8,231 research outputs found
Measurement of the properties of a Higgs boson with the CMS detector
A new boson has been discovered using protonâproton collision data recorded by CMS during the first run of the LHC, corresponding to integrated luminosities of 5.1 fbâ1 at 7TeV and 19.6 fbâ1 at 8TeV. It has been observed in several decay channels with a best-fit signal strength, expressed in units of standard model Higgs boson cross section, of 0.80±0.14 at the measured mass of 125.7±0.3 (stat.)±0.3 (syst.)GeV. Consistency of its couplings with respect to the expectation from a standard model Higgs boson has been tested and no significant deviation has been observed
Asymptotic normalization coefficient of ^{8}B from breakup reactions and the S_{17} astrophysical factor
We show that asymptotic normalization coefficients (ANC) can be extracted
from one nucleon breakup reactions of loosely bound nuclei at 30-300 MeV/u. In
particular, the breakup of ^{8}B is described in terms of an extended Glauber
model. The 8B ANC extracted for the ground state of this nucleus from breakup
data at several energies and on different targets, C^2 = 0.450+/-0.039} fm^-1,
leads to the astrophysical factor S_{17}(0)= 17.4+/-1.5 eVb for the key
reaction for solar neutrino production 7Be(p,gamma)8B. The procedure described
here is more general, providing an indirect method to determine reaction rates
of astrophysical interest with beams of loosely bound radioactive nuclei.Comment: 4 pages, RevTex, 3 figures revised version to appear in Phys Rev Let
Run 2 Upgrades to the CMS Level-1 Calorimeter Trigger
The CMS Level-1 calorimeter trigger is being upgraded in two stages to
maintain performance as the LHC increases pile-up and instantaneous luminosity
in its second run. In the first stage, improved algorithms including
event-by-event pile-up corrections are used. New algorithms for heavy ion
running have also been developed. In the second stage, higher granularity
inputs and a time-multiplexed approach allow for improved position and energy
resolution. Data processing in both stages of the upgrade is performed with
new, Xilinx Virtex-7 based AMC cards.Comment: 10 pages, 7 figure
Elastic and total reaction cross sections of oxygen isotopes in Glauber theory
We systematically calculate the total reaction cross sections of oxygen
isotopes, O, on a C target at high energies using the Glauber
theory. The oxygen isotopes are described with Slater determinants generated
from a phenomenological mean-field potential. The agreement between theory and
experiment is generally good, but a sharp increase of the reaction cross
sections from ^{21}O to ^{23}O remains unresolved. To examine the sensitivity
of the diffraction pattern of elastic scattering to the nuclear surface, we
study the differential elastic-scattering cross sections of proton-^{20,21,23}O
at the incident energy of 300 MeV by calculating the full Glauber amplitude.Comment: 9 pages, 8 figure
One-neutron removal reactions on light neutron-rich nuclei
A study of high energy (43--68 MeV/nucleon) one-neutron removal reactions on
a range of neutron-rich psd-shell nuclei (Z = 5--9, A = 12--25) has been
undertaken. The inclusive longitudinal and transverse momentum distributions
for the core fragments, together with the cross sections have been measured for
breakup on a carbon target. Momentum distributions for reactions on tantalum
were also measured for a subset of nuclei. An extended version of the Glauber
model incorporating second order noneikonal corrections to the JLM
parametrisation of the optical potential has been used to describe the nuclear
breakup, whilst the Coulomb dissociation is treated within first order
perturbation theory. The projectile structure has been taken into account via
shell model calculations employing the psd-interaction of Warburton and Brown.
Both the longitudinal and transverse momentum distributions, together with the
integrated cross sections were well reproduced by these calculations and
spin-parity assignments are thus proposed for B, C, N,
O, F. In addition to the large spectroscopic amplitudes for
the s intruder configuration in the N=9 isotones,B and
C, significant s admixtures appear to occur in the
ground state of the neighbouring N=10 nuclei B and C. Similarly,
crossing the N=14 subshell, the occupation of the s orbital is
observed for O, F. Analysis of the longitudinal and transverse
momentum distributions reveals that both carry spectroscopic information, often
of a complementary nature. The general utility of high energy nucleon removal
reactions as a spectroscopic tool is also examined.Comment: 50 pages, 19 figures, submitted to Phys. Rev.
A Large Hadron Electron Collider at CERN
This document provides a brief overview of the recently published report on
the design of the Large Hadron Electron Collider (LHeC), which comprises its
physics programme, accelerator physics, technology and main detector concepts.
The LHeC exploits and develops challenging, though principally existing,
accelerator and detector technologies. This summary is complemented by brief
illustrations of some of the highlights of the physics programme, which relies
on a vastly extended kinematic range, luminosity and unprecedented precision in
deep inelastic scattering. Illustrations are provided regarding high precision
QCD, new physics (Higgs, SUSY) and electron-ion physics. The LHeC is designed
to run synchronously with the LHC in the twenties and to achieve an integrated
luminosity of O(100) fb. It will become the cleanest high resolution
microscope of mankind and will substantially extend as well as complement the
investigation of the physics of the TeV energy scale, which has been enabled by
the LHC
The IFMIF-EVEDA accelerator beam dump design
The IFMIF-EVEDA accelerator will be a 9 MeV, 125 mA cw deuteron accelerator prototype for verifying the validity of the 40 MeV accelerator design for IFMIF. A beam dump designed for maximum power of 1.12 MW will be used to stop the beam at the accelerator exit. The conceptual design for the IFMIF-EVEDA accelerator beam dump is based on a conical beam stop made of OFE copper. The cooling system uses an axial high velocity flow of water pressurized up to 3.4 Ă 105 Pa to avoid boiling. The design has been shown to be compliant with ASME mechanical design rules under nominal full power conditions. A sensitivity analysis has been performed to take into account the possible margin on the beam properties at the beam dump entrance. This analysis together with the study of the maintenance issues and the mounting and dismounting operations has led to the complete design definition
Forward pi^0 Production and Associated Transverse Energy Flow in Deep-Inelastic Scattering at HERA
Deep-inelastic positron-proton interactions at low values of Bjorken-x down
to x \approx 4.10^-5 which give rise to high transverse momentum pi^0 mesons
are studied with the H1 experiment at HERA. The inclusive cross section for
pi^0 mesons produced at small angles with respect to the proton remnant (the
forward region) is presented as a function of the transverse momentum and
energy of the pi^0 and of the four-momentum transfer Q^2 and Bjorken-x.
Measurements are also presented of the transverse energy flow in events
containing a forward pi^0 meson. Hadronic final state calculations based on QCD
models implementing different parton evolution schemes are confronted with the
data.Comment: 27 pages, 8 figures and 3 table
Single hadron response measurement and calorimeter jet energy scale uncertainty with the ATLAS detector at the LHC
The uncertainty on the calorimeter energy response to jets of particles is
derived for the ATLAS experiment at the Large Hadron Collider (LHC). First, the
calorimeter response to single isolated charged hadrons is measured and
compared to the Monte Carlo simulation using proton-proton collisions at
centre-of-mass energies of sqrt(s) = 900 GeV and 7 TeV collected during 2009
and 2010. Then, using the decay of K_s and Lambda particles, the calorimeter
response to specific types of particles (positively and negatively charged
pions, protons, and anti-protons) is measured and compared to the Monte Carlo
predictions. Finally, the jet energy scale uncertainty is determined by
propagating the response uncertainty for single charged and neutral particles
to jets. The response uncertainty is 2-5% for central isolated hadrons and 1-3%
for the final calorimeter jet energy scale.Comment: 24 pages plus author list (36 pages total), 23 figures, 1 table,
submitted to European Physical Journal
- âŠ