171 research outputs found

    Thermal analysis of lithium ion battery-equipped smartphone explosions

    Get PDF
    Thermal management of mobile electronics has been carried out because performance of the application processor has increased and power dissipation in miniaturized devices is proportional to its functionalities. There have been various studies on thermal analyses related to mobile electronics with the objectives of improving analysis methodologies and cooling strategies to guarantee device safety. Despite these efforts, failure to control thermal energy, especially in smartphones, has resulted in explosions, because thermal behaviors in the device under various operating conditions have not been sufficiently conducted. Therefore, several scenarios that caused the failure in thermal management of smartphone was analyzed to provide improved insight into thermal design deducing the parameters, that affect the thermal management of device. Overcurrent in battery due to malfunction of battery management system or immoderate addition of functionalities to the application processor are considered as reliable causes leading to the recent thermal runaways and explosions. From the analyses, it was also confirmed that the heat generation of the battery, which have not been considered importantly in previous literature, has significant effect on thermal management, and heat spreading could be suppressed according to arrangement of AP and battery. The heat pipe, which is utilized as a cooling device in mobile electronics, was also included in the thermal analyses. Although the heat pipes have been expected to improve the thermal management in mobile electronics, it showed limited heat transfer capacity due to its operating conditions and miniaturization. The demonstrated results of our analysis warn against vulnerabilities of smartphones in terms of safety in design

    TPMD: a database and resources of microsatellite marker genotyped in Taiwanese populations

    Get PDF
    Taiwan Polymorphic Marker Database (TPMD) (http://tpmd.nhri.org.tw/) is a marker database designed to provide experimental details and useful marker information allelotyped in Taiwanese populations accompanied by resources and technical supports. The current version deposited more than 372 000 allelotyping data from 1425 frequently used and fluorescent-labeled microsatellite markers with variation types of dinucleotide, trinucleotide and tetranucleotide. TPMD contains text and map displays with searchable and retrievable options for marker names, chromosomal location in various human genome maps and marker heterozygosity in populations of Taiwanese, Japanese and Caucasian. The integration of marker information in map display is useful for the selection of high heterozygosity and commonly used microsatellite markers to refine mapping of diseases locus followed by identification of disease gene by positional candidate cloning. In addition, our results indicated that the number of markers with heterozygosity over 0.7 in Asian populations is lower than that in Caucasian. To increase accuracy and facilitate genetic studies using microsatellite markers, we also list markers with genotyping difficulty due to ambiguity of allele calling and recommend an optimal set of microsatellite markers for genotyping in Taiwanese, and possible extension of genotyping in other Mongoloid populations

    First measurement of the Hubble Constant from a Dark Standard Siren using the Dark Energy Survey Galaxies and the LIGO/Virgo Binary–Black-hole Merger GW170814

    Get PDF
    International audienceWe present a multi-messenger measurement of the Hubble constant H 0 using the binary–black-hole merger GW170814 as a standard siren, combined with a photometric redshift catalog from the Dark Energy Survey (DES). The luminosity distance is obtained from the gravitational wave signal detected by the Laser Interferometer Gravitational-Wave Observatory (LIGO)/Virgo Collaboration (LVC) on 2017 August 14, and the redshift information is provided by the DES Year 3 data. Black hole mergers such as GW170814 are expected to lack bright electromagnetic emission to uniquely identify their host galaxies and build an object-by-object Hubble diagram. However, they are suitable for a statistical measurement, provided that a galaxy catalog of adequate depth and redshift completion is available. Here we present the first Hubble parameter measurement using a black hole merger. Our analysis results in , which is consistent with both SN Ia and cosmic microwave background measurements of the Hubble constant. The quoted 68% credible region comprises 60% of the uniform prior range [20, 140] km s−1 Mpc−1, and it depends on the assumed prior range. If we take a broader prior of [10, 220] km s−1 Mpc−1, we find (57% of the prior range). Although a weak constraint on the Hubble constant from a single event is expected using the dark siren method, a multifold increase in the LVC event rate is anticipated in the coming years and combinations of many sirens will lead to improved constraints on H 0

    Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model

    Get PDF
    We present results from a semicoherent search for continuous gravitational waves from the low-mass x-ray binary Scorpius X-1, using a hidden Markov model (HMM) to track spin wandering. This search improves on previous HMM-based searches of LIGO data by using an improved frequency domain matched filter, the J-statistic, and by analyzing data from Advanced LIGO's second observing run. In the frequency range searched, from 60 to 650 Hz, we find no evidence of gravitational radiation. At 194.6 Hz, the most sensitive search frequency, we report an upper limit on gravitational wave strain (at 95% confidence) of h095%=3.47×10-25 when marginalizing over source inclination angle. This is the most sensitive search for Scorpius X-1, to date, that is specifically designed to be robust in the presence of spin wandering. © 2019 American Physical Society

    Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model

    Get PDF
    We present results from a semicoherent search for continuous gravitational waves from the low-mass x-ray binary Scorpius X-1, using a hidden Markov model (HMM) to track spin wandering. This search improves on previous HMM-based searches of LIGO data by using an improved frequency domain matched filter, the J-statistic, and by analyzing data from Advanced LIGO's second observing run. In the frequency range searched, from 60 to 650 Hz, we find no evidence of gravitational radiation. At 194.6 Hz, the most sensitive search frequency, we report an upper limit on gravitational wave strain (at 95% confidence) of h095%=3.47×10-25 when marginalizing over source inclination angle. This is the most sensitive search for Scorpius X-1, to date, that is specifically designed to be robust in the presence of spin wandering. © 2019 American Physical Society

    Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model

    Get PDF
    We present results from a semicoherent search for continuous gravitational waves from the low-mass x-ray binary Scorpius X-1, using a hidden Markov model (HMM) to track spin wandering. This search improves on previous HMM-based searches of LIGO data by using an improved frequency domain matched filter, the J-statistic, and by analyzing data from Advanced LIGO’s second observing run. In the frequency range searched, from 60 to 650 Hz, we find no evidence of gravitational radiation. At 194.6 Hz, the most sensitive search frequency, we report an upper limit on gravitational wave strain (at 95% confidence) of h95%0=3.47×10−25 when marginalizing over source inclination angle. This is the most sensitive search for Scorpius X-1, to date, that is specifically designed to be robust in the presence of spin wandering

    Erratum: “Searches for Gravitational Waves from Known Pulsars at Two Harmonics in 2015–2017 LIGO Data” (2019, ApJ, 879, 10)

    Get PDF
    Due to an error at the publisher, in the published article the number of pulsars presented in the paper is incorrect in multiple places throughout the text. Specifically, "222" pulsars should be "221." Additionally, the number of pulsars for which we have EM observations that fully overlap with O1 and O2 changes from "168" to "167." Elsewhere, in the machine-readable table of Table 1 and in Table 2, the row corresponding to pulsar J0952-0607 should be excised as well. Finally, in the caption for Table 2 the number of pulsars changes from "188" to "187.

    Erratum: "A Gravitational-wave Measurement of the Hubble Constant Following the Second Observing Run of Advanced LIGO and Virgo" (2021, ApJ, 909, 218)

    Get PDF
    [no abstract available
    corecore