168 research outputs found

    Targeting the JAK/STAT Pathway: A Combined Ligand- And Target-Based Approach

    Get PDF
    Janus kinases (JAKs) are a family of proinflammatory enzymes able to mediate the immune responses and the inflammatory cascade by modulating multiple cytokine expressions as well as various growth factors. In the present study, the inhibition of the JAK-signal transducer and activator of transcription (STAT) signaling pathway is explored as a potential strategy for treating autoimmune and inflammatory disorders. A computationally driven approach aimed at identifying novel JAK inhibitors based on molecular topology, docking, and molecular dynamics simulations was carried out. For the best candidates selected, the inhibitory activity against JAK2 was evaluated in vitro. Two hit compounds with a novel chemical scaffold, 4 (IC50 = 0.81 μM) and 7 (IC50 = 0.64 μM), showed promising results when compared with the reference drug Tofacitinib (IC50 = 0.031 μM).This study was funded by the University of Valencia and Generalitat Valenciana (GVA) through postdoctoral grants no. UVINV_POSTDOC18-785681 and APOSTD/2019/055 (M.G-L.) and by the University of Bologna through research grant no. RFO2019 (P.R., S.C., and M.R.)

    Protocol for the phase 2 EDELIFE trial investigating the efficacy and safety of intra-amniotic ER004 administration to male subjects with X-linked hypohidrotic ectodermal dysplasia

    Get PDF
    X-linked hypohidrotic ectodermal dysplasia (XLHED) is a rare genetic disorder characte-rised by abnormal development of the skin and its appendages, such as hair and sweat glands, the teeth, and mucous glands of the airways, resulting in serious, sometimes life-threatening complications like hyperthermia or recurrent respiratory infections. It is caused by pathogenic variants of the ectodysplasin A gene

    Novel heterozygous TREX1 mutation in a juvenile systemic lupus erythematosus patient with severe cutaneous involvement treated successfully with Jak-inhibitors: a case report

    Get PDF
    Juvenile systemic lupus erythematosus (jSLE) is a complex inflammatory autoimmune disorder. In the last decades, genetic factors and activation pathways have been increasingly studied to understand their potential pathogenetic role better. Genetic and transcriptional abnormalities directly involved in the type I interferon (IFN) signaling cascade have been identified through family-based and genome-wide association studies. IFNs trigger signaling pathways that initiate gene transcription of IFN-stimulated genes through the activation of JAK1, TYK2, STAT1, and STAT2. Thus, the use of therapies that target the IFN pathway would represent a formidable advance in SLE. It is well known that JAK inhibitors have real potential for the treatment of rheumatic diseases, but their efficacy in the treatment of SLE remains to be elucidated. We report the case of a 13-year-old girl affected by jSLE, carrying a novel heterozygous missense variant on Three prime Repair EXonuclease 1 (TREX1), successfully treated with baricitinib on top of mofetil mycophenolate. The TREX1 gene plays an important role in DNA damage repair, and its mutations have been associated with an overproduction of type 1 interferon. This report underlines the role of translational research in identifying potential pathogenetic pathways in rare diseases to optimize treatment

    Genetic variability of the prion protein gene (PRNP) in wild ruminants from Italy and Scotland

    Get PDF
    The genetics of the prion protein gene (PRNP) play a crucial role in determining the relative susceptibility to transmissible spongiform encephalopathies (TSEs) in several mammalian species. To determine the PRNP gene variability in European red deer (Cervus elaphus), roe deer (Capreolus capreolus) and chamois (Rupicapra rupicapra), the PRNP open reading frame from 715 samples was analysed to reveal a total of ten single nucleotide polymorphisms (SNPs). In red deer, SNPs were found in codons 15, 21, 59, 78, 79, 98, 136, 168 and 226. These polymorphisms give rise to 12 haplotypes, and one of which is identical to the PRNP of American wapiti (Rocky Mountain elk, Cervus elaphus nelsoni). One silent mutation at codon 119 was detected in chamois and no SNPs were found in roe deer. This analysis confirmed that European wild ruminants have a PRNP genetic background that is compatible with TSE susceptibility, including chronic wasting disease

    Targeted chitosan nanobubbles as a strategy to down-regulate microRNA-17 into B-cell lymphoma models

    Get PDF
    IntroductionMicroRNAs represent interesting targets for new therapies because their altered expression influences tumor development and progression. miR-17 is a prototype of onco-miRNA, known to be overexpressed in B-cell non-Hodgkin lymphoma (B-NHL) with peculiar clinic-biological features. AntagomiR molecules have been largely studied to repress the regulatory functions of up-regulated onco-miRNAs, but their clinical use is mainly limited by their rapid degradation, kidney elimination and poor cellular uptake when injected as naked oligonucleotides.MethodsTo overcome these problems, we exploited CD20 targeted chitosan nanobubbles (NBs) for a preferential and safe delivery of antagomiR17 to B-NHL cells.ResultsPositively charged 400 nm-sized nanobubbles (NBs) represent a stable and effective nanoplatform for antagomiR encapsulation and specific release into B-NHL cells. NBs rapidly accumulated in tumor microenvironment, but only those conjugated with a targeting system (antiCD20 antibodies) were internalized into B-NHL cells, releasing antagomiR17 in the cytoplasm, both in vitro and in vivo. The result is the down-regulation of miR-17 level and the reduction in tumor burden in a human-mouse B-NHL model, without any documented side effects.DiscussionAnti-CD20 targeted NBs investigated in this study showed physico-chemical and stability properties suitable for antagomiR17 delivery in vivo and represent a useful nanoplatform to address B-cell malignancies or other cancers through the modification of their surface with specific targeting antibodies

    Diabetic ketoacidosis at the onset of disease during a national awareness campaign: a 2-year observational study in children aged 0-18 years

    Get PDF
    After a previous survey on the incidence of diabetic ketoacidosis (DKA) at onset of type 1 diabetes in children in 2013-2014 in Italy, we aimed to verify a possible decline in the incidence of DKA at onset during a national prevention campaign

    Has COVID-19 Delayed the Diagnosis and Worsened the Presentation of Type 1 Diabetes in Children?

    Get PDF
    Objective: To evaluate whether the diagnosis of pediatric type 1 diabetes or its acute complications changed during the early phase of the coronavirus disease 2019 (COVID-19) pandemic in Italy. Research design and methods: This was a cross-sectional, Web-based survey of all Italian pediatric diabetes centers to collect diabetes, diabetic ketoacidosis (DKA), and COVID-19 data in patients presenting with new-onset or established type 1 diabetes between 20 February and 14 April in 2019 and 2020. Results: Fifty-three of 68 centers (77.9%) responded. There was a 23% reduction in new diabetes cases in 2020 compared with 2019. Among those newly diagnosed patient who presented in a state of DKA, the proportion with severe DKA was 44.3% in 2020 vs. 36.1% in 2019 (P = 0.03). There were no differences in acute complications. Eight patients with asymptomatic or mild COVID-19 had laboratory-confirmed severe acute respiratory syndrome coronavirus 2. Conclusions: The COVID-19 pandemic might have altered diabetes presentation and DKA severity. Preparing for any "second wave" requires strategies to educate and reassure parents about timely emergency department attendance for non-COVID-19 symptoms

    Standalone vertex finding in the ATLAS muon spectrometer

    Get PDF
    A dedicated reconstruction algorithm to find decay vertices in the ATLAS muon spectrometer is presented. The algorithm searches the region just upstream of or inside the muon spectrometer volume for multi-particle vertices that originate from the decay of particles with long decay paths. The performance of the algorithm is evaluated using both a sample of simulated Higgs boson events, in which the Higgs boson decays to long-lived neutral particles that in turn decay to bbar b final states, and pp collision data at √s = 7 TeV collected with the ATLAS detector at the LHC during 2011

    Measurements of Higgs boson production and couplings in diboson final states with the ATLAS detector at the LHC

    Get PDF
    Measurements are presented of production properties and couplings of the recently discovered Higgs boson using the decays into boson pairs, H →γ γ, H → Z Z∗ →4l and H →W W∗ →lνlν. The results are based on the complete pp collision data sample recorded by the ATLAS experiment at the CERN Large Hadron Collider at centre-of-mass energies of √s = 7 TeV and √s = 8 TeV, corresponding to an integrated luminosity of about 25 fb−1. Evidence for Higgs boson production through vector-boson fusion is reported. Results of combined fits probing Higgs boson couplings to fermions and bosons, as well as anomalous contributions to loop-induced production and decay modes, are presented. All measurements are consistent with expectations for the Standard Model Higgs boson
    corecore