experimental prototype have been analyzed. The method of gratings astigmatism correction has been developed. Optical parameters of the system have been improved
    corecore