5 research outputs found

    Nocturnal Flight Periodicity of the Caddisflies (Trichoptera) in Forest and Meadow Habitats of a First Order Michigan Stream

    Get PDF
    Using ultraviolet light traps, over 5000 caddisfly specimens were collected from a forest and a meadow habitat of Fairbanks Creek in northern Lower Michigan. Samples were collected every 15 minutes, interspersed with 15 minutes of no sampling, from sunset to sunrise during 5 nights from late June to mid-July 2014. Despite having fundamentally different caddisfly assemblages dominated by different species, mean specimen abundance and mean species richness in both habitats exhibited similar trends: peaking between 22:30 and 23:00, decreasing until 02:00 or 02:30, increasing again slightly during the later morning periods, and then decreasing to near zero by 06:00. On average, \u3e90% of species from the forest site were caught by 00:00 and 100% by 02:00, whereas meadow site richness didn’t reach 90% until 01:00 and 100% until 05:00. Species richness per night correlated strongly with dew point for both sites, reflecting consistently warm temperatures throughout the sampling period. Our results suggest that caddisfly flight is controlled by both innate behavior and environmental factors like temperature, and that sampling should continue late into the night to maximize capture, especially in open-canopied areas

    Genetic relationship between five psychiatric disorders estimated from genome-wide SNPs

    No full text
    Most psychiatric disorders are moderately to highly heritable. The degree to which genetic variation is unique to individual disorders or shared across disorders is unclear. To examine shared genetic etiology, we use genome-wide genotype data from the Psychiatric Genomics Consortium (PGC) for cases and controls in schizophrenia, bipolar disorder, major depressive disorder, autism spectrum disorders (ASD) and attention-deficit/hyperactivity disorder (ADHD). We apply univariate and bivariate methods for the estimation of genetic variation within and covariation between disorders. SNPs explained 17-29% of the variance in liability. The genetic correlation calculated using common SNPs was high between schizophrenia and bipolar disorder (0.68 ± 0.04 s.c.), moderate between schizophrenia and major depressive disorder (0.43 ± 0.06 s.e.), bipolar disorder and major depressive disorder (0.47 ± 0.06 s.e.), and ADHD and major depressive disorder (0.32 ± 0.07 s.e.), low between schizophrenia and ASD (0.16 ± 0.06 s.e.) and non-significant for other pairs of disorders as well as between psychiatric disorders and the negative control of Crohn's disease. This empirical evidence of shared genetic etiology for psychiatric disorders can inform nosology and encourages the investigation of common pathophysiologies for related disorders

    Genetic relationship between five psychiatric disorders estimated from genome-wide SNPs

    Get PDF
    <p>Most psychiatric disorders are moderately to highly heritable. The degree to which genetic variation is unique to individual disorders or shared across disorders is unclear. To examine shared genetic etiology, we use genome-wide genotype data from the Psychiatric Genomics Consortium (PGC) for cases and controls in schizophrenia, bipolar disorder, major depressive disorder, autism spectrum disorders (ASD) and attention-deficit/hyperactivity disorder (ADHD). We apply univariate and bivariate methods for the estimation of genetic variation within and covariation between disorders. SNPs explained 17-29% of the variance in liability. The genetic correlation calculated using common SNPs was high between schizophrenia and bipolar disorder (0.68 +/- 0.04 s.e.), moderate between schizophrenia and major depressive disorder (0.43 +/- 0.06 s.e.), bipolar disorder and major depressive disorder (0.47 +/- 0.06 s.e.), and ADHD and major depressive disorder (0.32 +/- 0.07 s.e.), low between schizophrenia and ASD (0.16 +/- 0.06 s.e.) and non-significant for other pairs of disorders as well as between psychiatric disorders and the negative control of Crohn's disease. This empirical evidence of shared genetic etiology for psychiatric disorders can inform nosology and encourages the investigation of common pathophysiologies for related disorders.</p>

    Joint Analysis of Psychiatric Disorders Increases Accuracy of Risk Prediction for Schizophrenia, Bipolar Disorder, and Major Depressive Disorder

    Get PDF
    Genetic risk prediction has several potential applications in medical research and clinical practice and could be used, for example, to stratify a heterogeneous population of patients by their predicted genetic risk. However, for polygenic traits, such as psychiatric disorders, the accuracy of risk prediction is low. Here we use a multivariate linear mixed model and apply multi-trait genomic best linear unbiased prediction for genetic risk prediction. This method exploits correlations between disorders and simultaneously evaluates individual risk for each disorder. We show that the multivariate approach significantly increases the prediction accuracy for schizophrenia, bipolar disorder, and major depressive disorder in the discovery as well as in independent validation datasets. By grouping SNPs based on genome annotation and fitting multiple random effects, we show that the prediction accuracy could be further improved. The gain in prediction accuracy of the multivariate approach is equivalent to an increase in sample size of 34% for schizophrenia, 68% for bipolar disorder, and 76% for major depressive disorders using single trait models. Because our approach can be readily applied to any number of GWAS datasets of correlated traits, it is a flexible and powerful tool to maximize prediction accuracy. With current sample size, risk predictors are not useful in a clinical setting but already are a valuable research tool, for example in experimental designs comparing cases with high and low polygenic risk

    Psychiatric genome-wide association study analyses implicate neuronal, immune and histone pathways

    No full text
    The final version of this article is available from Nature Publishing Group at https://doi.org/10.1038/nn.3922.Genome-wide association studies (GWAS) of psychiatric disorders have identified multiple genetic associations with such disorders, but better methods are needed to derive the underlying biological mechanisms that these signals indicate. We sought to identify biological pathways in GWAS data from over 60,000 participants from the Psychiatric Genomics Consortium. We developed an analysis framework to rank pathways that requires only summary statistics. We combined this score across disorders to find common pathways across three adult psychiatric disorders: schizophrenia, major depression and bipolar disorder. Histone methylation processes showed the strongest association, and we also found statistically significant evidence for associations with multiple immune and neuronal signaling pathways and with the postsynaptic density. Our study indicates that risk variants for psychiatric disorders aggregate in particular biological pathways and that these pathways are frequently shared between disorders. Our results confirm known mechanisms and suggest several novel insights into the etiology of psychiatric disorders
    corecore