256 research outputs found
Public responses to precautionary information from the department of health (UK) about possible health risks from mobile phones
Understanding public perceptions of health information is of increasing importance in the light of the growing imperatives upon regulators to communicate information about risk and uncertainty. Communicating the possible health risks from mobile telecommunications is a domain that allows consideration of both public perceptions of uncertain public health information and public responses to precautionary advice. This research reports the results of a nationally representative survey in the UK (n = 1742) that explored public responses to a leaflet issued by the Department of Health (DoH) in 2000 providing information about the possible health risks of mobile phones. The aims of the study were twofold: a) to assess awareness of the leaflet and the extent to which participants could identify the precautionary advice that the leaflet contained as coming from the Government; and b) to examine publics’ responses to the current Government precautionary advice about mobile phone health risks; was this associated with increased concern or reassurance? The results indicate the importance of policy makers developing a clear understanding of the possible effects of communicating precautionary advice.Mobile Telecommunications and Health
Research Programm
Folate catabolites in spot urine as non-invasive biomarkers of folate status during habitual intake and folic acid supplementation.
Folate status, as reflected by red blood cell (RCF) and plasma folates (PF), is related to health and disease risk. Folate degradation products para-aminobenzoylglutamate (pABG) and para-acetamidobenzoylglutamate (apABG) in 24 hour urine have recently been shown to correlate with blood folate.
Since blood sampling and collection of 24 hour urine are cumbersome, we investigated whether the determination of urinary folate catabolites in fasted spot urine is a suitable non-invasive biomarker for folate status in subjects before and during folic acid supplementation.
Immediate effects of oral folic acid bolus intake on urinary folate catabolites were assessed in a short-term pre-study. In the main study we included 53 healthy men. Of these, 29 were selected for a 12 week folic acid supplementation (400 µg). Blood, 24 hour and spot urine were collected at baseline and after 6 and 12 weeks and PF, RCF, urinary apABG and pABG were determined.
Intake of a 400 µg folic acid bolus resulted in immediate increase of urinary catabolites. In the main study pABG and apABG concentrations in spot urine correlated well with their excretion in 24 hour urine. In healthy men consuming habitual diet, pABG showed closer correlation with PF (rs = 0.676) and RCF (rs = 0.649) than apABG (rs = 0.264, ns and 0.543). Supplementation led to significantly increased folate in plasma and red cells as well as elevated urinary folate catabolites, while only pABG correlated significantly with PF (rs = 0.574) after 12 weeks.
Quantification of folate catabolites in fasted spot urine seems suitable as a non-invasive alternative to blood or 24 hour urine analysis for evaluation of folate status in populations consuming habitual diet. In non-steady-state conditions (folic acid supplementation) correlations between folate marker (RCF, PF, urinary catabolites) decrease due to differing kinetics
The systemic lupus erythematosus IRF5 risk haplotype is associated with systemic sclerosis
Systemic sclerosis (SSc) is a fibrotic autoimmune disease in which the genetic component plays an important role. One of the strongest SSc association signals outside the human leukocyte antigen (HLA) region corresponds to interferon (IFN) regulatory factor 5 (IRF5), a major regulator of the type I IFN pathway. In this study we aimed to evaluate whether three different haplotypic blocks within this locus, which have been shown to alter the protein function influencing systemic lupus erythematosus (SLE) susceptibility, are involved in SSc susceptibility and clinical phenotypes. For that purpose, we genotyped one representative single-nucleotide polymorphism (SNP) of each block (rs10488631, rs2004640, and rs4728142) in a total of 3,361 SSc patients and 4,012 unaffected controls of Caucasian origin from Spain, Germany, The Netherlands, Italy and United Kingdom. A meta-analysis of the allele frequencies was performed to analyse the overall effect of these IRF5 genetic variants on SSc. Allelic combination and dependency tests were also carried out. The three SNPs showed strong associations with the global disease (rs4728142: P = 1.34×10<sup>−8</sup>, OR = 1.22, CI 95% = 1.14–1.30; rs2004640: P = 4.60×10<sup>−7</sup>, OR = 0.84, CI 95% = 0.78–0.90; rs10488631: P = 7.53×10<sup>−20</sup>, OR = 1.63, CI 95% = 1.47–1.81). However, the association of rs2004640 with SSc was not independent of rs4728142 (conditioned P = 0.598). The haplotype containing the risk alleles (rs4728142*A-rs2004640*T-rs10488631*C: P = 9.04×10<sup>−22</sup>, OR = 1.75, CI 95% = 1.56–1.97) better explained the observed association (likelihood P-value = 1.48×10<sup>−4</sup>), suggesting an additive effect of the three haplotypic blocks. No statistical significance was observed in the comparisons amongst SSc patients with and without the main clinical characteristics. Our data clearly indicate that the SLE risk haplotype also influences SSc predisposition, and that this association is not sub-phenotype-specific
Height and timing of growth spurt during puberty in young people living with vertically acquired HIV in Europe and Thailand.
OBJECTIVE: The aim of this study was to describe growth during puberty in young people with vertically acquired HIV. DESIGN: Pooled data from 12 paediatric HIV cohorts in Europe and Thailand. METHODS: One thousand and ninety-four children initiating a nonnucleoside reverse transcriptase inhibitor or boosted protease inhibitor based regimen aged 1-10 years were included. Super Imposition by Translation And Rotation (SITAR) models described growth from age 8 years using three parameters (average height, timing and shape of the growth spurt), dependent on age and height-for-age z-score (HAZ) (WHO references) at antiretroviral therapy (ART) initiation. Multivariate regression explored characteristics associated with these three parameters. RESULTS: At ART initiation, median age and HAZ was 6.4 [interquartile range (IQR): 2.8, 9.0] years and -1.2 (IQR: -2.3 to -0.2), respectively. Median follow-up was 9.1 (IQR: 6.9, 11.4) years. In girls, older age and lower HAZ at ART initiation were independently associated with a growth spurt which occurred 0.41 (95% confidence interval 0.20-0.62) years later in children starting ART age 6 to 10 years compared with 1 to 2 years and 1.50 (1.21-1.78) years later in those starting with HAZ less than -3 compared with HAZ at least -1. Later growth spurts in girls resulted in continued height growth into later adolescence. In boys starting ART with HAZ less than -1, growth spurts were later in children starting ART in the oldest age group, but for HAZ at least -1, there was no association with age. Girls and boys who initiated ART with HAZ at least -1 maintained a similar height to the WHO reference mean. CONCLUSION: Stunting at ART initiation was associated with later growth spurts in girls. Children with HAZ at least -1 at ART initiation grew in height at the level expected in HIV negative children of a comparable age
Climate Change, Foodborne Pathogens, and Illness in Higher Income Countries
Purpose of review: We present a review of the likely consequences of climate change for foodborne pathogens and associated human illness in higher income countries. Recent findings: The relationships between climate and food are complex and hence the impacts of climate change uncertain. This makes it difficult to know which foodborne pathogens will be most affected, what the specific effects will be, and on what timescales changes might occur. Hence, a focus upon current capacity and adaptation potential against foodborne pathogens is essential. We highlight a number of developments that may enhance preparedness for climate change. These include: • Adoption of novel surveillance methods, such as syndromic methods, to speed up detection and increase the fidelity of intervention in foodborne outbreaks • Genotype based approaches to surveillance of food pathogens to enhance spatio-temporal resolution in tracing and tracking of illness • Ever increasing integration of plant, animal and human surveillance systems, one-health, to maximize potential for identifying threats • Increased commitment to cross-border (global) information initiatives (including big data) • Improved clarity regarding the governance of complex societal issues such as the conflict between food safety and food waste • Strong user centric (social) communications strategies to engage diverse stakeholder groups Summary: The impact of climate change upon foodborne pathogens and associated illness is uncertain. This emphasises the need to enhance current capacity and adaptation potential against foodborne illness. A range of developments are explored in this paper to enhance preparedness
Standardisation of magnetic nanoparticles in liquid suspension
Suspensions of magnetic nanoparticles offer diverse opportunities for technology innovation, spanning a large number of industry sectors from imaging and actuation based applications in biomedicine and biotechnology, through large-scale environmental remediation uses such as water purification, to engineering-based applications such as position-controlled lubricants and soaps. Continuous advances in their manufacture have produced an ever-growing range of products, each with their own unique properties. At the same time, the characterisation of magnetic nanoparticles is often complex, and expert knowledge is needed to correctly interpret the measurement data. In many cases, the stringent requirements of the end-user technologies dictate that magnetic nanoparticle products should be clearly defined, well characterised, consistent and safe; or to put it another way—standardised. The aims of this document are to outline the concepts and terminology necessary for discussion of magnetic nanoparticles, to examine the current state-of-the-art in characterisation methods necessary for the most prominent applications of magnetic nanoparticle suspensions, to suggest a possible structure for the future development of standardisation within the field, and to identify areas and topics which deserve to be the focus of future work items. We discuss potential roadmaps for the future standardisation of this developing industry, and the likely challenges to be encountered along the way
Early chronic kidney disease: diagnosis, management and models of care
Chronic kidney disease (CKD) is prevalent in many countries, and the costs associated with the care of patients with end-stage renal disease (ESRD) are estimated to exceed US$1 trillion globally. The clinical and economic rationale for the design of timely and appropriate health system responses to limit the progression of CKD to ESRD is clear. Clinical care might improve if early-stage CKD with risk of progression to ESRD is differentiated from early-stage CKD that is unlikely to advance. The diagnostic tests that are currently used for CKD exhibit key limitations; therefore, additional research is required to increase awareness of the risk factors for CKD progression. Systems modelling can be used to evaluate the impact of different care models on CKD outcomes and costs. The US Indian Health Service has demonstrated that an integrated, system-wide approach can produce notable benefits on cardiovascular and renal health outcomes. Economic and clinical improvements might, therefore, be possible if CKD is reconceptualized as a part of primary care. This Review discusses which early CKD interventions are appropriate, the optimum time to provide clinical care, and the most suitable model of care to adopt
HLA-A and -B alleles and haplotypes in hemochromatosis probands with HFE C282Y homozygosity in central Alabama
BACKGROUND: We wanted to quantify HLA-A and -B allele and haplotype frequencies in Alabama hemochromatosis probands with HFE C282Y homozygosity and controls, and to compare results to those in other populations. METHODS: Alleles were detected using DNA-based typing (probands) and microlymphocytotoxicity (controls). RESULTS: Alleles were determined in 139 probands (1,321 controls) and haplotypes in 118 probands (605 controls). In probands, A*03 positivity was 0.7482 (0.2739 controls; p =< 0.0001; odds ratio (OR) 7.9); positivity for B*07, B*14, and B*56 was also increased. In probands, haplotypes A*03-B*07 and A*03-B*14 were more frequent (p < 0.0001, respectively; OR = 12.3 and 11.1, respectively). The haplotypes A*01-B*60, A*02-B*39, A*02-B*62, A*03-B*13, A*03-B*15, A*03-B*27, A*03-B*35, A*03-B*44, A*03-B*47, and A*03-B*57 were also significantly more frequent in probands. 37.3% of probands were HLA-haploidentical with other proband(s). CONCLUSIONS: A*03 and A*03-B*07 frequencies are increased in Alabama probands, as in other hemochromatosis cohorts. Increased absolute frequencies of A*03-B*35 have been reported only in the present Alabama probands and in hemochromatosis patients in Italy. Increased absolute frequencies of A*01-B*60, A*02-B*39, A*02-B*62, A*03-B*13, A*03-B*15, A*03-B*27, A*03-B*44, A*03-B*47, and A*03-B*57 in hemochromatosis cohorts have not been reported previously
A Timescale for Evolution, Population Expansion, and Spatial Spread of an Emerging Clone of Methicillin-Resistant Staphylococcus aureus
Due to the lack of fossil evidence, the timescales of bacterial evolution are largely unknown. The speed with which genetic change accumulates in populations of pathogenic bacteria, however, is a key parameter that is crucial for understanding the emergence of traits such as increased virulence or antibiotic resistance, together with the forces driving pathogen spread. Methicillin-resistant Staphylococcus aureus (MRSA) is a common cause of hospital-acquired infections. We have investigated an MRSA strain (ST225) that is highly prevalent in hospitals in Central Europe. By using mutation discovery at 269 genetic loci (118,804 basepairs) within an international isolate collection, we ascertained extremely low diversity among European ST225 isolates, indicating that a recent population bottleneck had preceded the expansion of this clone. In contrast, US isolates were more divergent, suggesting they represent the ancestral population. While diversity was low, however, our results demonstrate that the short-term evolutionary rate in this natural population of MRSA resulted in the accumulation of measurable DNA sequence variation within two decades, which we could exploit to reconstruct its recent demographic history and the spatiotemporal dynamics of spread. By applying Bayesian coalescent methods on DNA sequences serially sampled through time, we estimated that ST225 had diverged since approximately 1990 (1987 to 1994), and that expansion of the European clade began in 1995 (1991 to 1999), several years before the new clone was recognized. Demographic analysis based on DNA sequence variation indicated a sharp increase of bacterial population size from 2001 to 2004, which is concordant with the reported prevalence of this strain in several European countries. A detailed ancestry-based reconstruction of the spatiotemporal dispersal dynamics suggested a pattern of frequent transmission of the ST225 clone among hospitals within Central Europe. In addition, comparative genomics indicated complex bacteriophage dynamics
Early Target Cells of Measles Virus after Aerosol Infection of Non-Human Primates
Measles virus (MV) is highly infectious, and has long been thought to enter the host by infecting epithelial cells of the respiratory tract. However, epithelial cells do not express signaling lymphocyte activation molecule (CD150), which is the high-affinity cellular receptor for wild-type MV strains. We have generated a new recombinant MV strain expressing enhanced green fluorescent protein (EGFP), based on a wild-type genotype B3 virus isolate from Khartoum, Sudan (KS). Cynomolgus macaques were infected with a high dose of rMVKSEGFP by aerosol inhalation to ensure that the virus could reach the full range of potential target cells throughout the entire respiratory tract. Animals were euthanized 2, 3, 4 or 5 days post-infection (d.p.i., n = 3 per time point) and infected (EGFP+) cells were identified at all four time points, albeit at low levels 2 and 3 d.p.i. At these earliest time points, MV-infected cells were exclusively detected in the lungs by fluorescence microscopy, histopathology and/or virus isolation from broncho-alveolar lavage cells. On 2 d.p.i., EGFP+ cells were phenotypically typed as large mononuclear cells present in the alveolar lumen or lining the alveolar epithelium. One to two days later, larger clusters of MV-infected cells were detected in bronchus-associated lymphoid tissue (BALT) and in the tracheo-bronchial lymph nodes. From 4 d.p.i. onward, MV-infected cells were detected in peripheral blood and various lymphoid tissues. In spite of the possibility for the aerosolized virus to infect cells and lymphoid tissues of the upper respiratory tract, MV-infected cells were not detected in either the tonsils or the adenoids until after onset of viremia. These data strongly suggest that in our model MV entered the host at the alveolar level by infecting macrophages or dendritic cells, which traffic the virus to BALT or regional lymph nodes, resulting in local amplification and subsequent systemic dissemination by viremia
- …
