417 research outputs found

    Strain effect on electronic transport and ferromagnetic transition temperature in La0.9_{0.9}Sr0.1_{0.1}MnO3_{3} thin films

    Full text link
    We report on a systematic study of strain effects on the transport properties and the ferromagnetic transition temperature TcT_{c} of high-quality La0.9_{0.9}Sr0.1_{0.1}MnO3_{3} thin films epitaxially grown on (100) SrTiO3_{3} substrates. Both the magnetization and the resistivity are critically dependent on the film thickness. TcT_{c} is enhanced with decreasing the film thickness due to the compressive stain produced by lattice mismatch. The resistivity above 165 K of the films with various thicknesses is consistent with small polaronic hopping conductivity. The polaronic formation energy EPE_{P} is reduced with the decrease of film thickness. We found that the strain dependence of TcT_{c} mainly results from the strain-induced electron-phonon coupling. The strain effect on EPE_{P} is in good agreement with the theoretical predictions.Comment: 6 pages and 5 figures, accepted for publication in Phys. Rev.

    Voltage, Stability and Diffusion Barrier Differences between Sodium-ion and Lithium-ion Intercalation Materials

    Get PDF
    To evaluate the potential of Na-ion batteries, we contrast in this work the difference between Na-ion and Li-ion based intercalation chemistries in terms of three key battery properties—voltage, phase stability and diffusion barriers. The compounds investigated comprise the layered AMO2 and AMS2 structures, the olivine and maricite AMPO4 structures, and the NASICON A3V2(PO4)3 structures. The calculated Na voltages for the compounds investigated are 0.18–0.57 V lower than that of the corresponding Li voltages, in agreement with previous experimental data. We believe the observed lower voltages for Na compounds are predominantly a cathodic effect related to the much smaller energy gain from inserting Na into the host structure compared to inserting Li. We also found a relatively strong dependence of battery properties on structural features. In general, the difference between the Na and Li voltage of the same structure, ΔVNa–Li, is less negative for the maricite structures preferred by Na, and more negative for the olivine structures preferred by Li. The layered compounds have the most negative ΔVNa–Li. In terms of phase stability, we found that open structures, such as the layered and NASICON structures, that are better able to accommodate the larger Na+ ion generally have both Na and Li versions of the same compound. For the close-packed AMPO4 structures, our results show that Na generally prefers the maricite structure, while Li prefers the olivine structure, in agreement with previous experimental work. We also found surprising evidence that the barriers for Na+ migration can potentially be lower than that for Li+ migration in the layered structures. Overall, our findings indicate that Na-ion systems can be competitive with Li-ion systems.United States. Office of Naval Research (Contract N00014-11-1-0212)United States. Dept. of Energy (Contract DE-FG02 96ER45571)United States. Dept. of Energy (BATT program under Contract DE-AC02-05CH11231

    Electron bottleneck in the charge/discharge Mechanism of Lithium Titanates for Batteries

    Get PDF
    The semi-solid flow battery (SSFB) is a promising storage energy technology featured by employing semi-solid fluid electrodes containing conductive additive and active Li-ion battery materials. The state of art anode material for SSFB is LiTiO (LTO). This work shows that LTO improves drastically the performance in fluid electrode via hydrogen annealing manifesting the importance of the electrical conductivity of the active material in SSFBs. On the other hand, the properties of fluid electrodes allow the contributions of ionic and electrical resistance to be separated in operando. The asymmetric overpotential observed in LiTiO and TiO is proposed to originate from the so-called electron bottleneck mechanism based on the transformation from electrically insulator to conductor upon (de-)lithiation, or vice versa, which should be considered when modelling, evaluating or designing advanced materials based on LiTiO, TiO or others with insulating-conducting behavior materials
    • …
    corecore