91 research outputs found

    Aspergillus antigen induces robust Th2 cytokine production, inflammation, airway hyperreactivity and fibrosis in the absence of MCP-1 or CCR2

    Get PDF
    BACKGROUND: Asthma is characterized by type 2 T-helper cell (Th2) inflammation, goblet cell hyperplasia, airway hyperreactivity, and airway fibrosis. Monocyte chemoattractant protein-1 (MCP-1 or CCL2) and its receptor, CCR2, have been shown to play important roles in the development of Th2 inflammation. CCR2-deficient mice have been found to have altered inflammatory and physiologic responses in some models of experimental allergic asthma, but the role of CCR2 in contributing to inflammation and airway hyperreactivity appears to vary considerably between models. Furthermore, MCP-1-deficient mice have not previously been studied in models of experimental allergic asthma. METHODS: To test whether MCP-1 and CCR2 are each required for the development of experimental allergic asthma, we applied an Aspergillus antigen-induced model of Th2 cytokine-driven allergic asthma associated with airway fibrosis to mice deficient in either MCP-1 or CCR2. Previous studies with live Aspergillus conidia instilled into the lung revealed that MCP-1 and CCR2 play a role in anti-fungal responses; in contrast, we used a non-viable Aspergillus antigen preparation known to induce a robust eosinophilic inflammatory response. RESULTS: We found that wild-type C57BL/6 mice developed eosinophilic airway inflammation, goblet cell hyperplasia, airway hyperreactivity, elevations in serum IgE, and airway fibrosis in response to airway challenge with Aspergillus antigen. Surprisingly, mice deficient in either MCP-1 or CCR2 had responses to Aspergillus antigen similar to those seen in wild-type mice, including production of Th2 cytokines. CONCLUSION: We conclude that robust Th2-mediated lung pathology can occur even in the complete absence of MCP-1 or CCR2

    “It ain’t (just) what you do, it’s (also) the way that you do it”: The role of Procedural Justice in the Implementation of Anti-social Behaviour Interventions with Young People

    Get PDF
    This paper provides an analysis of the introduction and implementation of hybrid powers to regulate anti-social behaviour, during a period of regulatory ‘hyperactivity’ in the UK. It explores the role of procedural justice by drawing on findings from a study conducted in England which investigated the implementation practices and experiences of young people and parents. These are considered against seven characteristics of procedural justice: voice; voluntariness; respectful treatment; parsimony; accuracy of information; fairness; and neutrality. The paper analyses the manner in which principles of voluntary cooperation can be corrupted by threats of punitive sanctions. It questions the extent to which the use of such hybrid orders fosters perceptions of legitimacy and supports the capacity of young people to avoid criminalisation

    Paracoccidioides brasilinsis-Induced Migration of Dendritic Cells and Subsequent T-Cell Activation in the Lung-Draining Lymph Nodes

    Get PDF
    Paracoccidioidomycosis is a mycotic disease caused by a dimorphic fungus, Paracoccidioides brasiliensis (Pb), that starts with inhalation of the fungus; thus, lung cells such as DC are part of the first line of defense against this microorganism. Migration of DC to the lymph nodes is the first step in initiating T cell responses. The mechanisms involved in resistance to Pb infection are poorly understood, but it is likely that DC play a pivotal role in the induction of effector T cells that control Pb infection. In this study, we showed that after Pb Infection, an important modification of lung DC receptor expression occurred. We observed an increased expression of CCR7 and CD103 on lung DC after infection, as well as MHC-II. After Pb infection, bone marrow-derived DC as well lung DC, migrate to lymph nodes. Migration of lung DC could represent an important mechanism of pathogenesis during PCM infection. In resume our data showed that Pb induced DC migration. Furthermore, we demonstrated that bone marrow-derived DC stimulated by Pb migrate to the lymph nodes and activate a T helper (Th) response. To the best of our knowledge, this is the first reported data showing that Pb induces migration of DC and activate a T helper (Th) response

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal

    Musculotopic organization of the motor neurons supplying the mouse hindlimb muscles: a quantitative study using Fluoro-Gold retrograde tracing

    Get PDF
    We have mapped the motor neurons (MNs) supplying the major hindlimb muscles of transgenic (C57/BL6J-ChAT-EGFP) and wild-type (C57/BL6J) mice. The fluorescent retrograde tracer Fluoro-Gold was injected into 19 hindlimb muscles. Consecutive transverse spinal cord sections were harvested, the MNs counted, and the MN columns reconstructed in 3D. Three longitudinal MN columns were identified. The dorsolateral column extends from L4 to L6 and consists of MNs innervating the crural muscles and the foot. The ventrolateral column extends from L1 to L6 and accommodates MNs supplying the iliopsoas, gluteal, and quadriceps femoris muscles. The middle part of the ventral horn hosts the central MN column, which extends between L2–L6 and consists of MNs for the thigh adductor, hamstring, and quadratus femoris muscles. Within these longitudinal columns, the arrangement of the different MN groups reflects their somatotopic organization. MNs innervating muscles developing from the dorsal (e.g., quadriceps) and ventral muscle mass (e.g., hamstring) are situated in the lateral and medial part of the ventral gray, respectively.MN pools belonging to proximal muscles (e.g., quadratus femoris and iliopsoas) are situatedventral to those supplying more distal ones (e.g., plantar muscles). Finally, MNs innervatingflexors (e.g., posterior crural muscles) are more medial than those belonging to extensors ofthe same joint (e.g., anterior crural muscles). These data extend and modify the MN maps in the recently published atlas of the mouse spinal cord and may help when assessing neuronal loss associated with MN diseases

    Murine Dendritic Cells Transcriptional Modulation upon Paracoccidioides brasiliensis Infection

    Get PDF
    Limited information is available regarding the modulation of genes involved in the innate host response to Paracoccidioides brasiliensis, the etiologic agent of paracoccidioidomycosis. Therefore, we sought to characterize, for the first time, the transcriptional profile of murine bone marrow-derived dendritic cells (DCs) at an early stage following their initial interaction with P. brasiliensis. DCs connect innate and adaptive immunity by recognizing invading pathogens and determining the type of effector T-cell that mediates an immune response. Gene expression profiles were analyzed using microarray and validated using real-time RT-PCR and protein secretion studies. A total of 299 genes were differentially expressed, many of which are involved in immunity, signal transduction, transcription and apoptosis. Genes encoding the cytokines IL-12 and TNF-α, along with the chemokines CCL22, CCL27 and CXCL10, were up-regulated, suggesting that P. brasiliensis induces a potent proinflammatory response in DCs. In contrast, pattern recognition receptor (PRR)-encoding genes, particularly those related to Toll-like receptors, were down-regulated or unchanged. This result prompted us to evaluate the expression profiles of dectin-1 and mannose receptor, two other important fungal PRRs that were not included in the microarray target cDNA sequences. Unlike the mannose receptor, the dectin-1 receptor gene was significantly induced, suggesting that this β-glucan receptor participates in the recognition of P. brasiliensis. We also used a receptor inhibition assay to evaluate the roles of these receptors in coordinating the expression of several immune-related genes in DCs upon fungal exposure. Altogether, our results provide an initial characterization of early host responses to P. brasiliensis and a basis for better understanding the infectious process of this important neglected pathogen

    Persistent changes in spinal cord gene expression after recovery from inflammatory hyperalgesia: A preliminary study on pain memory

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Previous studies found that rats subjected to carrageenan injection develop hyperalgesia, and despite complete recovery in several days, they continue to have an enhanced hyperalgesic response to a new noxious challenge for more than 28d. The study's aim was to identify candidate genes that have a role in the formation of the long-term hyperalgesia-related imprint in the spinal cord. This objective was undertaken with the understanding that the long-lasting imprint of acute pain in the central nervous system may contribute to the transition of acute pain to chronicity.</p> <p>Results</p> <p>To analyze changes in gene expression when carrageenan-induced hyperalgesia has disappeared but propensity for the enhanced hyperalgesic response is still present, we determined the gene expression profile using oligo microarray in the lumbar part of the spinal cord in three groups of rats: 28d after carrageenan injection, 24h after injection (the peak of inflammation), and with no injection (control group). Out of 17,000 annotated genes, 356 were found to be differentially expressed compared with the control group at 28d, and 329 at 24h after carrageenan injection (both groups at p < 0.01). Among differentially expressed genes, 67 (39 in 28d group) were identified as being part of pain-related pathways, altered in different models of pain, or interacting with proteins involved in pain-related pathways. Using gene ontology (GO) classification, we have identified 3 functional classes deserving attention for possible association with pain memory: They are related to cell-to-cell interaction, synaptogenesis, and neurogenesis.</p> <p>Conclusion</p> <p>Despite recovery from inflammatory hyperalgesia, persistent changes in spinal cord gene expression may underlie the propensity for the enhanced hyperalgesic response. We suggest that lasting changes in expression of genes involved in the formation of new synapses and neurogenesis may contribute to the transition of acute pain to chronicity.</p

    Prenatal Immune Challenge Is an Environmental Risk Factor for Brain and Behavior Change Relevant to Schizophrenia: Evidence from MRI in a Mouse Model

    Get PDF
    Objectives: Maternal infection during pregnancy increases risk of severe neuropsychiatric disorders, including schizophrenia and autism, in the offspring. The most consistent brain structural abnormality in patients with schizophrenia is enlarged lateral ventricles. However, it is unknown whether the aetiology of ventriculomegaly in schizophrenia involves prenatal infectious processes. The present experiments tested the hypothesis that there is a causal relationship between prenatal immune challenge and emergence of ventricular abnormalities relevant to schizophrenia in adulthood. Method: We used an established mouse model of maternal immune activation (MIA) by the viral mimic Polyl:C administered in early (day 9) or late (day 17) gestation. Automated voxel-based morphometry mapped cerebrospinal fluid across the whole brain of adult offspring and the results were validated by manual region-of-interest tracing of the lateral ventricles. Parallel behavioral testing determined the existence of schizophrenia-related sensorimotor gating abnormalities. Results: Polyl:C-induced immune activation, in early but not late gestation, caused marked enlargement of lateral ventricles in adulthood, without affecting total white and grey matter volumes. This early exposure disrupted sensorimotor gating, in the form of prepulse inhibition. Identical immune challenge in late gestation resulted in significant expansion of 4th ventricle volume but did not disrupt sensorimotor gating. Conclusions: Our results provide the first experimental evidence that prenatal immune activation is an environmental risk factor for adult ventricular enlargement relevant to schizophrenia. The data indicate immune-associated environmental insults targeting early foetal development may have more extensive neurodevelopmental impact than identical insults in late prenatal life. © 2009 Li et al.published_or_final_versio

    Common and rare variant association analyses in amyotrophic lateral sclerosis identify 15 risk loci with distinct genetic architectures and neuron-specific biology

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with a lifetime risk of one in 350 people and an unmet need for disease-modifying therapies. We conducted a cross-ancestry genome-wide association study (GWAS) including 29,612 patients with ALS and 122,656 controls, which identified 15 risk loci. When combined with 8,953 individuals with whole-genome sequencing (6,538 patients, 2,415 controls) and a large cortex-derived expression quantitative trait locus (eQTL) dataset (MetaBrain), analyses revealed locus-specific genetic architectures in which we prioritized genes either through rare variants, short tandem repeats or regulatory effects. ALS-associated risk loci were shared with multiple traits within the neurodegenerative spectrum but with distinct enrichment patterns across brain regions and cell types. Of the environmental and lifestyle risk factors obtained from the literature, Mendelian randomization analyses indicated a causal role for high cholesterol levels. The combination of all ALS-associated signals reveals a role for perturbations in vesicle-mediated transport and autophagy and provides evidence for cell-autonomous disease initiation in glutamatergic neurons

    Gammaherpesvirus-Induced Lung Pathology Is Altered in the Absence of Macrophages

    Full text link
    The purpose of this study was to examine the lung pathogenesis of murine gammaherpesvirus (MHV-68) infection in mice that lack CC chemokine receptor CCR2, an important receptor for macrophage recruitment to sites of inflammation. BALB/c and CCR2 −/− mice were inoculated intranasally (i.n.) with MHV-68 and samples were collected during acute infection (6 dpi) and following viral clearance (12 dpi). Immunohistochemistry was used to determine which cells types responded to MHV-68 infection in the lungs. Lung pathology in infected BALB/c mice was characterized by a mixed inflammatory cell infiltrate, necrosis, and increased alveolar macrophages by 12 dpi. Immunohistochemistry showed intense positive staining for macrophages. CCR2 −/− mice showed greater inflammation in the lungs at 12 dpi than did BALB/c mice, with more necrosis and diffuse neutrophil infiltrates in the alveoli. Immunohistochemistry demonstrated much less macrophage infiltration in the CCR2 −/− mice than in the BALB/c mice. These studies show that CCR2 is involved in macrophage recruitment in response to MHV-68 infection and illustrates how impairments in macrophage function affect the normal inflammatory response to this viral infection.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/41345/1/408_2004_Article_2535.pd
    corecore