389 research outputs found

    All-sky Search for High-Energy Neutrinos from Gravitational Wave Event GW170104 with the ANTARES Neutrino Telescope

    Full text link
    Advanced LIGO detected a significant gravitational wave signal (GW170104) originating from the coalescence of two black holes during the second observation run on January 4th^{\textrm{th}}, 2017. An all-sky high-energy neutrino follow-up search has been made using data from the ANTARES neutrino telescope, including both upgoing and downgoing events in two separate analyses. No neutrino candidates were found within ±500\pm500 s around the GW event time nor any time clustering of events over an extended time window of ±3\pm3 months. The non-detection is used to constrain isotropic-equivalent high-energy neutrino emission from GW170104 to less than 4×1054\sim4\times 10^{54} erg for a E2E^{-2} spectrum

    The ANTARES Collaboration: Contributions to ICRC 2017 Part I: Neutrino astronomy (diffuse fluxes and point sources)

    Get PDF
    Papers on neutrino astronomy (diffuse fluxes and point sources, prepared for the 35th International Cosmic Ray Conference (ICRC 2017, Busan, South Korea) by the ANTARES Collaboratio

    The ANTARES Collaboration: Contributions to ICRC 2017 Part III: Searches for dark matter and exotics, neutrino oscillations and detector calibration

    Get PDF
    Papers on the searches for dark matter and exotics, neutrino oscillations and detector calibration, prepared for the 35th International Cosmic Ray Conference (ICRC 2017, Busan, South Korea) by the ANTARES Collaboratio

    The ANTARES Collaboration: Contributions to ICRC 2017 Part II: The multi-messenger program

    Get PDF
    Papers on the ANTARES multi-messenger program, prepared for the 35th International Cosmic Ray Conference (ICRC 2017, Busan, South Korea) by the ANTARES Collaboratio

    Infinitesimal sulfur fusion yields quasi-metallic bulk silicon for stable and fast energy storage

    Get PDF
    A fast-charging battery that supplies maximum energy is a key element for vehicle electrification. High-capacity silicon anodes offer a viable alternative to carbonaceous materials, but they are vulnerable to fracture due to large volumetric changes during charge???discharge cycles. The low ionic and electronic transport across the silicon particles limits the charging rate of batteries. Here, as a three-in-one solution for the above issues, we show that small amounts of sulfur doping (<1 at%) render quasi-metallic silicon microparticles by substitutional doping and increase lithium ion conductivity through the flexible and robust self-supporting channels as demonstrated by microscopy observation and theoretical calculations. Such unusual doping characters are enabled by the simultaneous bottom-up assembly of dopants and silicon at the seed level in molten salts medium. This sulfur-doped silicon anode shows highly stable battery cycling at a fast-charging rate with a high energy density beyond those of a commercial standard anode

    Attenuation of Vaccinia Tian Tan Strain by Removal of Viral TC7L-TK2L and TA35R Genes

    Get PDF
    Vaccinia Tian Tan (VTT) was attenuated by deletion of the TC7L-TK2L and TA35R genes to generate MVTT3. The mutant was generated by replacing the open reading frames by a gene encoding enhanced green fluorescent protein (EGFP) flanked by loxP sites. Viruses expressing EGFP were then screened for and purified by serial plaque formation. In a second step the marker EGFP gene was removed by transfecting cells with a plasmid encoding cre recombinase and selecting for viruses that had lost the EGFP phenotype. The MVTT3 mutant was shown to be avirulent and immunogenic. These results support the conclusion that TC7L-TK2L and TA35R deletion mutants can be used as safe viral vectors or as platform for vaccines

    Recent Advances in Childhood Arterial Ischemic Stroke

    Get PDF
    Although many underlying diseases have been reported in the setting of childhood arterial ischemic stroke, emerging research demonstrates that non-atherosclerotic intracerebral arteriopathies in otherwise healthy children are prevalent. Minor infections may play a role in arteriopathies that have no other apparent underlying cause. Although stroke in childhood differs in many aspects from adult stroke, few systematic studies specific to pediatrics are available to inform stroke management. Treatment trials of pediatric stroke are required to determine the best strategies for acute treatment and secondary stroke prevention. The high cost of pediatric stroke to children, families, and society demands further study of its risk factors, management, and outcomes. This review focuses on the recent findings in childhood arterial ischemic stroke

    Letter of interest for a neutrino beam from Protvino to KM3NeT/ORCA

    Get PDF
    The Protvino accelerator facility located in the Moscow region, Russia, is in a good position to offer a rich experimental research program in the field of neutrino physics. Of particular interest is the possibility to direct a neutrino beam from Protvino towards the KM3NeT/ORCA detector, which is currently under construction in the Mediterranean Sea 40 km offshore Toulon, France. This proposal is known as P2O. Thanks to its baseline of 2595 km, this experiment would yield an unparalleled sensitivity to matter effects in the Earth, allowing for the determination of the neutrino mass ordering with a high level of certainty after only a few years of running at a modest beam intensity of ≈ 90 kW. With a prolonged exposure (≈1500 kWyear), a 2σ sensitivity to the leptonic CP-violating Dirac phase can be achieved. A second stage of the experiment, comprising a further intensity upgrade of the accelerator complex and a densified version of the ORCA detector (Super-ORCA), would allow for up to a 6σ sensitivity to CP violation and a 10º−17º resolution on the CP phase after 10 years of running with a 450 kW beam, competitive with other planned experiments. The initial composition and energy spectrum of the neutrino beam would need to be monitored by a near detector, to be constructed several hundred meters downstream from the proton beam target. The same neutrino beam and near detector set-up would also allow for neutrino-nucleus cross section measurements to be performed. A short-baseline sterile neutrino search experiment would also be possible

    The SUrvey for Pulsars and Extragalactic Radio Bursts – II. New FRB discoveries and their follow-up

    Get PDF
    We report the discovery of four Fast Radio Bursts (FRBs) in the ongoing SUrvey for Pulsars and Extragalactic Radio Bursts at the Parkes Radio Telescope: FRBs 150610, 151206, 151230 and 160102. Our real-time discoveries have enabled us to conduct extensive, rapid multimessenger follow-up at 12 major facilities sensitive to radio, optical, X-ray, gamma-ray photons and neutrinos on time-scales ranging from an hour to a few months post-burst. No counterparts to the FRBs were found and we provide upper limits on afterglow luminosities. None of the FRBs were seen to repeat. Formal fits to all FRBs show hints of scattering while their intrinsic widths are unresolved in time. FRB 151206 is at low Galactic latitude, FRB 151230 shows a sharp spectral cut-off, and FRB 160102 has the highest dispersion measure (DM = 2596.1 ± 0.3 pc cm−3) detected to date. Three of the FRBs have high dispersion measures (DM > 1500 pc cm−3), favouring a scenario where the DM is dominated by contributions from the intergalactic medium. The slope of the Parkes FRB source counts distribution with fluences >2 Jy ms is α=−2.2+0.6−1.2 and still consistent with a Euclidean distribution (α = −3/2). We also find that the all-sky rate is 1.7+1.5−0.9×103 FRBs/(4π sr)/day above ∼2Jyms and there is currently no strong evidence for a latitude-dependent FRB sky rate
    corecore