5 research outputs found

    Accurate method for calculating currents in wires in the vicinity of curved geometries

    Get PDF
    International audiencePrecise methods to calculate currents are required for low frequency EMC simulations dealing with vehicles struck by lightning. The current model used resolves Maxwell’s equations combined with a Line model based on Holland’s thin wire formalism [1]. The challenge is related to the approximation of the source fields obtained with Yee’s scheme [2]. These sources are then used for the thin wire equations. In the vicinity of structures, the errors due to the staircase meshes representing surfaces corrupt the fields’ values. In order to bypass this issue, it was suggested to apply non structured meshes such as Finite Volume (FV) [3]. Difficulties are encountered when introducing thin oblique wires [4] in this last approach, in particular for the calculation of the local self inductance L, a numerical parameter required by the line model equations.In choosing a FV solver, difficulties will arise in terms of calculation resources due to the calculation procedure of the latter and to the unstructuredness of the meshes. To overcome this obstacle, a hybrid Non Structured-Structured (NST-ST) FV scheme which can also incorporate oblique Line models is proposed.To illustrate the advantage of this new approach, an open cylindrical structure with wires running along its walls will be taken into account. It will be illuminated by a plane wave and we shall compare the obtained results in terms of current and field values retrieved inside and also in the vicinity of the cables

    Study of a hight order finite difference scheme and of a thin wire model for simulating electromagnetic agression on a aerospatial vehicle

    No full text
    Les travaux de cette thèse concerne l’étude d’une méthode élément finis d’ordre spatial élevé que l’on peut assimilé à une extension du schéma de Yee. On parle alors de méthode différences finies d’ordre élevé. Après avoir donné, dans un premier chapitre, un historique non exhaustif des principales méthodes utilisées pour résoudre les équations de Maxwell dans le cadre de problèmes de CEM et montré l’ intérêt de disposer d’un solveur de type "différences finies d’ ordre élevé", nous présentons dans un deuxième chapitre le principe de la méthode. Nous donnons pour cela les caractéristiques du schéma spatial et temporel en précisant les conditions de stabilité de la méthode. En outre, dans une étude purement numérique, nous étudions la convergence du schéma. On se focalise ensuite sur la possibilité d’utiliser des ordres spatiaux variable par cellules dans chaque direction de l’espace. Des comparaisons avec le schéma de Yee et un schéma de Galerkin Discontinu particulier sont ensuite effectuées pour montrer les gains en coûts calcul et mémoire et donc l’intérêt de notre approche par rapport aux deux autres. Dans un troisième chapitre, nous nous intéressons à l’étude de modèles physiques indispensable au traitement d’un problème de CEM. Pour cela, nous nous focalisons particulièrement sur un modèle de fil mince oblique, des modèles de matériaux volumiques et minces et enfin sur la prise en compte de sol parfaitement métallique dans une agression de type onde plane. Chaque modèle est détaillé et validé par comparaison avec des solutions analytiques ou résultant de la littérature, sur des exemples canoniques. Le quatrième chapitre est dédié à une technique d’hybridation entre notre méthode et une approche Galerkin Discontinu en vue de traiter des géométries possédant des courbures. Nous donnons pour cela une stratégie d’hybridation basée sur l’échange de flux qui garantie au niveau continue la conservation d’une énergie. Nous présentons ensuite quelques exemples montrant la validité de notre approche dans une stratégie multi-domaines/multi-méthodes que nous précisons. Enfin le dernier chapitre de cette thèse concerne l’exploitation de notre méthode sur des cas industriels en comparaisons avec d’autres méthodes ou des résultats expérimentaux.This thesis is about the study of a high spatial finite element method whichcan be assimilated at an extension of the Yee schema. In the next, this method is also called high order finite difference method. In the first chapter, we give a non exhaustive recall of the major methods used to treat EMC problems and we show the necessity to have this kind of schema to simulate efficiently some EMC configurations. In the second chapter, the principle of the numerical method is presented and a stability condition is given. A numerical study analysis of the schema convergence is also done. Next, we show the interest to have the possibility to use local spatial order by cell in each direction of the computational domain. Some canonic examples are given to show the advantages interms of CPU time and memory storage of the method by comparison with Yee’s scheme and DG approach. In the third chapter, we define and validate on several examples,some physical models as thin wire, materials and perfectly metallic ground in presence of a plane wave, to have the possibility to treat EMC problems. The fourth chapter is about a hybridization strategy between our high order FDTD method and a DG schema.We focalize our study on a hybrid method which provides an energy conservation of the continuous problem. A numerical example is given to validate the method. Finally, in the last chapter, we present some simulations on industrial problems to show the possibility of the method to treat realistic EMC problems

    Méthodologie pour l'estimation des effets de la foudre sur un réacteur nucléaire

    No full text
    International audienceEffects of lightning in a nuclear facility must be carefully taken into account. Numerical simulations can be used to evaluate the magnetic fields inside the facility as well as the open circuit voltages and short circuit currents. Here, we present a methodology that combines both such simulations and experimental measurements. Thanks to the results of these tests, we can adjust the numerical models and thus make them more accurate. This methodology has been applied to the new French nuclear reactor “Jules Horowitz:” a complete analysis of the reactor building has been performed, and is presented in this letter.Les effets de la foudre dans une installation nucléaire doivent être soigneusement pris en compte. Des simulations numériques peuvent être utilisées pour évaluer les champs magnétiques à l'intérieur des bâtiments ainsi que les tensions de circuit ouvert et les courants de court-circuit. Nous présentons ici une méthodologie qui combine ces simulations à des mesures expérimentales. Grâce aux résultats des mesures, nous pouvons ajuster les modèles numériques pour les rendre plus précis. Cette méthodologie a été appliquée au nouveau réacteur nucléaire français 'Jules Horowitz' : une analyse complète du bâtiment réacteur a ainsi été réalisée et est présentée dans cet article

    Current prospects for controlling cancer growth with non-cytotoxic agents – nutrients, phytochemicals, herbal extracts, and available drugs

    No full text
    corecore