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Owing to the recent advances in neurotechnology and the progress in understanding
of brain cognitive functions, improvements of cognitive performance or acceleration of
learning process with brain enhancement systems is not out of our reach anymore,
on the contrary, it is a tangible target of contemporary research. Although a variety of
approaches have been proposed, we will mainly focus on cognitive training interventions,
in which learners repeatedly perform cognitive tasks to improve their cognitive abilities.
In this review article, we propose that the learning process during the cognitive
training can be facilitated by an assistive system monitoring cognitive workloads
using electroencephalography (EEG) biomarkers, and the brain connectome approach
can provide additional valuable biomarkers for facilitating leaners’ learning processes.
For the purpose, we will introduce studies on the cognitive training interventions,
EEG biomarkers for cognitive workload, and human brain connectome. As cognitive
overload and mental fatigue would reduce or even eliminate gains of cognitive training
interventions, a real-time monitoring of cognitive workload can facilitate the learning
process by flexibly adjusting difficulty levels of the training task. Moreover, cognitive
training interventions should have effects on brain sub-networks, not on a single brain
region, and graph theoretical network metrics quantifying topological architecture of the
brain network can differentiate with respect to individual cognitive states as well as to
different individuals’ cognitive abilities, suggesting that the connectome is a valuable
approach for tracking the learning progress. Although only a few studies have exploited
the connectome approach for studying alterations of the brain network induced by
cognitive training interventions so far, we believe that it would be a useful technique
for capturing improvements of cognitive functions.

Keywords: cognitive training, brain connectome, electroencephalography (EEG), functional magnetic resonance
imaging (fMRI), biomarkers

Introduction

Recent developments in neuroimaging techniques and related mathematical tools have extended
our understanding of neural mechanisms underlying brain cognitive functions. As such,
enhancement of cognitive performance or speeding-up learning process through a brain
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enhancement system is a tangible target of contemporary
research. Thus, the enhancement of brain functions has been
studied for a wide range of cognitive functions using a variety
of techniques (Clark and Parasuraman, 2014).

Such a system for brain enhancement would be beneficial
for a wide variety of people and can be based on several
techniques. Firstly, patients with neurological disorders (e.g.,
Alzheimer’s disease, dementia, stroke) or psychiatric disorder
(e.g., schizophrenia, major depression, bipolar disorder)
would be greatly benefitted if undesirable symptoms can be
diminished or rehabilitation can be speeded up by the system
(Farah et al., 2004). So far, two enhancement approaches,
psychopharmacology and the brain stimulation, have a long
history of researches and medical applications. Secondly, healthy
elderly people with declined cognitive functions due to aging
can be benefited from such a system, as the quality of their daily
life would be improved. It is known that aging has detrimental
effects on several cognitive functions such as processing speed,
working memory (WM) function, executive function, reasoning,
and long-term memory (LTM; Park et al., 2002) although some
other cognitive functions such as vocabulary (Schaie, 1994) and
implicit memory (Fleischman et al., 2004) remain relatively stable
or even get improved. Also, substantial evidences have emerged
to show that brain can be modified or reorganized throughout
the lifespan (Gutchess, 2014). Thirdly, people who are working
under extreme circumstances, such as traffic controllers, military
personnel, and surveillance system operators, will have a great
profit from the brain enhancement system as they need to
engage in operations for a long duration with high workloads
and pressure, and even a small error in the operations could
result in fatal accidents (Pop et al., 2012). Fourthly, struggling
students could be benefited from a system that accelerates
their learning performance when they are cramming for their
examinations, and thus improving their chances for a good job
status and salary, which are often dependent on their educational
backgrounds (Deary et al., 2007). In fact, it is known that a
psychostimulant called methylphenidate (MPH), also known as
Ritalin, is sometimes misused by students for boosting cognitive
abilities (Talbot, 2009). Finally, even ordinary people can be
benefitted from the advantages of such a system, since their
quality of life, their reputation in public community, or their
performance at workplace could be improved along with the
enhancement of the memory function, the attention levels, or
emotional states. For the purpose, a variety of interventions such
as cognitive training (Klingberg, 2010), neurofeedback (Sulzer
et al., 2013), or more directly by brain stimulations, e.g., TMS,
tDCS (Hamilton et al., 2011), or psychopharmacological drugs,
e.g., MPH, modafini (Repantis et al., 2010) have extensively been
studied.

In this review article, we will mainly focus on the brain
enhancement through the cognitive training interventions, in
which people perform specific cognitive tasks for improving
their cognitive functions (Klingberg, 2010). We will propose
that electroencephalography (EEG) biomarkers of cognitive
workload can be used for a brain enhancement system to
improve the outcome of cognitive training interventions, and
the connectome approach can provide further valuable metrics

for the assessment of effectiveness of the interventions. For this
purpose, three general topics will be covered: cognitive training
interventions, EEG biomarkers for cognitive workload, and the
brain connectome approach (Figure 1). The purpose of this
review article is to bridge between these three different topics.
A similar attempt has been made for the combination of brain
stimulation and connectome, which will not be covered here
(Luft et al., 2014).

Firstly, we will introduce studies on cognitive training
interventions, and their effects on the brain activities (Klingberg,
2010). Generally, the cognitive training interventions without
any physical or pharmacological interventions would be
more desirable for most people because of its relatively
low-costs and lower potential risks—undesirable side effects
(e.g., headache, dizziness, nervousness, sleep disturbances)
can be avoided. Neurofeedback, in which individuals are
presented with a feedback signal derived from brain activity
that indicates their learning goals, is another technique for
brain enhancement which requires no physical interventions
and has several common characteristics with the cognitive
training. However a significant difference might be the fact
that while cognitive training goals include improvements of
behavioral performance and accompanying modifications
in brain activations, neurofeedback is targeting directly in
improving brain activations and consequently increasing
cognitive performance.

Secondly, we will introduce EEG biomarkers for cognitive
workload, and propose that an adaptive training system
using EEG biomarkers based on real-time monitoring of
cognitive workload can improve gains of the cognitive training
interventions as cognitive overload or mental fatigue during
the course of training would reduce or even eliminate the
gains of cognitive training (Baldwin and Penaranda, 2012).
Owing to recent developments and spreads of neuroimaging
techniques such as EEG and MRI, tremendous amounts of
studies have been done for investigating associations between
mental states and brain activities. Meanwhile, a lot of
researchers have developed mathematical methods for revealing
biomarkers of brain functions mainly based on advances in
signal processing and machine learning techniques (Kothe
and Makeig, 2011). The combination of extended knowledge
of the mechanism underlying brain cognitive functions and
the advanced mathematical techniques would provide more
elaborated ways for boosting learning processes during cognitive
training.

Finally, we will propose that the brain connectome approach,
mainly based on graph theory (Sporns, 2014), would provide
further valuable biomarkers for monitoring mental states to
accelerate learning process by optimizing cognitive workload
during the performance of training tasks. The brain connectome
is a relatively new approach for investigating topological
architecture of the brain network. Because the brain is a
complex network consisting of a number of brain areas
dedicated to different functions, it has been suggested that
cognitive functions emerged from the dynamic interactions of
the distributed areas in large-scale network (Bressler andMenon,
2010). Therefore, brain network analysis would provide further
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FIGURE 1 | A schematic diagram depicting connections between
the three different topics. Improvement of cognitive functions through
cognitive training interventions is the ultimate goal of the brain
enhancement system we propose. EEG biomarkers can facilitate

learners’ learning process through a real-time monitoring of cognitive
states while brain connectome approach can improve detection of
cognitive states as well as understanding of neural mechanism
underlying cognitive training.

insights into the mechanism underlying the cognitive training,
and the graph theoretical network metrics would be useful for
discriminating different brain states during the training. We will
first provide a general introduction of the network science, and
then introduce studies applying the connectome approach to
the brain connectivity. Next, we will present our attempts to
employ the connectome approach for discriminating different
cognitive states as well as relevant studies that demonstrated
cognitive state dependent differences in brain networks or
changes in brain network evoked by prior experience or cognitive
training. Although so far only one study directly examined
the changes in network metrics induced by cognitive training
interventions (Langer et al., 2013), the studies showing changes of
brain connectivity and differences in graph theoretical network
metrics would suggest a potential use of the network metrics
for the brain enhancement system assisting learners’ learning
processes.

Cognitive Training

Cognitive Training Interventions
Cognitive training has emerged as a promising alternative to
improve cognitive abilities (Lustig et al., 2009; Karbach and
Schubert, 2013; Moreau and Conway, 2013). Several studies have
been performed to explore the effectiveness of the cognitive
training and its effects on neural activities (Klingberg, 2010;
Jolles and Crone, 2012). It has also been suggested that even
just playing video games could improve perceptual or cognitive
abilities (Green and Bavelier, 2003). Because of its ease of use
and the numerous potential applications, the cognitive training
has attracted substantial public attention, and a lot of computer
software for ‘‘brain training’’ are available on web, PCs or
smartphones, e.g., Lumosity,1 CogniFit,2 Cogmed.3

In this section, we will introduce neuroimaging studies
on cognitive training, which demonstrated changes of brain

1www.lumosity.com
2www.cognifit.com
3www.cogmed.com

activations or morphological changes in the brain induced by
the cognitive training interventions. Understanding the neural
process underlying the cognitive training interventions is of
great importance in order to develop the brain enhancement
system facilitating learners’ learning processes. The theoretical
framework capturing the neural plasticity behind cognitive
training is introduced by Hebb, known as Hebbian learning
theory (Hebb, 1949). According to this theory, any two neurons
or group of neurons that are repeatedly active at the same time
they will tend to form stronger associations, and consequently,
activity in one will be facilitating activity in the other. Briefly,
when neurons fire together, the connection between them is
strengthened. This means that when executing a cognitive
task repeatedly, the brain areas associated with the cognitive
functions engaged in the task will form stronger associations.
Hence, we could improve our cognitive abilities through
modifications of the brain activations induced by cognitive
training interventions.

Major criticism on the cognitive training is about the
transferability of training-related performance gain (Lustig et al.,
2009). It is likely that performance of the trained task would be
improved by the training, but its effects could be limited to the
particular trained task (Jaeggi et al., 2008). What most of the
people expect of the cognitive training is an improvement of
their general cognitive abilities useful in everyday life, not just
a better performance specific to the trained task. Therefore, it
is of great importance to succeed in reproducing the improved
performance gained from training in one task, on another,
different task with no prior training on the second (Karbach
and Schubert, 2013). Improved performance on untrained,
but directly related tasks to the trained task is called ‘‘near
transfer’’, while improvements on untrained tasks which are
related, but not directly related to the cognitive abilities is
called ‘‘far transfer’’. In fact, several studies have shown the
possibility of such far transfer of practice effect beyond task-
specific performance (Klingberg et al., 2002), although its
generality remains controversial (Colom et al., 2010). The
basic theory behind the transfer is also simple. If a brain
sub-network that is engaged in a trained task overlaps with
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networks related to untrained tasks, these networks will be
also strengthened following the Hebbian learning rule, and
consequently result in improved cognitive performance on the
untrained tasks.

In search of training schemes that can induce transfer
effects, WM training has been studied intensively. It is believed
that the WM is essential for a variety of higher cognitive
functions such as reasoning, problem solving, and decision
making (Klingberg, 2010), and moreover, it is considered to
be the basis for the general intelligence (Conway et al., 2003).
Additionally, WM capacity is crucial for knowledge and skill
acquisition, and is closely related to academic achievements
and educational success, engaging intense interest from a broad
range of people. For this reason, many programs for cognitive
training including commercial products such as Cogmed WM
Training4 or Jungle Memory Program5 (Shipstead et al., 2012),
are designed to target on the WM capacity. Some studies
have demonstrated that the gain of WM oriented cognitive
training can be transferred to cognitive control mechanisms
(Klingberg et al., 2002), the WM updating process (Dahlin et al.,
2008), reading comprehension (Chein and Morrison, 2010),
and even to measures of fluid intelligence, a cognitive ability
of abstract thinking and adaptation to novel problems (Jaeggi
et al., 2008). The fluid intelligence is known to be closely related
to professional and educational success (Neisser et al., 1996).
Although it is believed that the fluid intelligence is unsusceptible
to influences of education, Halford et al. proposed a hypothesis
that the WM and reasoning share a common mechanism,
providing a framework for improvements of the general
intelligence through WM oriented cognitive training (Halford
et al., 2007). To verify the hypothesis, Jaeggi et al. trained subjects
for 8–19 days with an adaptive dual n-back task, in which subjects
were required to update the information about spatial locations
of visual stimuli and auditory information concurrently, and
found the improvements of the fluid intelligence measured by
Raven’s Advanced Progressive Matrices test and the Bochumer
Matrizen-Test (Jaeggi et al., 2008). Stephenson et al. also found
improved scores in two out of four tests for the fluid intelligence
by the dual n-back task training (Stephenson and Halpern,
2013). Despite a number of successful observations of transfer
effects of WM training gain, neural mechanism underlying
the WM training interventions remains elusive. Some studies
have suggested that the improvements of fluid intelligence
could be achieved through cognitive training other than WM
training. Colom et al. found similar improvements in two
out of four scores measuring fluid intelligence induced by
simple speed tasks (Colom et al., 2010). Also the improvement
of fluid intelligence was observed only for participants who
underwent cognitive training with visuospatial components,
and even a visuospatial short-term memory (STM) training
improved the fluid intelligence (Stephenson and Halpern,
2013). One promising account for the effects of WM training
is that participants’ short-term storage capacity, which is a
common factor among STM, WM, executive function, attention,

4www.cogmed.com/program
5junglememory.com/

and general fluid intelligence, is expanded through intensive
performance of the cognitive training (Colom et al., 2013).

Effects of Cognitive Training on Brain Activations
In order to develop the brain enhancement system which
facilitates cognitive training processes, it is also of great
importance to investigate the effects of cognitive training on
the brain and to understand what is actually accomplished by
the cognitive training. Modulation of brain activation has been
demonstrated with a variety of cognitive training interventions,
such as theWM training (Hempel et al., 2004; Olesen et al., 2004;
Jolles et al., 2010), an attentional training (Mozolic et al., 2010),
dual tasks (Erickson et al., 2007), video games training (Maclin
et al., 2011), and even meditation training (Tang and Posner,
2014).

A number of studies using functional magnetic resonance
imaging (fMRI) have shown that besides improving behavioral
performance, intense cognitive training resulted also in changes
of the brain activations that were related to the cognitive
functions implicated in the tasks used as cognitive interventions
were changed by intense cognitive training, accompanying
with improvements of behavioral performance (Hempel et al.,
2004). Olesen et al. found an increase of brain activity in
the areas related to the WM induced by 5 weeks practice of
WM tasks (Olesen et al., 2004) while Hempel et al. showed
increased activations after 2 weeks of training on a WM task
and decreased activations after 4 weeks, suggesting two distinct
mechanisms mediating the training effects: an enhancement
mechanism for WM and a suppressive mechanism related to
automation of processing (Hempel et al., 2004). Furthermore,
a training of multi-task processing revealed training-induced
reductions in activity of brain areas responsible for stimulus-
response associations, attentional control, and response selection
process as well as an increase of activity in a region related
to executive control (Erickson et al., 2007). Such reductions in
brain activity induced by training may reflect increased task
selectivity within the areas (Dux et al., 2009). Even thirty hours
of training on a video game can induce reduction of activation
in attentional control areas, suggesting a reduction of attentional
demands after the training (Lee et al., 2012). Interestingly, a
WM training has also induced less deactivation in ‘‘default-mode
network’’, which is usually deactivated during cognitive tasks,
suggesting more automatic processing after practice (Jolles et al.,
2010).

In addition to the changes of activation at brain regions
specific to trained tasks, several neuroimaging studies
demonstrated transfer effects of cognitive interventions (Dahlin
et al., 2008). Dahlin et al. examined whether transfer effect
was induced by training on a task that involved ‘‘updating’’,
which is a basic executive function relating to intelligence,
WM, and manipulation of information (Dahlin et al., 2008).
After 5 weeks of training on a letter memory task, young
subjects showed improved performance on 3-back task, but
no improvement in the Stroop task. A comparison between
pre- and post-changes in the fMRI data that were collected
during the training task showed increased activity in the left
striatum and decreased activity in fronto-parietal network. As
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far as the transfer task is concerned, training-induced increases
in brain activations were found in the left striatum and the
frontal cortex for the 3-back task, but no significant changes
were detected for the Stroop task. Additionally, a conjunction
analysis revealed that overlap region exclusive to letter memory
and 3-back was the left striatum, which is associated with
updating, suggesting that the activation of the overlapping brain
region during the training induced the transfer to the untrained
3-back task. No transfer was observed in older adults who
showed no significant activation in the striatum during the letter
memory task. Transfer effect was also examined for affective
cognitive control (Schweizer et al., 2013). They found that
twenty days of a dual n-back task with emotional stimuli (eWM
task) induced improved emotional regulation and increased
activations in the fronto-parietal demand network, including
the dorsal and subgenual anterior cingulate (sgACC), on
another task that required emotional regulation. Furthermore,
several studies have examined cross-modal transfer effects of
WM training (Schneiders et al., 2011, 2012; Buschkuehl et al.,
2014). Buschkuel et al. have examined cross-modal transfer
effects of 7 days of training of a visuospatial n-back task to an
auditory n-back task, and investigated longitudinal changes
of brain activities using perfusion (arterial spin labeling; ASL)
(Buschkuehl et al., 2014). They found a transfer effects across
modalities, and observed increased perfusion in right superior
frontal gyrus, which is thought to be involved in executive
control and WM processing. On the contrary, Schneiders et al.
failed to observe cross-modal transfer effects for a visual and an
auditory WM tasks (Schneiders et al., 2011, 2012). They found
a modality-specific training effect for the visual WM training in
the right middle frontal gyrus, which is to some extent specific
to the maintenance of visual objects in WM, (Schneiders et al.,
2011), and that for the auditoryWM training in the right inferior
frontal gyrus responsible for maintaining auditory information
(Schneiders et al., 2012). However, no across-modal transfer
effects were detected. One possible account for this discrepancy
is that WM training would once increase brain activations in
areas associated with executive control, which is shared between
WM tasks with different modalities, but further training would
decrease the brain activation along with a decrease in cognitive
efforts necessary for the performance of the WM tasks (Chein
and Schneider, 2005).

Furthermore, such modifications of brain activations induced
by cognitive training can also be captured by EEG as well
(Maclin et al., 2011). Changes in activtions related to attentional
processes triggered by complex game learning were detected
in P3 ERP component as well as in δ and α EEG spectral
power (Maclin et al., 2011). Moreover, frontal EEG α power
during early phase of the game training predicted subsequent
learning rates (Mathewson et al., 2012). An improvement of
the fluid intelligence induced by WM training and increases in
θ and α synchronization have suggested that the WM training
has improved not only WM maintenance functions, but also
central executive and attentional control (Jaušovec and Jaušovec,
2012). A first-person shooter (FPS) video game enhanced neural
processes that support spatial selective attention, as it was
shown by increased amplitudes of the later visual ERPs in

high-performing FPS players (Wu et al., 2012). Improvements
of visual attention allocation, executive attention, and updating
function in WM representation has been indicated by increases
in ERP components (N160, P200 and P300) after training
on a WM task that engaged updating function (Zhao et al.,
2013). Modifications of EEG signals induced by training on a
game involving dual tasks or a WM task along with behavioral
improvements were also observed for elderly adults (Anguera
et al., 2013) and dysphoric participants (Owens et al., 2013).
Moreover, a meditation training such as integrative body-
mind training (IBMT) improved attention, mood, and stress
regulation, while it increased frontal midline θ power, where the
anterior cingulate cortex (ACC) is suggested to be the generator
of the activity (Tang et al., 2009). Thus, several cognitive training
programs have shown alterations in brain activities as well as
their effectiveness in improvements of cognitive performance. In
Table 1, we provide a summary of existing neuroimaging studies
showing changes in brain activations induced by cognitive
training interventions.

Structural Brain Changes Induced by Cognitive
Training Interventions
In addition to the training-induced changes in brain activity,
morphological changes can be induced by cognitive practice in
the adult brain despite a belief that changes in brain structure
are limited to the critical period of development (Draganski
and May, 2008). Repeated practice of skills during professional
career can induce long-lasting changes in structure of the brain:
i.e., London taxi drivers who have substantial experiences to
use spatial knowledge for navigation in the complex city were
found to have larger gray matter volumes in hippocampus
(Maguire et al., 2006), professional typists devoted to the
prolonged practice of typing show increased gray matter volume
in brain regions related to programming of motor tasks such
as supplementary motor area, prefrontal cortex and cerebellum
(Cannonieri et al., 2007), violinists and other string players who
use the second to the fifth digits of the left hand for fingering
the string have larger cortical representation of the digits of the
left hand in the primary somatosensory cortex (Elbert et al.,
1995).

More directly, several studies have examined the effects
of training on the structure of the brain. Modulations of
neural structures and functions of the brain can occur for
a relatively short period of time as demonstrated by MR-
based morphology in conjunction with longitudinal design.
Three months of training on juggling task induced a transient
expansion of gray matter in the brain areas associated with
the processing and storage of complex visual motion for both
young and older participants (Draganski et al., 2004; Boyke
et al., 2008). Even seven days of the juggling training induced
a change in gray matter (Driemeyer et al., 2008) and 6 weeks
of the training induced changes in white matter measured with
diffusion tensor imaging (DTI) as well as in gray matter density
(Scholz et al., 2009). Additionally, real-life intervention such as
an intensive preparation for the medical examination, which
requires acquisition of substantial amount of new information,
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TABLE 1 | Studies showing changes in brain activations induced by cognitive interventions.

Study Modality Training task Control group Population Training period

McKendrick et al. (2014) NIRS a dual verbal and spatial WM
task

a yoked condition group YA 5 days

Heinzel et al. (2014) fMRI an adaptive n-back task - OA and YA 4 weeks
Buschkuehl et al. (2014) ASL adaptive visuaospatial n-back vocabulary and general

knowledge questions
YA 7 days

Zhao et al. (2013) EEG Three memory tasks no training YA 21–23 days
Schweizer et al. (2013) fMRI adaptive emotional dual n-back a feature match training YA 20 days
Owens et al. (2013) EEG an online dual n-back task a nonadaptive dual 1-back

task
YA
(dysphoric)

2 weeks

Anguera et al. (2013) EEG NeuroRacer (a dual task) single task and no-contact
control

OA 4 weeks

Wu et al. (2012) EEG a FPS video game nonaction game control group YA 10 h
Schneiders et al. (2012) fMRI adaptive auditory n-back - YA 2 weeks
Prakash et al. (2012) fMRI Space Fortress vidoegame only limited game experience YA 30 h
Mathewson et al. (2012) EEG Space Fortress vidoegame - YA 20 h
Lee et al. (2012) fMRI Space Fortress videogame only limited game experience YA 30 h
Jaušovec and Jaušovec (2012) EEG,

NIRS
Five different WM tasks communication and social

skills
YA 30 h

Schneiders et al. (2011) fMRI adaptive visual or auditory
n-back

no training YA 2 weeks

Maclin et al. (2011) EEG Space Fortress vidoegame - YA 20 h
Jolles et al. (2010) fMRI a verbal WM task no training YA 6 weeks
Dux et al. (2009) fMRI sensory-motor task (single or

dual task trials)
- YA 2 weeks

Tang et al. (2009) EEG a meditation training a relaxation training YA 5 days
Dahlin et al. (2008) fMRI a letter memory task no training OA and YA 5 weeks
Erickson et al. (2007) fMRI a dual tasks and a single task no training YA 2–3 weeks
Olesen et al. (2004) fMRI WM tasks - YA 5 weeks
Hempel et al. (2004) fMRI n-back - YA 4 weeks

Note: EEG: electroencephalography, fMRI: functional magnetic resonance imaging, NIRS: near-infrared spectroscopy, ASL: arterial spin labeling, YA: young adults, OA:

old adults.

could also induce the increment of gray matter in the brain areas
known to be involved in memory processes (Draganski et al.,
2006). Furthermore, a variety of training tasks other than the
juggling training have induced alterations in brain structures.
A Morse code training, a sort of language learning, induced a
gray matter increase in the left occipitotemporal cortex, which
projects to the area involved in language perception (Schmidt-
Wilcke et al., 2010). A complex motor skill learning task induced
an increase in gray matter volume in the prefrontal cortex, which
was positively correlated with performance improvements over
time, and a decrease in white matter volume in the prefrontal
cortex (Taubert et al., 2010). A memory training induced cortical
thickness changes in the right fusiform and lateral orbitofrontal
cortex correlated with improvements in memory performance
(Engvig et al., 2010). A WM training increased myelination
measured by fractional anisotropy (FA) of fiber tracts in the
white matter regions adjacent to the intraparietal sulcus and
the anterior part of the body of the corpus callosum, both of
which are considered to be critical in WM (Takeuchi et al.,
2010). A mental calculation training that required WM function
induced a decrease in regional gray matter volume in the WM-
related regions, which could be attributed to the usage-dependent
selective elimination of synapses (Takeuchi et al., 2011). A
meditation training increased white matter efficiency in areas
surrounding the ACC that is implicated in cognitive control

(Tang et al., 2012). Furthermore, a logical reasoning training
gain to fluid intelligence was associated with an increase in
structural integrity in corpus and genu of the corpus callosum,
which connect between homologous cortical areas of the two
hemispheres and are considered to be involved in executive
functions andWM (Wolf et al., 2014). Taken together, structural
brain changes in response to cognitive training interventions
were observed for a variety of training schemes, and such changes
were mainly found in the brain areas that were supposed to
be involved in the training tasks. These observed structural
plasticity can be a basis of improvements in cognitive functions
through the interventions, suggesting a potential effectiveness
of the cognitive training. We provide a brief summary of
structural changes in the brain induced by training intervention
in Table 2.

Summary of Effects of Cognitive Training
In summary, cognitive training can modify activations or the
structure of the brain regions directly related to the training
tasks along with improvements in behavioral performance
of the tasks. As different training tasks can induce changes
of brain activations at different brain areas, the selection
of training tasks is also an important issue. Although the
brain areas engaged by the training tasks can be different
dependent on sensory modality, the cognitive tasks recruiting
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TABLE 2 | Studies showing structural brain changes induced by training interventions.

Study Modality Training task Control group Population Training period

Wolf et al. (2014) DTI logical reasoning training - OA 4 weeks
Tang et al. (2012) DTI a meditation training a relaxation training YA 4 weeks
Takeuchi et al. (2011) gray matter volume mental calculation placebo, no training YA 5 days
Takeuchi et al. (2010) DTI WM program - YA 2 months
Engvig et al. (2010) cortical thickness memory training no training OA 8 weeks
Taubert et al. (2010) DTI, gray matter volume a complex motor skill learning - YA 6 weeks
Schmidt-Wilcke et al. (2010) gray matter density a Morse code learning no training YA 2.5–8 months
Scholz et al. (2009) DTI, gray matter juggling no training YA 6 weeks
Driemeyer et al. (2008) gray matter density juggling - YA 7 days
Boyke et al. (2008) gray matter density juggling - OA 3 months
Draganski et al. (2006) gray matter density studying for medical exam - YA (medical students) 3 months
Draganski et al. (2004) gray matter density juggling jugglers vs. non-jugglers YA 3 months

Notes: DTI: diffusion tensor imaging, YA: young adults, OA: old adults.

higher cognitive functions, such as WM training or attentional
training, are likely to show some transfer effects. Most of
the demanding tasks usually recruit higher cognitive functions
such as executive function, cognitive control, and attentional
control (Buschkuehl et al., 2014). For example, WM training
is supposed to induce changes in brain activity in frontal
and parietal cortex, both of which are associated with WM
capacity (Klingberg, 2010), a WM task that demands emotional
regulation evoked increased activation in a part of the ACC,
which has been shown to be involved in cognitive control
and emotional regulation (Schweizer et al., 2013), an attention
training program altered a part of the attentional control system
in the prefrontal cortex (Mozolic et al., 2010), sensory motor
tasks such as a juggling and a videogame modified cortical
regions involved in spatial attention (Prakash et al., 2012) or
visual areas specific to motion processing (Draganski and May,
2008), and meditation training program changed brain activities
associated with attention, mood, and stress regulation (Tang
and Posner, 2014). These results suggest that higher cognitive
functions can be improved by cognitive training interventions
regardless of sensory modality involved, and the changes in
brain activations after cognitive training can be captured by a
variety of neuroimaging techniques including fMRI, EEG, fNIRS
and structural MRI. Although it is difficult to utilize functional
or structural MRI for real-time tracking of training-induced
changes of the brain due to their costs and portability, some
of the neuroimaging techniques such as EEG can be useful for
monitoring alterations in brain activity during the course of
cognitive training.

EEG Biomarkers for Cognitve Workload

In the previous section, we introduced studies showing
functional and structural changes of the brain induced by
cognitive training interventions. These studies have shown that
human cognitive functions could be improved through cognitive
interventions if the brain regions implicated in trained tasks
overlap between trained and untrained target tasks. In the
cognitive training, subjects are required to repeatedly perform
behavioral tasks such as WM tasks or video games. As a result

of intense involvements of the brain regions during the course of
the training, connections among the regions would be enhanced,
leading to improved cognitive performance. To engage the brain
regions effectively, individualized adaptive training platforms
can be useful tools. Also, the neuroimaging techniques including
EEG can capture changes in cognitive performance which could
be potentially used as biomarkers for the brain enhancement
system and facilitate learners’ learning process through tracking
learning progress or monitoring mental states.

For example, cognitive overload would induce a reduction of
learner’s motivation and mental fatigue, both of which hamper
the effectiveness of cognitive training interventions. Thus,
the cognitive training can be facilitated using passive Brain-
Computer Interface (BCI) system, which utilizes biomarkers
derived from the brain signal and adapts to the user’s
performance without the purpose of voluntary control of
the system (Zander and Kothe, 2011). Through a real-time
monitoring of cognitive workload of learners, the system can
flexibly be adjusted to avoid overloading learners’ cognitive
resources and to keep the learners’ engagement and motivation,
speeding up the learning progress (Baldwin and Penaranda,
2012). Additionally, individual differences in learners’ learning
rate can be predicted by EEG biomarker (Mathewson et al., 2012),
suggesting that combinations with other cognitive training or
neurofeedback training which improve the EEG biomarker could
optimize training of targeted cognitive functions. In this section,
we will first provide a general introduction of EEG biomarkers,
which have been studied mainly for BCI and Neurofeedback, and
discuss a potential use of biomarkers for increasing effectiveness
of cognitive training interventions. As it is practically difficult
to use fMRI or structural MRI to monitor learners’ learning
process in real-time due to its costs and portability, we will focus
on EEG biomarkers here. Then, examples of neurophysiological
biomarkers for cognitive workload will be introduced, which can
be used for optimizing cognitive workload of a training task to
keep learners’ concentration and motivation.

EEG Biomarkers: BCI and Neurofeedback
The biomarkers based on EEG have been studied extensively
for the BCI, which enables users to control computers
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or devices through the neurophysiological signals, mainly
because of ease of use and low cost (Graimann et al.,
2010). Mathematical techniques developed for the BCI system
can also be employed for the assistive system of cognitive
training interventions. In general, the detection of mental states
consists of three stages: pre-processing, feature extraction and
selection, and classification. The pre-processing can include
artifact removals, spatial filtering, and temporal filtering. After
the pre-processing, specific properties of the signal will be
extracted over window, useful features will be selected for
dimensional reduction, and the selected features will be
subjected to classification, which accounts for difference in
mental states. Classification enables the system to adapt to
individual difference in learners, but the selection of feature
space to be extracted is critical for detection of cognitive
states, and requires understanding of mechanism behind the
cognitive states.

In the BCI systems, various types of EEG signals such as
modulations of sensorimotor rhythms (SMR) during motor
imagery (Pfurtscheller et al., 1997), event-related potentials
(Farwell and Donchin, 1988) or slow cortical potentials (SCPs;
Birbaumer et al., 1999) are utilized for discriminating mental
states. In any case, it is well known that users often have to
be trained to control the BCI system properly, suggesting a
need of adjustments to individual difference in signals (Neuper
and Pfurtscheller, 2010). In the course of the training for the
control of BCI, the user is repeatedly presented with feedbacks
indicating performance of the system, and needs to learn
voluntarily generating specific patterns of brain signal, which is
detectable by the BCI system. Thus, a kind of neurofeedback
training for the BCI control is necessary. Actually, the only
difference between typical BCI systems and neurofeedback
training is how to use biomarkers. For the BCI system,
detected mental states would be used for controlling devices
and the training would be done through improvements of
behavioral performance in the control while the neurofeedback
training would be achieved through direct modulations of
brain signal.

EEG-neurofeedback has been examined with various types
of EEG biomarkers, e.g., up- or down-training of the SMR,
the β1 ratio, the θ/α ratio, γ, etc., and improved cognitive
functions including sustained attention, orienting, executive
functions, spatial rotation, procedural memory, recognition
memory have been repeatedly reported through the EEG-
neurofeedback training (Gruzelier, 2014). The successful
outcomes of the neurofeedback training suggest that the
mental state revealed by the EEG biomarkers could provide
quantitative metrics for guiding learners to obtain certain
mental state suitable for efficient learning or performing specific
tasks. In the neurofeedback training, the desired brain state
would be achieved through associative learning, in which
the association between the desired state and reinforcing
feedback stimulus revealing the brain activity is learned
(Sulzer et al., 2013). For the adaptive system for effective
training, such neurofeedback techniques could be used to
optimize learners’ mental state to facilitate their learning
progress.

Neurophysiological Biomarkers for Cognitive
Workload
The assessment of cognitive workload based on
neurophysiological biomarkers, particularly EEG biomarker
has been of great interest and been extensively studied (Kothe
and Makeig, 2011), and the spectral analysis of the EEG
waveforms is a powerful tool for the assessment of the mental
states during performance of cognitive tasks (Kohlmorgen et al.,
2007).

To search for features of EEG signals associated with task
demands, an increase of the EEG power-spectrum in the θ bands
(4–7 Hz) at frontal sites and a decrease in the α bands (8–12 Hz)
over parietal sites have been investigated (Borghini et al., 2014).
The increase of frontal θ activity has been observed for high
cognitive demand or high mental effort (Berka et al., 2007),
and is considered to reflect attentional process to allocate
cognitive resources (Gomarus et al., 2006) while the decrease
of α power may reflect semantic LTM processing (Klimesch,
1999).

These kinds of neurophysiological biomarkers can be used
for on-line monitoring of mental states. Aricò et al. developed
a framework for classification of multiple levels of mental
workload during a simulated flight based on EEG and ECG
signals (Aricò et al., 2014). In this study, subjects performed
the Multi Attribute Task Battery (MATB; Comstock and
Arnegard, 1992), which includes a variety of simulated tasks
involved in a flight scene, over three different difficulty levels
(cruise flight phase, flight level maintaining, and emergencies)
during recordings of EEG and ECG signals. The classifiers
were trained offline for discriminating cognitive workload, and
then tested with the other data where difficulty levels were
changed dynamically. The stability of the classifier parameters
was tested as well. The workload was assessed based on
fusion workload index: a combination of EEG and ECG
based workload indices. For the EEG-based workload index,
the power spectral density (PSD) was evaluated, and the
stepwise linear discrimination analysis (SWLDA) was used
to select the most relevant spectral features to discriminate
workload levels. For the ECG-based workload index, the PSD
was estimated for R-peaks extracted from the ECG signal,
and the relevant features were selected using the SWLDA.
The derived workload indices were subjected to the SWLDA
to calculate the best estimation of coefficients of a linear
combination of the EEG and ECG-based workload indices for
discriminating the workload levels. The authors demonstrated
that the proposed system was able to evaluate multiple levels of
mental workload, and the classification parameters were stable
within a week.

The frontal θ and parietal α power can be changed along with
a change of cognitive efforts induced by training of a task. In
the study by Borghini et al., subjects trained on the MATB for 5
days while EEG signals were recorded at first (T1), third (T3) and
fifth (T5) day of the training (Borghini et al., 2015). The frontal θ
power increased from T1 to T3, and then decreased at T5 and the
parietal α power showed an opposite pattern while performances
of the MATB task continued to improve during the training.
This result seems to reflect changes in attentional demands in the
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course of the training. We may be able to monitor the progress
of cognitive training through such biomarkers associated with
allocation of attentional resources.

In summary, there exist several evidences showing that
neurophysiological biomarkers can discriminate between
different levels of cognitive workload. Although further
developments would be necessary for applications based on
integration of such biomarkers into an adaptive training system,
classification of cognitive workload can be a useful measure
for assisting cognitive training and increase its effectiveness by
controlling the difficulty levels of the training task. Actually, as
mentioned above, some studies have shown changes in frontal
θ power after WM training (Jaušovec and Jaušovec, 2012) or
training that uses a complex video game (Anguera et al., 2013),
suggesting that these EEG biomarkers can be useful for tracking
the progress of cognitive training.

Brain Connectome Approach

The brain connectome is a useful approach not only for
understanding brain cognitive functions, but also for extracting
biomarkers that could discriminate between different brain
states. By using network metrics to represent a feature space
for classification, detection of mental states of learners could
be enhanced. In this section, we will introduce the network
science and its application to brain networks. Firstly, a
general introduction of the network science will be provided.
Secondly, prior studies using brain connectome approach will
be introduced. Then, we will discuss why the connectome
approach is beneficial to the brain enhancement system and how
it can boost the learning progress. Finally, we will introduce
prior studies showing differences or modifications of the brain
connectivity patterns, which suggest potential use of brain
connectome approach for the brain enhancement system.

Network Science
It is widely known that brain is a complex network consisting
of brain regions dedicated to different kinds of cognitive
functions. Furthermore, accumulating evidences support that
cognitive functions emerge from the dynamic interactions
of distributed brain areas in large-scale networks (Bressler
and Menon, 2010). Thus, in order to understand the neural
mechanism behind the cognitive training interventions, it
would also be important to study alterations in the brain
network. The network science, largely based on graph theory,
is a useful methodology for investigating an architecture of
a complex network and has been employed for studying
the brain network (Bullmore and Sporns, 2009; Sporns,
2014). Graph theory is a field of mathematics, aiming at
studying topological architecture of networks, and has a
long history, dating back to 1736 when a pioneering Swiss
mathematician, Leonhard Euler, published the paper on the
famous ‘‘Seven Bridges of Königsberg’’ problem. More recently,
Watts and Strogatz employed graph theoretical approach to
show ‘‘small-world’’ structure of complex networks derived
from empirical data (Watts and Strogatz, 1998), leading to the
rise of network science as a mathematical tool for studying

structure and functions of a wide variety of complex systems
from neuroscience, social science, physics, biology, computer
science, etc.

In graph theory, networks are represented as ‘‘graphs’’ that
consist of objects (‘‘nodes’’ or ‘‘vertices’’) and connections
or relationships between them (‘‘edges’’). The topological
properties of complex network are quantified by a wide variety
of measures, such as small-worldness, modularity, hierarchy,
centrality, and the distribution of network hubs (Bullmore
and Sporns, 2009). For example, the degree of a node is the
number of connections linking to the other nodes, and the
probability distribution of the node degree over the whole
network is called the degree distribution: a useful measure
for investigating a global architecture of a network. Clustering
coefficients quantify the degree of mutual connections between
the nearest neighbors of a node. High clustering leads to high
efficiency of local interactions and robustness. Shortest path
length is the minimum number of edges necessary for a node
to reach to another. The inverse of the path length can be
used to quantify global efficiency of information transfer of
the network. Connection density is a proportion of actual
connections to the total possible connections. High connection
density indicates high physical cost of a network. The centrality
of a node represents its importance in communication, and
several measures for node centrality has been proposed, such
as degree centrality, eigenvector centrality, closeness centrality,
betweennes centrality, and so on. For example, the degree
centrality is the simplest centrality measure: the degree of a
node, while Betweenness centrality is measured by counting the
number of paths between the other nodes passing through the
node for taking the shortest route. Nodes with high centrality
are called hubs, and can be used for assessing robustness of
the network by deleting them. Complex networks often consist
of a number of modules composed of locally interconnected
nodes with few connections to those in different modules. Hubs
can have different roles in this complex network architecture.
Provincial hubs are connected mainly to nodes inside their own
modules while connector hubs have connections with nodes in
other modules. Further details about the formulation of these
network metrics and their interpretation can be found in recent
reviews of this topic (e.g., Rubinov and Sporns, 2010).

Graph theoretical network analysis allows us to quantitatively
study topology of networks. A number of studies utilizing graph
theoretical measures have revealed that most real world networks
including brain network had non-trivial topological features.
Watts and Storogatz have shown that a variety of networks have
‘‘small-world’’ properties, based on empirical examples including
social network of film actors, power grid, and the neural network
of the worm Caenorhabditis elegans (C. elegans) (Watts and
Strogatz, 1998). The ‘‘small-world’’ network, by analogy with the
small-world phenomenon (popularly known as six degrees in
separation), has topological properties somewhere between two
extreme cases, i.e., regular and random networks. The small-
world network can be characterized by two independent graph
theoretical measures introduced above, namely the clustering
coefficients and average shortest path length. Regular network
is highly clustered, but has a large path length: it is robust,
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yet inefficient in information transfer. Random network, on
the other hand, has a small path length along with a small
clustering coefficient, indicating that it is efficient, but is not
robust. Small-world network is the intermediate between the
regular and the random network, and consists of a number
of clusters or modules, interlinking with each other via hubs.
Such modular architecture of the small-world network enables
global efficiency of information transfer and robustness to
perturbations at the same time. It is believed that the small-world
architecture is a fundamental principle of a diversity of complex
networks, e.g., social, economical, biological, and neurological
networks.

Scale-free network, whose degree distribution follows a power
law, is also an important concept in the network science
(Barabási, 2013). The scale-free property of the network means
that some ‘‘hub’’ nodes have a large number of connections
while a majority of nodes have only a few connections, which is
considered to enable rapid information transfer, minimal wiring
costs, and balancing between local and global communications.
Such scale-free property has also been found in a variety of
networks in the natural world.

Brain Connectome Approach to Large-Scale
Human Brain Network
A number of studies have attempted to employ graph theoretical
approaches for the brain network analysis (Sporns, 2014).
For large-scale human brain networks, the nodes are usually
considered to be brain regions or sensors (e.g., voxels for fMRI
and electrodes for EEG/magnetoencephalography (MEG)) while
the edges can be derived from different, but relevant forms
of connectivity, i.e., anatomical connectivity (AC), functional
connectivity (FC), or effective connectivity (EC). AC, also
called structural connectivity, is the axonal-fibers (white matter)
pathways usually acquired by DTI or diffusion spectrum imaging
(DSI). FC is defined as temporal dependency between activities
of distributed and often spatially distant brain regions without
explicit reference to causal effects, normally monitored via fMRI.
EC represents causal interactions between brain regions, defined
as an influence of one system on another. The causality can
be inferred through network perturbations, or the temporal
ordering of events. As estimations of EC usually require
high temporal resolution, signals from EEG, electrocorticogram
(ECoG) or MEG are used. The distinction between FC and EC
in neuroimaging studies is important when considering several
aspects of functional organization (Friston, 1994). Once the
connectivity pattern is provided, regardless of which modality is
employed for deriving the network, graph theoretical approaches
can be applied for investigating its network architecture. The
functional and EC derived from functional data can dynamically
change even at rest and do not necessarily match with the
AC and should not be interpreted as it is (Honey et al., 2009;
Hermundstad et al., 2013).

To obtain connectivity patterns of the large-scale network
from brain activity, a variety of techniques have been proposed.
For FC, correlation analysis can be used regardless of the
modality of signals while several techniques have been proposed
for EC, depending on modality of signals. To derive EC

from electrophysiological signals such as EEG and ECoG, the
Granger causality analysis based on multivariate autoregressive
model (MVAR) can be used to determine the directional
interaction among electrophysiological signals (Astolfi et al.,
2007). The directed transfer function (DTF; Kami ński and
Blinowska, 1991) and the partial directed coherence (PDC;
Baccalá and Sameshima, 2001) have been used to estimate
such causal relationships. To derive EC from fMRI data,
Granger Causality Modeling (GCM) and Dynamic Causal
Modeling (DCM) have been proposed (Valdes-Sosa et al., 2011).
Approximately, GCM is data-driven while DCM is hypothesis-
driven. Once connectivity maps are obtained regardless of
techniques used for deriving connectivity patterns, graph
theoretical approaches can be employed to investigate the
network properties.

Graph theoretical network metrics demonstrate topological
architecture of the brain network, such as global or local
efficiency of information transfer, small-worldness, and a
modular structure of the network. Studies employing graph
theoretical metrics on human large-scale structural brain
network have exhibited robust small-world properties, i.e., high
clustering coefficients with relatively small mean path length, for
structural brain networks derived from diffusionMRI (Hagmann
et al., 2007) as well as those from cortical thickness (He
et al., 2007). Similarly, the small-world properties have also
been shown for human brain functional networks based on
neurophysiological data, such as a task fMRI (Eguíluz et al., 2005;
Kinnison et al., 2012; Breckel et al., 2013), resting-state fMRI
(Salvador et al., 2005; Achard et al., 2006; Achard and Bullmore,
2007; van den Heuvel et al., 2008), EEG (Micheloyannis et al.,
2006, 2009; Stam et al., 2007; Smit et al., 2008; Boersma et al.,
2011; Langer et al., 2012; Sun et al., 2014a), andMEG (Stam, 2004;
Deuker et al., 2009). Also, the scale-free organization has been
reported for the functional network derived from fMRI (Eguíluz
et al., 2005; Achard et al., 2006; van den Heuvel et al., 2008)
and EEG (Lee et al., 2010). These findings consistent among
structural and functional brain network reveal that the small-
world and scale-free property are fundamental principles of the
brain networks, suggesting that the brain networks have evolved
to achieve high efficiency of information transfer between nodes
at low connection cost with robustness to perturbations.

Furthermore, several studies have shown that the human
brain network has some ‘‘hub’’ regions that work as core regions
linking between brain regions (van den Heuvel and Sporns,
2013b). The hub regions were identified for both structural
brain networks (He et al., 2007; Hagmann et al., 2008; Iturria-
Medina et al., 2008; Gong et al., 2009; van den Heuvel and
Sporns, 2011, 2013a; Nijhuis et al., 2013) and functional brain
networks (Achard et al., 2006; Cole et al., 2010b; Tomasi and
Volkow, 2011a,b; Zuo et al., 2012). The identified hub areas were
relatively consistent among the studies regardless of the modality
used for obtaining the brain networks, and mostly included
parietal and prefrontal regions, such as precuneus, anterior
and posterior cingulate gyrus, and the superior frontal gyrus
(Bullmore and Sporns, 2009; van den Heuvel and Sporns, 2013b).
These hub regions are believed to be responsible for multimodal
or integrative function. In fact, the precuneus is a part of the
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default mode network, and has been suggested to be involved in
visuospatial imagery, episodic memory retrieval, self-processing,
and consciousness (Cavanna and Trimble, 2006), while the
superior frontal gyrus contributes to various cognitive functions,
such as WM and attention (Petrides, 2005). The damage to
these regions could result in drastic changes of stability and
efficiency of the network (Sporns and Zwi, 2004). Such hub
regions, in particular the fronto-parietal brain network (FPN),
may work as a flexible hub, which implement cognitive control
by biasing information flow across sub-networks depending on
task demands (Cole et al., 2013).

As revealed by the graph theoretical approach, the brain has a
modular architecture with small-world network attributes. Each
module, probably corresponding to anatomically or functionally
defined brain regions, has dense connections within the module
for local processing of information, and is implicated in a
particular function, exhibiting functional segregation of local
areas. On the other hand, the modules are interconnected with
each other through short- or long-range connections through
hubs, implying functional integration of globally distributed
brain areas. In fact, human brain structural network derived from
co-variation of regional gray matter volumes measured using
MRI and DSI exhibited hierarchical modular architecture with
2–3 levels (Bassett et al., 2010). It is likely that such hierarchical
small-world network architecture enables the coexistence of
functional segregation and functional integration within a single
brain network. Also, these findings are consistent with those
for the resting-state FC, which have shown the existence of
a number of sub-networks consisting of functionally linked
brain regions (Cole et al., 2010a). Therefore, the brain has
an inhomogeneous architecture, and each brain region has
different functions with different degree of importance. As such,
brain regions dedicated to the relevant cognitive functions are
engaged depending on cognitive demands, and work together as
a network to communicate and influence one-another to produce
coherent experiences and behavior. Such sub-networks could
be divided into ‘‘intrinsic’’ and ‘‘evoked’’ functional network
architecture, where the intrinsic network serves as a standard
state of the brain and relatively small changes of the task-evoked
networks support task-specific demands (Cole et al., 2014).

In summary, functional and structural connectivity patterns
of the human large-scale brain network can be obtained
by means of a variety of neuroimaging and mathematical
techniques. A number of studies have been conducted to
investigate the topological architecture of the brain network
using graph theoretical network metrics, and have shown
that the human brain network had small-world network
characteristics, scale-free organization, and a modular structure,
suggesting applicability of network analysis for elucidating neural
underpinnings of human cognitive functions.

For the brain enhancement through cognitive training,
elucidation of the brain network architecture is of great
importance for several reasons. Firstly, cognitive training
can affect sub-network consisting of spatially distributed, but
functionally relevant brain regions even when improvement
of activation in a single brain region is targeted. Secondly, a
degree of impact of cognitive intervention can differ among

brain regions, depending on its topological property of the
brain network. To be specific, hub regions that link with other
sub-network can have greater influence compared to other
brain areas. Thirdly, the graph theoretical network metrics can
simply be additional biomarkers for monitoring mental states
of learners during the training, enabling the adaptive learning
system depending on the learner’s mental state to facilitate
the learning progress. Finally, although reduced activation in
brain regions responsible for attentional control and mental
efforts has been observed after the cognitive training and
is considered to indicate relative automaticity of behavior
induced by the training (Prakash et al., 2012), it cannot
be accounted for in terms of the improved ‘‘efficiency’’ of
neural function (Poldrack, 2015). The connectome approach
can provide another perspective for the effects of the cognitive
training in terms of changes in cost of information transfer
within the network. Additionally, FC strength was spatially
correlated with regional cerebral blood flow (rCBF), particularly
in the default mode network and executive control network,
and the coupling between blood supply and FC in the lateral-
parietal lobe was modulated with task demands (Liang et al.,
2013), suggesting that FC analysis would provide effective
tools for measuring changes of energy consumption induced
by cognitive training interventions. Therefore, it is getting
more important to consider about modulations of the brain
network architecture induced by the cognitive training in
order to develop the assistance system for the cognitive
training.

We have introduced graph theory as a tool for investigating
the topological architecture of complex networks, and its
applications to the human large-scale brain network. In
the studies introduced above, the graph theoretical network
metrics have been used to show prevailing attributes of the
brain network, such as small-world architecture, scale-free
organization, or hub brain regions. In the next section, we
will discuss its applicability for demonstrating difference in the
brain functional network architecture, which could discriminate
cognitive states.

Difference in the Brain Functional Network
The FC patterns of the brain network can be different
depending on cognitive states or states of mind, suggesting
that functional brain network can be used as biomarkers for
detecting mental states. For example, the functional interaction
between cell assemblies revealed by the human EEG coherence,
which is the correlation coefficient in the frequency domain,
was higher during memory encoding phase for subsequently
recalled words compared to forgotten words (Weiss and
Rappelsberger, 2000). In one study, Astolfi et al. showed
different cortical connectivity pattern during observations of TV
commercials between subsequently remembered and forgotten
ones (Astolfi et al., 2008). They also demonstrated that the
parietal areas received a larger amount of the incoming flow
of information during the observation of TV commercials that
were remembered than that of forgotten ones. Even more
precise differences in cognitive states can be predicted by
connectivity patterns of the brain network. Through calculating
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FIGURE 2 | Cross-frequency causal interactions revealed by Phase
Locking Values (PLV) for multiple cognitive workload levels during a
mental arithmetic task. Three different thresholds have been applied to each

type of coupling (F/θ, POα2, CFC) (Adapted from Dimitriadis et al., 2014). a
permission will be obtained from the publisher after acceptance, the image will
be replaced with high-resolution version.

the cross-frequency causal interactions (Canolty and Knight,
2010) between frontal and parieto-occipital sites, Dimitriadis
et al. estimated effective networks derived from EEG signals
during amental arithmetic task with different cognitive workload
levels (Dimitriadis et al., 2014). The tensor subspace analysis
(TSA) based learning was then used to extract features that
can discriminate different cognitive workload levels based
on FC patterns. These features achieved a remarkable high
correct-recognition-rate (96%) for classification of the task
difficulties, suggesting that the FC patterns based on cross-
frequency couplings between subregions can become powerful
biomarkers for measuring cognitive workload levels (Figure 2).
Also, multivariate pattern analysis (MVPA) on EEG FC patterns
demonstrated successful classification of mental fatigue states
from vigilant state at an accuracy of 81.5% (Sun et al.,
2014b). These results have suggested that a combination of
FC patterns and advanced mathematical tools could provide
powerful biomarkers of cognitive states.

In addition to the FC pattern itself, differences in the
topological architecture of the brain functional network can
be quantified in terms of graph theoretical network metrics.
Kitzbichler et al. have found that the brain functional network
derived from human MEG data became more globally efficient,
less clustered, and less modular network configuration as
cognitive efforts got greater during a WM task (Kitzbichler
et al., 2011). Furthermore, Sun et al. employed the graph
theoretical metrics on FC patterns derived from lower α band
(8–10 Hz) of EEG data to investigate small-world network
properties due to a decline in vigilance caused by performing
an attention demanding task (Psychomotor Vigilance Test;
PVT; Sun et al., 2014a). They found a decrease in efficiency
of global information transfer revealed by increased weighted
characteristic path length, and an asymmetrical pattern of
connectivity (right > left) in fronto-parietal regions due to
mental fatigue (Figure 3). Such difference in graph theoretical
network metrics was found between rest and a task performance
for the functional network derived from MEG (Bassett et al.,
2006) and fMRI (Cao et al., 2014; Taya et al., 2014). Also,
the graph theoretical metrics on fMRI functional network
could discriminate between resting-state and sensory stimulation
(Moussa et al., 2011), different cognitive load during a WM
task (Ginestet and Simmons, 2011), different cognitive states in
an emotional and a motivational task (Kinnison et al., 2012),

and between an intentional and an incidental learning of words
during neuropsychological tests (Kuhnert et al., 2013). The small-
worldness of EEG functional network was different between
during rest and mathematical thinking (Micheloyannis et al.,
2009) and some network metrics of a combined EEG and MEG
functional network was different between low- and high-memory
load during a visual WM retention period (Palva et al., 2010).
Furthermore, graph theoretical network metrics or network
modularity of fMRI functional network were different depending
on sleep levels or conscious levels (Ferri et al., 2007; Spoormaker
et al., 2010; Tagliazucchi et al., 2013; Uehara et al., 2014).

The graph theoretical network metrics can be effective in
discriminating individual differences in mental or cognitive
abilities as well. Van denHeuvel et al. have demonstrated a strong
negative association between the normalized characteristic path
length of the intrinsic brain network derived from resting-
state fMRI data and intelligence quotient (IQ), suggesting that
human intellectual performance is related to how efficiently
the brain integrates information between brain regions (van
den Heuvel et al., 2009). Moreover Langer et al. have shown
that clustering coefficient and path length of the functional
network derived from resting EEG were strongly related to
general intelligence evaluated by Ravens advanced progressive
matrices: higher small-worldness for higher general intelligence
(Langer et al., 2012). Although the network metrics can also be
useful biomarkers for diagnosis of mental disorders (Bassett and
Bullmore, 2009), we will not discuss about this case here.

In summary, the brain functional network can show different
connectivity patterns depending on cognitive states such as
cognitive workloads or sleep stages, and such difference can
be extracted and be classified using advanced mathematical
techniques. Furthermore, the graph theoretical metrics that
quantify topological architecture of complex networks can
also discriminate between cognitive states and individual
differences in intelligence. These results have suggested that
graph theoretical network metrics on functional network can be
useful biomarkers for monitoring and optimizing cognitive states
of learners during cognitive training.

Modulations of the Brain Network Induced by
Cognitive Training Interventions
We have introduced a number of examples showing that the
brain FC patterns could be different depending on cognitive
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FIGURE 3 | Functional connectivity patterns in the low alpha (8–10 Hz) frequency band obtained for (A) 1st and (B) 4th quartile during the PVT task
performance. The cortical connections are weaker at left prefrontal cortex compared to right one in the 4th quartile (Adapted from Sun et al., 2014a).

states or even individual cognitive abilities. For assisting
the cognitive training, it is important to know whether the
brain functional network could be changed through cognitive
interventions. Although only one study has directly examined
the effect of cognitive training interventions on topological
architecture of the brain functional network so far (Langer
et al., 2013), a number of studies have examined the effect
of cognitive interventions on the brain network in different
time scales, and found the modulation of the brain network
induced by prior experiences including the cognitive training, as
introduced below.

There are a number of studies showing modifications of the
brain FC induced by cognitive or perceptual task performance.
Albert et al. (2009) have shown that a motor learning could
modulate subsequent neural activity during rest and the changes
in resting activity were not limited to immediately after the
learning, but persisted after 4 min of unrelated task. Stevens
et al. (2010) have examined the effects of preceding exposure
of visual stimuli from distinct categories (i.e., faces or scenes)
on FC between frontal networks and category-preferential visual
regions during rest. They found that increased couplings between
a frontal brain region (rIFG) and category-preferential visual
regions after each task, and subsequent memory performance
was predicted by the degree of modulation of the couplings.
These findings have indicated that resting-state FC could be
modulated by perceptual or cognitive tasks at least in a short-
term (minutes).

Such modulations of resting-state connectivity induced by
prior experience can last for longer duration (days or weeks).
Lewis et al. (2009) have investigated the effects of intense

training (2–9 days) on a visual perceptual task on resting-
state FC, and found that the FC between trained visual cortex
and dorsal attention regions became more negatively correlated
while that between untrained visual cortex and several default
regions became less negatively correlated after learning. Changes
of resting-state FC were found for WM training as well. Six
weeks of a verbal WM training induced modifications in resting-
state FC and the change of frontoparietal connectivity was
positively related to performance improvement while that of
default network connectivity was negatively correlated (Jolles
et al., 2013). Also, 27 days of theWM training program increased
FC between mPFC and precuneus and that between mPFC and
right posterior parietal cortex and right lPFC (Takeuchi et al.,
2013). Even some weeks of training of video games changed FC
during game playing (Voss et al., 2012) and rest (Strenziok et al.,
2014).

The changes in brain network induced by cognitive training
interventions can be observed in structural connectivity as well.
Takeuchi et al. have demonstrated that 2 months of WM training
increased FA in the white matter regions, possibly attributable
to increased myelination after training (Takeuchi et al., 2010).
Additionally, Wolf et al. investigated the transfer capability of
general fluid intelligence related cognitive training in elderly
subjects (Wolf et al., 2014). They examined structural integrity
measured by DTI immediately after a 4-week training and
a 3-month follow-up period. Although only 22% of subjects
showed successful long-term transfer effects, transfer of training
gains was associated with a higher degree of structural integrity.

In addition to the individual connectivity between brain
regions, the graph theoretical approaches can be employed to
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TABLE 3 | Neuroimaging studies showing changes in brain FC induced by cognitive interventions.

Study Modality Training task Control group Population Training period

Strenziok et al. (2014) fMRI,
DTI

Rise of Nations, Brain Fitness,
Space Fortress

- OA 6 weeks

Jolles et al. (2013) fMRI a verbal WM task - YA and CH 6 weeks
Takeuchi et al. (2013) fMRI,

ASL
WMT program no training YA 27 days

Langer et al. (2013) EEG Tatool (adaptive WM training) tasks with low WM
demand

YA 4 weeks

Heitger et al. (2012) fMRI a motor learning task - YA 4 days
Voss et al. (2012) fMRI Space Fortress - YA 20 h
Bassett et al. (2011) fMRI a motor learning task - YA (musical

instruments)
5 days

Stevens et al. (2010) fMRI visual semantic classification
tasks

- YA 15 min

Albert et al. (2009) fMRI a motor learning task a motor performance
task

YA 11 min

Lewis et al. (2009) fMRI a shape-identification task - YA 2–9 days

YA: young adults, OA: old adults, CH: children.

examine changes in global characteristics of the brain network.
Bassett et al. investigated reconfiguration of modular structure
of the FC induced by 3 days of a motor learning task (Bassett
et al., 2011). They found that some of the brain regions showed
consistent community allegiance (low-flexibility nodes) while
other regions constantly shift allegiance (high-flexibility nodes).
Additionally, the network flexibility first increased and then
decreased during the learning process. The authors have also
examined changes of modular structure over thirty-day of a
motor skill training, and demonstrated that the separation
between core and periphery nodes decreased over the course
of training, and good learners tend to have greater separation
than poor learners (Bassett et al., 2013). Even 4 days of learning
of complex hand coordination pattern induced changes in
topological architecture of the fMRI functional network (Heitger
et al., 2012). Additionally, Breckel et al. have demonstrated
prolonged changes in the global architecture of the resting-state
brain network during a series of task performance (Breckel et al.,
2013). They compared topological properties of the functional
brain network derived from fMRI data before a sustained
attentional task performance and those after the task, and showed
that the post-task functional network had more clustering, less
global efficiency, and less long-distance connections, suggesting
a reduction in network integration due to the task performance.
These changes in network architecture were still observed after
6 min of resting state. Interestingly, such changes in information
transfer efficiency of the brain functional network were induced
by a cognitive training intervention (Langer et al., 2013). Langer
et al. investigated effects of intensive WM training on the EEG
functional network. They first confirmed that WM performance
was correlated with power in the θ frequency band, and the
WM training increased the θ power. Then, they found the global
efficiency of the functional network in the θ band was correlated
with higher WM performance before training, and WM training
induced increase of small-world topology revealed by an increase
of the clustering coefficient and a decrease of the path length in
the majority of the subjects.

Taken together, prior sensory or cognitive experience and
cognitive training interventions can have even prolonged effects
on the brain structural and FC. In addition, motor training and
WM training induced changes in topological architecture of the
brain network. Although only one study has directly examined
the effect of cognitive training interventions using brain
connectome approach so far (Langer et al., 2013), alterations
in the brain connectivity patterns can also be captured by
graph theoretical network metrics such as clustering coefficients
or path length. Such changes in topological architecture and
information transfer efficiency of the brain functional network
can be attributed to improvements in cognitive processing
related to the trained tasks, enhancements of general intelligence,
changes in attentional levels, difference in cognitive workload,
or reconfiguration of brain sub-networks involved. These
results have suggested that the network metrics can be useful
biomarkers, not only for monitoring cognitive states, but also
for tracking effects of the cognitive training interventions. A
summary for existing studies showing changes in functional
brain connectivity induced by cognitive training interventions is
given in Table 3.

Conclusion

In this review article, we proposed that biomarkers based
on brain connectome approach could be useful for a brain
enhancement system by optimizing effectiveness of cognitive
training interventions on learners’ learning process. For this
purpose, we first introduced studies on cognitive training
interventions. A number of studies have shown that the
brain cognitive functions could be improved through cognitive
training interventions such as WM training or video game
training, and brain activities were modulated as a result
of the training (Klingberg, 2010). Although such cognitive
interventions are effective, their effectiveness can be different
among individuals and they may even vary depending on
mental state at the moment of the training. If the task that
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the learner is performing is too difficult or too demanding,
it would be difficult for them to keep the motivation and
concentration on the facing task and some of them can be
exhausted from the excess of cognitive workload, resulting
in a poor or a lack of improvement in cognitive functions.
An adaptive assistance system for cognitive training through
monitoring the learners’ mental states such as cognitive workload
using objective biomarkers is a useful approach to facilitation
and optimization of the learning progress. As introduced above,
a number of biomarkers have been proposed for monitoring
mental states including cognitive workloads. Most of the
biomarkers are based on spectral properties of EEG signals
or ERPs, and the extracted features are often subjected to
cutting-edge mathematical tools based on machine learning
theory to discriminate mental states (Kothe and Makeig,
2011). Additionally, some biomarkers can be used to predict
individuals’ intelligence or learners’ subsequent learning rate
(Langer et al., 2012). If optimal mental states for ongoing training
can be replicated in the brain through the adjustment of the
cognitive workload, neurofeedback, or other cognitive training
scheme, we could optimize the effectiveness of the training
process.

Furthermore, we have introduced the functional connectome
approach, which is mainly based on the graph theory (Sporns,
2014). The brain is a complex network consisting of spatially
distributed regions dedicated to different functions, and it
is proposed that cognitive functions emerge from dynamic

interactions of several brain areas, not a result of an activation
of a single brain region (Bressler and Menon, 2010). As such,
the number of publications regarding brain network is drastically
increasing (Friston, 2011). We have proposed here that the brain
connectome can be a useful approach not only for elucidating
mechanisms underlying brain cognitive functions, but also
for detection of mental states. The graph theoretical network
metrics can be biomarkers of cognitive states, as shown in
previous studies on cognitive workload (Ginestet and Simmons,
2011; Kitzbichler et al., 2011) or mental fatigue (Breckel et al.,
2013; Sun et al., 2014a). Several studies have shown that the
brain functional and structural network connectivity can be
altered through cognitive interventions, and the graph theoretical
network metrics have shown the reorganization of topological
architecture of the brain functional network over multiple
temporal scales (i.e., minutes, days, weeks). These results suggest
that the functional connectome approach as well as conventional
biomarkers would be effective methods for boosting learning
progress of learners during the course of cognitive training.
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Kamiński, M. J., and Blinowska, K. J. (1991). A new method of the description of
the information flow in the brain structures. Biol. Cybern. 65, 203–210. doi: 10.
1007/bf00198091

Karbach, J., and Schubert, T. (2013). Training-induced cognitive and neural
plasticity. Front. Hum. Neurosci. 7:48. doi: 10.3389/fnhum.2013.00048

Kinnison, J., Padmala, S., Choi, J. M., and Pessoa, L. (2012). Network
analysis reveals increased integration during emotional and motivational
processing. J. Neurosci. 32, 8361–8372. doi: 10.1523/JNEUROSCI.0821-12.
2012

Kitzbichler, M. G., Henson, R. N., Smith, M. L., Nathan, P. J., and Bullmore,
E. T. (2011). Cognitive effort drives workspace configuration of human brain
functional networks. J. Neurosci. 31, 8259–8270. doi: 10.1523/JNEUROSCI.
0440-11.2011

Klimesch, W. (1999). EEG alpha and theta oscillations reflect cognitive and
memory performance: a review and analysis. Brain Res. Brain Res. Rev. 29,
169–195. doi: 10.1016/s0165-0173(98)00056-3

Klingberg, T. (2010). Training and plasticity of working memory. Trends Cogn.
Sci. 14, 317–324. doi: 10.1016/j.tics.2010.05.002

Klingberg, T., Forssberg, H., and Westerberg, H. (2002). Training of working
memory in children with ADHD. J. Clin. Exp. Neuropsychol. 24, 781–791.
doi: 10.1076/jcen.24.6.781.8395

Kohlmorgen, J., Dornhege, G., Braun, M., Blankertz, B., Müller, K.-R., Curio, G.,
et al. (2007). ‘‘Improving human performance in a real operating environment
through real-time mental workload detection,’’ in Toward Brain-Computer
Interfacing, eds G. Dornhege, J. D. R. Millán, T. Hinterberger, D. J. Mcfarland
and K.-R. Müller (Cambridge, MA: MIT Press), 409–422.

Kothe, C. A., and Makeig, S. (2011). Estimation of task workload from EEG data:
new and current tools and perspectives. Conf. Proc. IEEE Eng. Med. Biol. Soc.
2011, 6547–6551. doi: 10.1109/IEMBS.2011.6091615

Kuhnert, M.-T., Bialonski, S., Noennig, N., Mai, H., Hinrichs, H., Helmstaedter,
C., et al. (2013). Incidental and intentional learning of verbal episodic material
differentially modifies functional brain networks. PLoS One 8:e80273. doi: 10.
1371/journal.pone.0080273

Langer, N., Pedroni, A., Gianotti, L. R., Hänggi, J., Knoch, D., and Jäncke, L.
(2012). Functional brain network efficiency predicts intelligence. Hum. Brain
Mapp. 33, 1393–1406. doi: 10.1002/hbm.21297

Langer, N., von Bastian, C. C., Wirz, H., Oberauer, K., and Jäncke, L. (2013). The
effects of working memory training on functional brain network efficiency.
Cortex 49, 2424–2438. doi: 10.1016/j.cortex.2013.01.008

Lee, U., Oh, G., Kim, S., Noh, G., Choi, B., and Mashour, G. A. (2010). Brain
networks maintain a scale-free organization across consciousness, anesthesia
and recovery: evidence for adaptive reconfiguration. Anesthesiology 113,
1081–1091. doi: 10.1097/ALN.0b013e3181f229b5

Lee, H., Voss, M. W., Prakash, R. S., Boot, W. R., Vo, L. T., Basak, C., et al.
(2012). Videogame training strategy-induced change in brain function during
a complex visuomotor task. Behav. Brain Res. 232, 348–357. doi: 10.1016/j.bbr.
2012.03.043

Lewis, C. M., Baldassarre, A., Committeri, G., Romani, G. L., and Corbetta,
M. (2009). Learning sculpts the spontaneous activity of the resting human
brain. Proc. Natl. Acad. Sci. U S A 106, 17558–17563. doi: 10.1073/pnas.0902
455106

Liang, X., Zou, Q., He, Y., and Yang, Y. (2013). Coupling of functional connectivity
and regional cerebral blood flow reveals a physiological basis for network hubs
of the human brain. Proc. Natl. Acad. Sci. U S A 110, 1929–1934. doi: 10.
1073/pnas.1214900110

Luft, C. D., Pereda, E., Banissy, M. J., and Bhattacharya, J. (2014). Best of both
worlds: promise of combining brain stimulation and brain connectome. Front.
Syst. Neurosci. 8:132. doi: 10.3389/fnsys.2014.00132

Frontiers in Systems Neuroscience | www.frontiersin.org 17 April 2015 | Volume 9 | Article 44

http://www.frontiersin.org/Systems_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Systems_Neuroscience/archive


Taya et al. Brain enhancement through cognitive training

Lustig, C., Shah, P., Seidler, R., and Reuter-Lorenz, P. A. (2009). Aging, training
and the brain: a review and future directions. Neuropsychol. Rev. 19, 504–522.
doi: 10.1007/s11065-009-9119-9

Maclin, E. L., Mathewson, K. E., Low, K. A., Boot, W. R., Kramer, A. F.,
Fabiani, M., et al. (2011). Learning to multitask: effects of video game
practice on electrophysiological indices of attention and resource allocation.
Psychophysiology 48, 1173–1183. doi: 10.1111/j.1469-8986.2011.01189.x

Maguire, E. A., Woollett, K., and Spiers, H. J. (2006). London taxi drivers and bus
drivers: a structural MRI and neuropsychological analysis. Hippocampus 16,
1091–1101. doi: 10.1002/hipo.20233

Mathewson, K. E., Basak, C., Maclin, E. L., Low, K. A., Boot, W. R., Kramer, A. F.,
et al. (2012). Different slopes for different folks: alpha and delta EEG power
predict subsequent video game learning rate and improvements in cognitive
control tasks. Psychophysiology 49, 1558–1570. doi: 10.1111/j.1469-8986.2012.
01474.x

McKendrick, R., Ayaz, H., Olmstead, R., and Parasuraman, R. (2014). Enhancing
dual-task performance with verbal and spatial working memory training:
continuous monitoring of cerebral hemodynamics with NIRS. Neuroimage
85(Pt. 3), 1014–1026. doi: 10.1016/j.neuroimage.2013.05.103

Micheloyannis, S., Pachou, E., Stam, C. J., Vourkas, M., Erimaki, S., and Tsirka, V.
(2006). Using graph theoretical analysis of multi channel EEG to evaluate the
neural efficiency hypothesis.Neurosci. Lett. 402, 273–277. doi: 10.1016/j.neulet.
2006.04.006

Micheloyannis, S., Vourkas, M., Tsirka, V., Karakonstantaki, E., Kanatsouli, K.,
and Stam, C. J. (2009). The influence of ageing on complex brain networks: a
graph theoretical analysis. Hum. Brain Mapp. 30, 200–208. doi: 10.1002/hbm.
20492

Moreau, D., and Conway, A. R. (2013). Cognitive enhancement: a comparative
review of computerized and athletic training programs. Int. Rev. Sport Exerc.
Psychol. 6, 155–183. doi: 10.1080/1750984x.2012.758763

Moussa,M. N., Vechlekar, C. D., Burdette, J. H., Steen,M. R., Hugenschmidt, C. E.,
and Laurienti, P. J. (2011). Changes in cognitive state alter human functional
brain networks. Front. Hum. Neurosci. 5:83. doi: 10.3389/fnhum.2011.
00083

Mozolic, J. L., Hayasaka, S., and Laurienti, P. J. (2010). A cognitive training
intervention increases resting cerebral blood flow in healthy older adults. Front.
Hum. Neurosci. 4:16. doi: 10.3389/neuro.09.016.2010

Neisser, U., Boodoo, G., Bouchard, T. J. Jr., Boykin, A. W., Brody, N., Ceci, S. J.,
et al. (1996). Intelligence: knowns and unknowns. Am. Psychol. 51, 77–101.
doi: 10.1037/0003-066X.51.2.77

Neuper, C., and Pfurtscheller, G. (2010). ‘‘Neurofeedback training for BCI
control,’’ in Brain-Computer Interfaces, eds B. Graimann, G. Pfurtscheller, and
B. Allison (London: Springer), 65–78.

Nijhuis, E. H., van Cappellen van Walsum, A. M., and Norris, D. G. (2013).
Topographic hub maps of the human structural neocortical network. PLoS One
8:e65511. doi: 10.1371/journal.pone.0065511

Olesen, P. J., Westerberg, H., and Klingberg, T. (2004). Increased prefrontal and
parietal activity after training of working memory. Nat. Neurosci. 7, 75–79.
doi: 10.1038/nn1165

Owens, M., Koster, E. H., and Derakshan, N. (2013). Improving attention
control in dysphoria through cognitive training: transfer effects on working
memory capacity and filtering efficiency. Psychophysiology 50, 297–307. doi: 10.
1111/psyp.12010

Palva, S., Monto, S., and Palva, J. M. (2010). Graph properties of synchronized
cortical networks during visual workingmemorymaintenance.Neuroimage 49,
3257–3268. doi: 10.1016/j.neuroimage.2009.11.031

Park, D. C., Lautenschlager, G., Hedden, T., Davidson, N. S., Smith, A. D., and
Smith, P. K. (2002). Models of visuospatial and verbal memory across the adult
life span. Psychol. Aging 17, 299–320. doi: 10.1037//0882-7974.17.2.299

Petrides, M. (2005). Lateral prefrontal cortex: architectonic and functional
organization. Philos. Trans. R. Soc. Lond. B Biol. Sci. 360, 781–795. doi: 10.
1098/rstb.2005.1631

Pfurtscheller, G., Neuper, C., Flotzinger, D., and Pregenzer, M. (1997). EEG-
based discrimination between imagination of right and left hand movement.
Electroencephalogr. Clin. Neurophysiol. 103, 642–651. doi: 10.1016/s0013-
4694(97)00080-1

Poldrack, R. A. (2015). Is ‘‘efficiency’’ a useful concept in cognitive neuroscience?
Dev. Cogn. Neurosci. 11, 12–17. doi: 10.1016/j.dcn.2014.06.001

Pop, V. L., Stearman, E. J., Kazi, S., and Durso, F. T. (2012). Using engagement to
negate vigilance decrements in the nextgen environment. Int. J. Hum. Comput.
Interact. 28, 99–106. doi: 10.1080/10447318.2012.634759

Prakash, R. S., De Leon, A. A., Mourany, L., Lee, H., Voss, M.W., Boot,W. R., et al.
(2012). Examining neural correlates of skill acquisition in a complex videogame
training program. Front. Hum. Neurosci. 6:115. doi: 10.3389/fnhum.2012.
00115

Repantis, D., Schlattmann, P., Laisney, O., and Heuser, I. (2010). Modafinil
and methylphenidate for neuroenhancement in healthy individuals: a
systematic review. Pharmacol. Res. 62, 187–206. doi: 10.1016/j.phrs.2010.
04.002

Rubinov, M., and Sporns, O. (2010). Complex network measures of brain
connectivity: uses and interpretations. Neuroimage 52, 1059–1069. doi: 10.
1016/j.neuroimage.2009.10.003

Salvador, R., Suckling, J., Coleman, M. R., Pickard, J. D., Menon, D., and
Bullmore, E. (2005). Neurophysiological architecture of functional magnetic
resonance images of human brain. Cereb. Cortex 15, 1332–1342. doi: 10.
1093/cercor/bhi016

Schaie, K. W. (1994). The course of adult intellectual development. Am. Psychol.
49, 304–313. doi: 10.1037//0003-066x.49.4.304

Schmidt-Wilcke, T., Rosengarth, K., Luerding, R., Bogdahn, U., and Greenlee,
M. W. (2010). Distinct patterns of functional and structural neuroplasticity
associated with learning Morse code. Neuroimage 51, 1234–1241. doi: 10.
1016/j.neuroimage.2010.03.042

Schneiders, J. A., Opitz, B., Krick, C. M., and Mecklinger, A. (2011). Separating
intra-modal and across-modal training effects in visual working memory: an
fMRI investigation. Cereb. Cortex 21, 2555–2564. doi: 10.1093/cercor/bhr037

Schneiders, J. A., Opitz, B., Tang, H., Deng, Y., Xie, C., Li, H., et al. (2012). The
impact of auditory working memory training on the fronto-parietal working
memory network. Front. Hum. Neurosci. 6:173. doi: 10.3389/fnhum.2012.
00173

Scholz, J., Klein, M. C., Behrens, T. E., and Johansen-Berg, H. (2009). Training
induces changes in white-matter architecture. Nat. Neurosci. 12, 1370–1371.
doi: 10.1038/nn.2412

Schweizer, S., Grahn, J., Hampshire, A., Mobbs, D., and Dalgleish, T.
(2013). Training the emotional brain: improving affective control through
emotional working memory training. J. Neurosci. 33, 5301–5311. doi: 10.
1523/JNEUROSCI.2593-12.2013

Shipstead, Z., Redick, T. S., and Engle, R. W. (2012). Is working memory training
effective? Psychol. Bull. 138, 628–654. doi: 10.1037/a0027473

Smit, D. J. A., Stam, C. J., Posthuma, D., Boomsma, D. I., and de Geus, E. J. C.
(2008). Heritability of ‘‘small-world’’ networks in the brain: a graph theoretical
analysis of resting-state EEG functional connectivity. Hum. Brain Mapp. 29,
1368–1378. doi: 10.1002/hbm.20468

Spoormaker, V. I., Schröter, M. S., Gleiser, P. M., Andrade, K. C., Dresler, M.,
Wehrle, R., et al. (2010). Development of a large-scale functional brain network
during human non-rapid eye movement sleep. J. Neurosci. 30, 11379–11387.
doi: 10.1523/JNEUROSCI.2015-10.2010

Sporns, O. (2014). Contributions and challenges for network models in cognitive
neuroscience. Nat. Neurosci. 17, 652–660. doi: 10.1038/nn.3690

Sporns, O., and Zwi, J. D. (2004). The small world of the cerebral cortex.
Neuroinformatics 2, 145–162. doi: 10.1385/ni:2:2:145

Stam, C. J. (2004). Functional connectivity patterns of human
magnetoencephalographic recordings: a ‘small-world’ network? Neurosci.
Lett. 355, 25–28. doi: 10.1016/j.neulet.2003.10.063

Stam, C. J., Jones, B. F., Nolte, G., Breakspear, M., and Scheltens, P. (2007). Small-
world networks and functional connectivity in Alzheimer’s disease. Cereb.
Cortex 17, 92–99. doi: 10.1093/cercor/bhj127

Stephenson, C. L., andHalpern, D. F. (2013). Improvedmatrix reasoning is limited
to training on tasks with a visuospatial component. Intelligence 41, 341–357.
doi: 10.1016/j.intell.2013.05.006

Stevens, W. D., Buckner, R. L., and Schacter, D. L. (2010). Correlated low-
frequency BOLD fluctuations in the resting human brain are modulated by
recent experience in category-preferential visual regions. Cereb. Cortex 20,
1997–2006. doi: 10.1093/cercor/bhp270

Strenziok, M., Parasuraman, R., Clarke, E., Cisler, D. S., Thompson, J. C.,
and Greenwood, P. M. (2014). Neurocognitive enhancement in older adults:
comparison of three cognitive training tasks to test a hypothesis of training

Frontiers in Systems Neuroscience | www.frontiersin.org 18 April 2015 | Volume 9 | Article 44

http://www.frontiersin.org/Systems_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Systems_Neuroscience/archive


Taya et al. Brain enhancement through cognitive training

transfer in brain connectivity.Neuroimage 85(Pt. 3), 1027–1039. doi: 10.1016/j.
neuroimage.2013.07.069

Sulzer, J., Haller, S., Scharnowski, F., Weiskopf, N., Birbaumer, N., Blefari,
M. L., et al. (2013). Real-time fMRI neurofeedback: progress and challenges.
Neuroimage 76, 386–399. doi: 10.1016/j.neuroimage.2013.03.033

Sun, Y., Lim, J., Kwok, K., and Bezerianos, A. (2014a). Functional cortical
connectivity analysis of mental fatigue unmasks hemispheric asymmetry and
changes in small-world networks. Brain Cogn. 85, 220–230. doi: 10.1016/j.
bandc.2013.12.011

Sun, Y., Lim, J., Meng, J., Kwok, K., Thakor, N., and Bezerianos, A. (2014b).
Discriminative analysis of brain functional connectivity patterns for mental
fatigue classification. Ann. Biomed. Eng. 42, 2084–2094. doi: 10.1007/s10439-
014-1059-8

Tagliazucchi, E., von Wegner, F., Morzelewski, A., Brodbeck, V., Borisov, S.,
Jahnke, K., et al. (2013). Large-scale brain functional modularity is reflected
in slow electroencephalographic rhythms across the human non-rapid eye
movement sleep cycle. Neuroimage 70, 327–339. doi: 10.1016/j.neuroimage.
2012.12.073

Takeuchi, H., Sekiguchi, A., Taki, Y., Yokoyama, S., Yomogida, Y., Komuro, N.,
et al. (2010). Training of working memory impacts structural connectivity. J.
Neurosci. 30, 3297–3303. doi: 10.1523/JNEUROSCI.4611-09.2010

Takeuchi, H., Taki, Y., Nouchi, R., Hashizume, H., Sekiguchi, A., Kotozaki, Y.,
et al. (2013). Effects of working memory training on functional connectivity
and cerebral blood flow during rest. Cortex 49, 2106–2125. doi: 10.1016/j.
cortex.2012.09.007

Takeuchi, H., Taki, Y., Sassa, Y., Hashizume, H., Sekiguchi, A., Fukushima, A.,
et al. (2011). Working memory training using mental calculation impacts
regional gray matter of the frontal and parietal regions. PLoS One 6:e23175.
doi: 10.1371/journal.pone.0023175

Talbot, M. (2009). Brain gain: the underground world of neuroenhancing drugs.
New Yorker 27, 32–43.

Tang, Y. Y., Lu, Q., Fan, M., Yang, Y., and Posner, M. I. (2012). Mechanisms of
white matter changes induced by meditation. Proc. Natl. Acad. Sci. U S A 109,
10570–10574. doi: 10.1073/pnas.1207817109

Tang, Y. Y., Ma, Y., Fan, Y., Feng, H., Wang, J., Feng, S., et al. (2009). Central
and autonomic nervous system interaction is altered by short-termmeditation.
Proc. Natl. Acad. Sci. U S A 106, 8865–8870. doi: 10.1073/pnas.0904031106

Tang, Y.-Y., and Posner, M. I. (2014). Training brain networks and states. Trends
Cogn. Sci. 18, 345–350. doi: 10.1016/j.tics.2014.04.002

Taubert, M., Draganski, B., Anwander, A., Müller, K., Horstmann, A., Villringer,
A., et al. (2010). Dynamic properties of human brain structure: learning-related
changes in cortical areas and associated fiber connections. J. Neurosci. 30,
11670–11677. doi: 10.1523/JNEUROSCI.2567-10.2010

Taya, F., Sun, Y., Thakor, N., and Bezerianos, A. (2014). ‘‘Information transfer
efficiency during rest and task a functional connectome approach,’’ in IEEE
Biomedical Circuits and Systems Conference (Lausanne).

Tomasi, D., and Volkow, N. D. (2011a). Association between functional
connectivity hubs and brain networks. Cereb. Cortex 21, 2003–2013. doi: 10.
1093/cercor/bhq268

Tomasi, D., and Volkow, N. D. (2011b). Functional connectivity hubs in the
human brain. Neuroimage 57, 908–917. doi: 10.1016/j.neuroimage.2011.05.024

Uehara, T., Yamasaki, T., Okamoto, T., Koike, T., Kan, S., Miyauchi, S., et al.
(2014). Efficiency of a ‘‘small-world’’ brain network depends on consciousness
level: a resting-state FMRI study. Cereb. Cortex 24, 1529–1539. doi: 10.
1093/cercor/bht004

Valdes-Sosa, P. A., Roebroeck, A., Daunizeau, J., and Friston, K. (2011). Effective
connectivity: influence, causality and biophysical modeling. Neuroimage 58,
339–361. doi: 10.1016/j.neuroimage.2011.03.058

van denHeuvel,M. P., and Sporns, O. (2011). Rich-club organization of the human
connectome. J. Neurosci. 31, 15775–15786. doi: 10.1523/JNEUROSCI.3539-
11.2011

van den Heuvel, M. P., and Sporns, O. (2013a). An anatomical substrate for
integration among functional networks in human cortex. J. Neurosci. 33,
14489–14500. doi: 10.1523/JNEUROSCI.2128-13.2013

van den Heuvel, M. P., and Sporns, O. (2013b). Network hubs in the human brain.
Trends Cogn. Sci. 17, 683–696. doi: 10.1016/j.tics.2013.09.012

van den Heuvel, M. P., Stam, C. J., Boersma, M., and Hulshoff Pol, H. E. (2008).
Small-world and scale-free organization of voxel-based resting-state functional
connectivity in the human brain. Neuroimage 43, 528–539. doi: 10.1016/j.
neuroimage.2008.08.010

van den Heuvel, M. P., Stam, C. J., Kahn, R. S., and Hulshoff Pol, H. E.
(2009). Efficiency of functional brain networks and intellectual performance.
J. Neurosci. 29, 7619–7624. doi: 10.1523/JNEUROSCI.1443-09.2009

Voss, M. W., Prakash, R. S., Erickson, K. I., Boot, W. R., Basak, C., Neider, M. B.,
et al. (2012). Effects of training strategies implemented in a complex videogame
on functional connectivity of attentional networks. Neuroimage 59, 138–148.
doi: 10.1016/j.neuroimage.2011.03.052

Watts, D. J., and Strogatz, S. H. (1998). Collective dynamics of ‘small-world’
networks. Nature 393, 440–442. doi: 10.1038/30918

Weiss, S., and Rappelsberger, P. (2000). Long-range EEG synchronization during
word encoding correlates with successful memory performance. Brain Res.
Cogn. Brain Res. 9, 299–312. doi: 10.1016/s0926-6410(00)00011-2

Wolf, D., Fischer, F. U., Fesenbeckh, J., Yakushev, I., Lelieveld, I. M., Scheurich,
A., et al. (2014). Structural integrity of the corpus callosum predicts long-term
transfer of fluid intelligence-related training gains in normal aging.Hum. Brain
Mapp. 35, 309–318. doi: 10.1002/hbm.22177

Wu, S., Cheng, C. K., Feng, J., D’Angelo, L., Alain, C., and Spence, I. (2012).
Playing a first-person shooter video game induces neuroplastic change. J. Cogn.
Neurosci. 24, 1286–1293. doi: 10.1162/jocn_a_00192

Zander, T. O., and Kothe, C. (2011). Towards passive brain-computer interfaces:
applying brain-computer interface technology to human-machine systems in
general. J. Neural Eng. 8:025005. doi: 10.1088/1741-2560/8/2/025005

Zhao, X., Zhou, R., and Fu, L. (2013). Working memory updating function
training influenced brain activity. PLoS One 8:e71063. doi: 10.1371/journal.
pone.0071063

Zuo, X. N., Ehmke, R., Mennes, M., Imperati, D., Castellanos, F. X., Sporns, O.,
et al. (2012). Network centrality in the human functional connectome. Cereb.
Cortex 22, 1862–1875. doi: 10.1093/cercor/bhr269

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2015 Taya, Sun, Babiloni, Thakor and Bezerianos. This is an open-
access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution and reproduction in other forums is
permitted, provided the original author(s) or licensor are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Systems Neuroscience | www.frontiersin.org 19 April 2015 | Volume 9 | Article 44

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Systems_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Systems_Neuroscience/archive

	Brain enhancement through cognitive training: a new insight from brain connectome
	Introduction
	Cognitive Training
	Cognitive Training Interventions
	Effects of Cognitive Training on Brain Activations
	Structural Brain Changes Induced by Cognitive Training Interventions
	Summary of Effects of Cognitive Training

	EEG Biomarkers for Cognitve Workload
	EEG Biomarkers: BCI and Neurofeedback
	Neurophysiological Biomarkers for Cognitive Workload

	Brain Connectome Approach
	Network Science
	Brain Connectome Approach to Large-Scale Human Brain Network
	Difference in the Brain Functional Network
	Modulations of the Brain Network Induced by Cognitive Training Interventions

	Conclusion
	Acknowledgments
	References


