413 research outputs found

    Wnt/Wingless signaling through β-catenin requires the function of both LRP/Arrow and frizzled classes of receptors

    Get PDF
    BACKGROUND: Wnt/Wingless (Wg) signals are transduced by seven-transmembrane Frizzleds (Fzs) and the single-transmembrane LDL-receptor-related proteins 5 or 6 (LRP5/6) or Arrow. The aminotermini of LRP and Fz were reported to associate only in the presence of Wnt, implying that Wnt ligands form a trimeric complex with two different receptors. However, it was recently reported that LRPs activate the Wnt/β-catenin pathway by binding to Axin in a Dishevelled – independent manner, while Fzs transduce Wnt signals through Dishevelled to stabilize β-catenin. Thus, it is possible that Wnt proteins form separate complexes with Fzs and LRPs, transducing Wnt signals separately, but converging downstream in the Wnt/β-catenin pathway. The question then arises whether both receptors are absolutely required to transduce Wnt signals. RESULTS: We have established a sensitive luciferase reporter assay in Drosophila S2 cells to determine the level of Wg – stimulated signaling. We demonstrate here that Wg can synergize with DFz2 and function cooperatively with LRP to activate the β-catenin/Armadillo signaling pathway. Double-strand RNA interference that disrupts the synthesis of either receptor type dramatically impairs Wg signaling activity. Importantly, the pronounced synergistic effect of adding Wg and DFz2 is dependent on Arrow and Dishevelled. The synergy requires the cysteine-rich extracellular domain of DFz2, but not its carboxyterminus. Finally, mammalian LRP6 and its activated forms, which lack most of the extracellular domain of the protein, can activate the Wg signaling pathway and cooperate with Wg and DFz2 in S2 cells. We also show that the aminoterminus of LRP/Arr is required for the synergy between Wg and DFz2. CONCLUSION: Our study indicates that Wg signal transduction in S2 cells depends on the function of both LRPs and DFz2, and the results are consistent with the proposal that Wnt/Wg signals through the aminoterminal domains of its dual receptors, activating target genes through Dishevelled

    Drosophila coracle, a Member of the Protein 4.1 Superfamily, Has Essential Structural Functions in the Septate Junctions and Developmental Functions in Embryonic and Adult Epithelial Cells

    Get PDF
    This is the published version, also available here: http://dx.doi.org/10.1091/mbc.9.12.3505.Although extensively studied biochemically, members of the Protein 4.1 superfamily have not been as well characterized genetically. Studies of coracle, a DrosophilaProtein 4.1 homologue, provide an opportunity to examine the genetic functions of this gene family. coracle was originally identified as a dominant suppressor ofEgfr Elp, a hypermorphic form of theDrosophila Epidermal growth factor receptor gene. In this article, we present a phenotypic analysis ofcoracle, one of the first for a member of the Protein 4.1 superfamily. Screens for new coracle alleles confirm the null coracle phenotype of embryonic lethality and failure in dorsal closure, and they identify additional defects in the embryonic epidermis and salivary glands. Hypomorphiccoracle alleles reveal functions in many imaginal tissues. Analysis of coracle mutant cells indicates that Coracle is a necessary structural component of the septate junction required for the maintenance of the transepithelial barrier but is not necessary for apical–basal polarity, epithelial integrity, or cytoskeletal integrity. In addition, coracle phenotypes suggest a specific role in cell signaling events. Finally, complementation analysis provides information regarding the functional organization of Coracle and possibly other Protein 4.1 superfamily members. These studies provide insights into a range of in vivo functions for coracle in developing embryos and adults

    SDRS—an algorithm for analyzing large-scale dose–response data

    Get PDF
    Summary: Dose–response information is critical to understanding drug effects, yet analytical methods for dose–response assays cannot cope with the dimensionality of large-scale screening data such as the microarray profiling data. To overcome this limitation, we developed and implemented the Sigmoidal Dose Response Search (SDRS) algorithm, a grid search-based method designed to handle large-scale dose–response data. This method not only calculates the pharmacological parameters for every assay, but also provides built-in statistic that enables downstream systematic analyses, such as characterizing dose response at the transcriptome level

    Construction of Coupled Period-Mass Functions in Extrasolar Planets through the Nonparametric Approach

    Full text link
    Using the period and mass data of two hundred and seventy-nine extrasolar planets, we have constructed a coupled period-mass function through the non-parametric approach. This analytic expression of the coupled period-mass function has been obtained for the first time in this field. Moreover, due to a moderate period-mass correlation, the shapes of mass/period functions vary as a function of period/mass. These results of mass and period functions give way to two important implications: (1) the deficit of massive close-in planets is confirmed, and (2) the more massive planets have larger ranges of possible semi-major axes. These interesting statistical results will provide important clues into the theories of planetary formation.Comment: 20 pages, 7 figures, published in AJ, 137, 329 (2009

    Sticky Dead Microbes: rapid abiotic retention of microbial necromass in soil

    Get PDF
    Microbial necromass dominates soil organic matter. Recent research on necromass and soil carbon storage has focused on necromass production and stabilization mechanisms but not on the mechanisms of necromass retention. We present evidence from soil incubations with stable-isotope labeled necromass that abiotic adsorption may be more important than biotic immobilization for short-term necromass retention. We demonstrate that necromass adsorbs not only to mineral surfaces, but may also interact with other necromass. Furthermore, necromass cell chemistry alters necromass-necromass interaction, with more bacterial tracer retained when there is yeast necromass present. These findings suggest that the adsorption and abiotic interaction of microbial necromass and its functional properties, beyond chemical stability, deserve further investigation in the context of soil carbon sequestration

    iGentifier: indexing and large-scale profiling of unknown transcriptomes

    Get PDF
    Development and refinement of methods to analyse differential gene expression has been essential in the progress of molecular biology. A novel approach called iGentifier is presented for profiling known and unknown transcriptomes, thus bypassing a major limitation in microarray analysis. The iGentifier technology combines elements of fragment display (e.g. Differential Display or RMDD) and tag sequencing (e.g. SAGE, MPSS) and allows for analysis of samples in high throughput using current capillary electrophoresis equipment. Application to epidermal tissue of wild-type and mlo5 barley (Hordeum vulgare) plants, infected with powdery mildew [Blumeria graminis (DC.) E.O. Speer f.sp.hordei], led to the identification of several 100 genes induced or repressed upon infection with many well known for their response to fungal pathogens or other stressors. Ten of these genes are suggested to be classified as marker genes for durable resistance mediated by the mlo5 resistance gene

    Rhomboid family member 2 regulates cytoskeletal stress-associated Keratin 16.

    Get PDF
    Keratin 16 (K16) is a cytoskeletal scaffolding protein highly expressed at pressure-bearing sites of the mammalian footpad. It can be induced in hyperproliferative states such as wound healing, inflammation and cancer. Here we show that the inactive rhomboid protease RHBDF2 (iRHOM2) regulates thickening of the footpad epidermis through its interaction with K16. K16 expression is absent in the thinned footpads of irhom2-/- mice compared with irhom2+/+mice, due to reduced keratinocyte proliferation. Gain-of-function mutations in iRHOM2 underlie Tylosis with oesophageal cancer (TOC), characterized by palmoplantar thickening, upregulate K16 with robust downregulation of its type II keratin binding partner, K6. By orchestrating the remodelling and turnover of K16, and uncoupling it from K6, iRHOM2 regulates the epithelial response to physical stress. These findings contribute to our understanding of the molecular mechanisms underlying hyperproliferation of the palmoplantar epidermis in both physiological and disease states, and how this 'stress' keratin is regulated

    Brain enhancement through cognitive training: A new insight from brain connectome

    Get PDF
    Owing to the recent advances in neurotechnology and the progress in understanding of brain cognitive functions, improvements of cognitive performance or acceleration of learning process with brain enhancement systems is not out of our reach anymore, on the contrary, it is a tangible target of contemporary research. Although a variety of approaches have been proposed, we will mainly focus on cognitive training interventions, in which learners repeatedly perform cognitive tasks to improve their cognitive abilities. In this review article, we propose that the learning process during the cognitive training can be facilitated by an assistive system monitoring cognitive workloads using electroencephalography (EEG) biomarkers, and the brain connectome approach can provide additional valuable biomarkers for facilitating leaners' learning processes. For the purpose, we will introduce studies on the cognitive training interventions, EEG biomarkers for cognitive workload, and human brain connectome. As cognitive overload and mental fatigue would reduce or even eliminate gains of cognitive training interventions, a real-time monitoring of cognitive workload can facilitate the learning process by flexibly adjusting difficulty levels of the training task. Moreover, cognitive training interventions should have effects on brain sub-networks, not on a single brain region, and graph theoretical network metrics quantifying topological architecture of the brain network can differentiate with respect to individual cognitive states as well as to different individuals' cognitive abilities, suggesting that the connectome is a valuable approach for tracking the learning progress. Although only a few studies have exploited the connectome approach for studying alterations of the brain network induced by cognitive training interventions so far, we believe that it would be a useful technique for capturing improvements of cognitive function

    iAggregator: Multidimensional Relevance Aggregation Based on a Fuzzy Operator

    Get PDF
    International audienceRecently, an increasing number of information retrieval studies have triggered a resurgence of interest in redefining the algorithmic estimation of relevance, which implies a shift from topical to multidimensional relevance assessment. A key underlying aspect that emerged when addressing this concept is the aggregation of the relevance assessments related to each of the considered dimensions. The most commonly adopted forms of aggregation are based on classical weighted means and linear combination schemes to address this issue. Although some initiatives were recently proposed, none was concerned with considering the inherent dependencies and interactions existing among the relevance criteria, as is the case in many real-life applications. In this article, we present a new fuzzy-based operator, called iAggregator, for multidimensional relevance aggregation. Its main originality, beyond its ability to model interactions between different relevance criteria, lies in its generalization of many classical aggregation functions. To validate our proposal, we apply our operator within a tweet search task. Experiments using a standard benchmark, namely, Text REtrieval Conference Microblog,1 emphasize the relevance of our contribution when compared with traditional aggregation schemes. In addition, it outperforms state-of-the-art aggregation operators such as the Scoring and the And prioritized operators as well as some representative learning-to-rank algorithms

    CLIMP-63 is a gentamicin-binding protein that is involved in drug-induced cytotoxicity

    Get PDF
    Aminoglycoside-induced nephrotoxicity and ototoxicity is a major clinical problem. To understand how aminoglycosides, including gentamicin, induce cytotoxicity in the kidney proximal tubule and the inner ear, we identified gentamicin-binding proteins (GBPs) from mouse kidney cells by pulling down GBPs with gentamicin–agarose conjugates and mass spectrometric analysis. Among several GBPs specific to kidney proximal tubule cells, cytoskeleton-linking membrane protein of 63 kDa (CLIMP-63) was the only protein localized in the endoplasmic reticulum, and was co-localized with gentamicin-Texas Red (GTTR) conjugate after cells were treated with GTTR for 1 h. In western blots, kidney proximal tubule cells and cochlear cells, but not kidney distal tubule cells, exhibited a dithiothreitol (DTT)-resistant dimer band of CLIMP-63. Gentamicin treatment increased the presence of DTT-resistant CLIMP-63 dimers in both kidney proximal (KPT11) and distal (KDT3) tubule cells. Transfection of wild-type and mutant CLIMP-63 into 293T cells showed that the gentamicin-dependent dimerization requires CLIMP-63 palmitoylation. CLIMP-63 siRNA transfection enhanced cellular resistance to gentamicin-induced toxicity, which involves apoptosis, in KPT11 cells. Thus, the dimerization of CLIMP-63 is likely an early step in aminoglycoside-induced cytotoxicity in the kidney and cochlea. Gentamicin also enhanced the binding between CLIMP-63 and 14-3-3 proteins, and we also identified that 14-3-3 proteins are involved in gentamicin-induced cytotoxicity, likely by binding to CLIMP-63
    corecore