1,440 research outputs found
Spectrum Sharing in Wireless Networks via QoS-Aware Secondary Multicast Beamforming
Secondary spectrum usage has the potential to considerably increase spectrum utilization. In this paper, quality-of-service (QoS)-aware spectrum underlay of a secondary multicast network is considered. A multiantenna secondary access point (AP) is used for multicast (common information) transmission to a number of secondary single-antenna receivers. The idea is that beamforming can be used to steer power towards the secondary receivers while limiting sidelobes that cause interference to primary receivers. Various optimal formulations of beamforming are proposed, motivated by different ldquocohabitationrdquo scenarios, including robust designs that are applicable with inaccurate or limited channel state information at the secondary AP. These formulations are NP-hard computational problems; yet it is shown how convex approximation-based multicast beamforming tools (originally developed without regard to primary interference constraints) can be adapted to work in a spectrum underlay context. Extensive simulation results demonstrate the effectiveness of the proposed approaches and provide insights on the tradeoffs between different design criteria
Generalized h-index for Disclosing Latent Facts in Citation Networks
What is the value of a scientist and its impact upon the scientific thinking?
How can we measure the prestige of a journal or of a conference? The evaluation
of the scientific work of a scientist and the estimation of the quality of a
journal or conference has long attracted significant interest, due to the
benefits from obtaining an unbiased and fair criterion. Although it appears to
be simple, defining a quality metric is not an easy task. To overcome the
disadvantages of the present metrics used for ranking scientists and journals,
J.E. Hirsch proposed a pioneering metric, the now famous h-index. In this
article, we demonstrate several inefficiencies of this index and develop a pair
of generalizations and effective variants of it to deal with scientist ranking
and with publication forum ranking. The new citation indices are able to
disclose trendsetters in scientific research, as well as researchers that
constantly shape their field with their influential work, no matter how old
they are. We exhibit the effectiveness and the benefits of the new indices to
unfold the full potential of the h-index, with extensive experimental results
obtained from DBLP, a widely known on-line digital library.Comment: 19 pages, 17 tables, 27 figure
Tensor Regression with Applications in Neuroimaging Data Analysis
Classical regression methods treat covariates as a vector and estimate a
corresponding vector of regression coefficients. Modern applications in medical
imaging generate covariates of more complex form such as multidimensional
arrays (tensors). Traditional statistical and computational methods are proving
insufficient for analysis of these high-throughput data due to their ultrahigh
dimensionality as well as complex structure. In this article, we propose a new
family of tensor regression models that efficiently exploit the special
structure of tensor covariates. Under this framework, ultrahigh dimensionality
is reduced to a manageable level, resulting in efficient estimation and
prediction. A fast and highly scalable estimation algorithm is proposed for
maximum likelihood estimation and its associated asymptotic properties are
studied. Effectiveness of the new methods is demonstrated on both synthetic and
real MRI imaging data.Comment: 27 pages, 4 figure
Metabolic syndrome in rheumatic diseases: epidemiology, pathophysiology, and clinical implications
Subjects with metabolic syndrome–a constellation of cardiovascular risk factors of which central obesity and insulin resistance are the most characteristic–are at increased risk for developing diabetes mellitus and cardiovascular disease. In these subjects, abdominal adipose tissue is a source of inflammatory cytokines such as tumor necrosis factor-alpha, known to promote insulin resistance. The presence of inflammatory cytokines together with the well-documented increased risk for cardiovascular diseases in patients with inflammatory arthritides and systemic lupus erythematosus has prompted studies to examine the prevalence of the metabolic syndrome in an effort to identify subjects at risk in addition to that conferred by traditional cardiovascular risk factors. These studies have documented a high prevalence of metabolic syndrome which correlates with disease activity and markers of atherosclerosis. The correlation of inflammatory disease activity with metabolic syndrome provides additional evidence for a link between inflammation and metabolic disturbances/vascular morbidity
Performance of the CMS Cathode Strip Chambers with Cosmic Rays
The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device
in the CMS endcaps. Their performance has been evaluated using data taken
during a cosmic ray run in fall 2008. Measured noise levels are low, with the
number of noisy channels well below 1%. Coordinate resolution was measured for
all types of chambers, and fall in the range 47 microns to 243 microns. The
efficiencies for local charged track triggers, for hit and for segments
reconstruction were measured, and are above 99%. The timing resolution per
layer is approximately 5 ns
Performance and Operation of the CMS Electromagnetic Calorimeter
The operation and general performance of the CMS electromagnetic calorimeter
using cosmic-ray muons are described. These muons were recorded after the
closure of the CMS detector in late 2008. The calorimeter is made of lead
tungstate crystals and the overall status of the 75848 channels corresponding
to the barrel and endcap detectors is reported. The stability of crucial
operational parameters, such as high voltage, temperature and electronic noise,
is summarised and the performance of the light monitoring system is presented
TITUS: the Tokai Intermediate Tank for the Unoscillated Spectrum
68 pages.38 figures68 pages.38 figures68 pages.38 figures70 pages, 41 figuresThe TITUS, Tokai Intermediate Tank for Unoscillated Spectrum, detector, is a proposed Gd-doped Water Cherenkov tank with a magnetised muon range detector downstream. It is located at J-PARC at about 2 km from the neutrino target and it is proposed as a potential near detector for the Hyper-Kamiokande experiment. Assuming a beam power of 1.3 MW and 27.05 x 10^{21} protons-on-target the sensitivity to CP and mixing parameters achieved by Hyper-Kamiokande with TITUS as a near detector is presented. Also, the potential of the detector for cross sections and Standard Model parameter determination, supernova neutrino and dark matter are shown
First step to facilitate long term and multi centre studies of shear wave elastography in solid breast lesions using a computer assisted algorithm
Purpose:
Shear wave elastography (SWE) visualises the elasticity of tissue. As malignant tissue is generally stiffer than benign tissue, SWE is helpful to diagnose solid breast lesions. Until now, quantitative measurements of elasticity parameters have been possible only, while the images were still saved on the ultrasound imaging device. This work aims to overcome this issue and introduces an algorithm allowing fast offline evaluation of SWE images.
Methods:
The algorithm was applied to a commercial phantom comprising three lesions of various elasticities and 207 in vivo solid breast lesions. All images were saved in DICOM, JPG and QDE (quantitative data export; for research only) format and evaluated according to our clinical routine using a computer-aided diagnosis algorithm. The results were compared to the manual evaluation (experienced radiologist and trained engineer) regarding their numerical discrepancies and their diagnostic performance using ROC and ICC analysis.
Results:
ICCs of the elasticity parameters in all formats were nearly perfect (0.861–0.990). AUC for all formats was nearly identical for and (0.863–0.888). The diagnostic performance of SD using DICOM or JPG estimations was lower than the manual or QDE estimation (AUC 0.673 vs. 0.844).
Conclusions:
The algorithm introduced in this study is suitable for the estimation of the elasticity parameters offline from the ultrasound system to include images taken at different times and sites. This facilitates the performance of long-term and multi-centre studies
Enhanced optical conductivity and many-body effects in strongly-driven photo-excited semi-metallic graphite
The excitation of quasi-particles near the extrema of the electronic band
structure is a gateway to electronic phase transitions in condensed matter. In
a many-body system, quasi-particle dynamics are strongly influenced by the
electronic single-particle structure and have been extensively studied in the
weak optical excitation regime. Yet, under strong optical excitation, where
light fields coherently drive carriers, the dynamics of many-body interactions
that can lead to new quantum phases remain largely unresolved. Here, we induce
such a highly non-equilibrium many-body state through strong optical excitation
of charge carriers near the van Hove singularity in graphite. We investigate
the system's evolution into a strongly-driven photo-excited state with
attosecond soft X-ray core-level spectroscopy. Surprisingly, we find an
enhancement of the optical conductivity of nearly ten times the quantum
conductivity and pinpoint it to carrier excitations in flat bands. This
interaction regime is robust against carrier-carrier interaction with coherent
optical phonons acting as an attractive force reminiscent of superconductivity.
The strongly-driven non-equilibrium state is markedly different from the
single-particle structure and macroscopic conductivity and is a consequence of
the non-adiabatic many-body state
Rituximab therapy reduces activated B cells in both the peripheral blood and bone marrow of patients with rheumatoid arthritis: depletion of memory B cells correlates with clinical response
- …
