11 research outputs found

    Selection and Validation of Reference Genes for Quantitative Real-Time PCR in Buckwheat (Fagopyrum esculentum) Based on Transcriptome Sequence Data

    Get PDF
    Quantitative reverse transcription PCR (qRT-PCR) is one of the most precise and widely used methods of gene expression analysis. A necessary prerequisite of exact and reliable data is the accurate choice of reference genes. We studied the expression stability of potential reference genes in common buckwheat (Fagopyrum esculentum) in order to find the optimal reference for gene expression analysis in this economically important crop. Recently sequenced buckwheat floral transcriptome was used as source of sequence information. Expression stability of eight candidate reference genes was assessed in different plant structures (leaves and inflorescences at two stages of development and fruits). These genes are the orthologs of Arabidopsis genes identified as stable in a genome-wide survey gene of expression stability and a traditionally used housekeeping gene GAPDH. Three software applications – geNorm, NormFinder and BestKeeper - were used to estimate expression stability and provided congruent results. The orthologs of AT4G33380 (expressed protein of unknown function, Expressed1), AT2G28390 (SAND family protein, SAND) and AT5G46630 (clathrin adapter complex subunit family protein, CACS) are revealed as the most stable. We recommend using the combination of Expressed1, SAND and CACS for the normalization of gene expression data in studies on buckwheat using qRT-PCR. These genes are listed among five the most stably expressed in Arabidopsis that emphasizes utility of the studies on model plants as a framework for other species

    Genetic modifiers of CHEK2*1100delC-associated breast cancer risk

    Get PDF
    Purpose: CHEK2*1100delC is a founder variant in European populations that confers a two-to threefold increased risk of breast cancer (BC). Epidemiologic and family studies have suggested that the risk associated with CHEK2*1100delC is modified by other genetic factors in a multiplicative fashion. We have investigated this empirically using data from the Breast Cancer Association Consortium (BCAC). Methods: Using genotype data from 39,139 (624 1100delC carriers) BC patients and 40,063 (224) healthy controls from 32 BCAC studies, we analyzed the combined risk effects of CHEK2*1100delC and 77 common variants in terms of a polygenic risk score (PRS) and pairwise interaction. Results: The PRS conferred odds ratios (OR) of 1.59 (95% CI: 1.212.09) per standard deviation for BC for CHEK2*1100delC carriers and 1.58 (1.55-1.62) for noncarriers. No evidence of deviation from the multiplicative model was found. The OR for the highest quintile of the PRS was 2.03 (0.86-4.78) for CHEK2*1100delC carriers, placing them in the high risk category according to UK NICE guidelines. The OR for the lowest quintile was 0.52 (0.16-1.74), indicating a lifetime risk close to the population average. Conclusion: Our results confirm the multiplicative nature of risk effects conferred by CHEK2*1100delC and the common susceptibility variants. Furthermore, the PRS could identify carriers at a high lifetime risk for clinical actions.Peer reviewe

    The relative expression level of flower development genes.

    No full text
    <p>(a) <i>ap2-14</i> mutant analysis, (b) <i>ag-1</i> mutant analysis, (c) <i>clv3-2</i> mutant analysis. Error bars represent the standard error of the mean. Asterisks indicates what values are significant to p<0.05. <i>AP2</i> - <i>APETALA2</i>, <i>AP3</i> - <i>APETALA3</i>, <i>PI</i> - <i>PISTILLATA</i>, <i>AG</i> - <i>AGAMOUS</i>, <i>CLV1</i> - <i>CLAVATA1</i>, <i>CLV2</i> - <i>CLAVATA2</i>, <i>WUS</i> – <i>WUCSHEL.</i> Dashed line indicates 1.0 expression level.</p

    Production and Properties of Microbial Polyhydroxyalkanoates Synthesized from Hydrolysates of Jerusalem Artichoke Tubers and Vegetative Biomass

    No full text
    One of the major challenges in PHA biotechnology is optimization of biotechnological processes of the entire synthesis, mainly by using new inexpensive carbon substrates. A promising substrate for PHA synthesis may be the sugars extracted from the Jerusalem artichoke. In the present study, hydrolysates of Jerusalem artichoke (JA) tubers and vegetative biomass were produced and used as carbon substrate for PHA synthesis. The hydrolysis procedure (the combination of aqueous extraction and acid hydrolysis, process temperature and duration) influenced the content of reducing substances (RS), monosaccharide contents, and the fructose/glucose ratio. All types of hydrolysates tested as substrates for cultivation of three strains&mdash;C. necator B-10646 and R. eutropha B 5786 and B 8562&mdash;were suitable for PHA synthesis, producing different biomass concentrations and polymer contents. The most productive process, conducted in 12-L fermenters, was achieved on hydrolysates of JA tubers (X = 66.9 g/L, 82% PHA) and vegetative biomass (55.1 g/L and 62% PHA) produced by aqueous extraction of sugars at 80 &deg;C followed by acid hydrolysis at 60 &deg;C, using the most productive strain, C. necator B-10646. The effects of JA hydrolysates on physicochemical properties of PHAs were studied for the first time. P(3HB) specimens synthesized from the JA hydrolysates, regardless of the source (tubers or vegetative biomass), hydrolysis conditions, and PHA producing strain employed, exhibited the 100&ndash;120 &deg;C difference between the Tmelt and Tdegr, prevailing of the crystalline phase over the amorphous one (Cx between 69 and 75%), and variations in weight average molecular weight (409&ndash;480) kDa. Supplementation of the culture medium of C. necator B-10646 grown on JA hydrolysates with potassium valerate and &epsilon;-caprolactone resulted in the synthesis of P(3HB-co-3HV) and P(3HB-co-4HB) copolymers that had decreased degrees of crystallinity and molecular weights, which influenced the porosity and surface roughness of polymer films prepared from them. The study shows that JA hydrolysates used as carbon source enabled productive synthesis of PHAs, comparable to synthesis from pure sugars. The next step is to scale up PHA synthesis from JA hydrolysates and conduct the feasibility study. The present study contributes to the solution of the critical problem of PHA biotechnology&mdash;finding widely available and inexpensive substrates

    Comparison of methanol to gasoline conversion in one-step, two-step, and cascade mode in the presence of H-ZSM-5 zeolite

    No full text
    In this report, three technological modes for methanol-to-gasoline reaction in the presence of H-ZSM-5 catalyst are compared: (i) direct methanol transformation to hydrocarbons; (ii) two-step (methanol-dimethyl ether-hydrocarbons); and (iii) cascade pathway. Light hydrocarbon gases (methane, ethylene, propylene, and isobutene) and liquid aromatic hydrocarbons (benzene, toluene, xylene, cresol, durol, naphthalene, methylnaphthalene, ethyl naphthalene, isopropyl naphthalene, methyl isopropyl naphthalene, etc.) were found to be the main reaction products. The experimental results showed that the classical two-step methanol to gasoline (MTG) process nowadays remains the most effective for gasoline-range hydrocarbons production, while one-step and cascade schemes require further investigation and the development of reactor systems as well as the operating conditions. The product distribution of MTG synthesis after 120 h on stream in the case of two-step mode was found to be the following: liquid C6–C8 hydrocarbons – 23%; C1–C5 gaseous products – 65%; heavy C9–C12 hydrocarbons – 10%

    Flexible Strain-Sensitive Silicone-CNT Sensor for Human Motion Detection

    No full text
    This article describes the manufacturing technology of biocompatible flexible strain-sensitive sensor based on Ecoflex silicone and multi-walled carbon nanotubes (MWCNT). The sensor demonstrates resistive behavior. Structural, electrical, and mechanical characteristics are compared. It is shown that laser radiation significantly reduces the resistance of the material. Through laser radiation, electrically conductive networks of MWCNT are formed in a silicone matrix. The developed sensor demonstrates highly sensitive characteristics: gauge factor at 100% elongation −4.9, gauge factor at 90° bending −0.9%/deg, stretchability up to 725%, tensile strength 0.7 MPa, modulus of elasticity at 100% 46 kPa, and the temperature coefficient of resistance in the range of 30–40 °C is −2 × 10−3. There is a linear sensor response (with 1 ms response time) with a low hysteresis of ≤3%. An electronic unit for reading and processing sensor signals based on the ATXMEGA8E5-AU microcontroller has been developed. The unit was set to operate the sensor in the range of electrical resistance 5–150 kOhm. The Bluetooth module made it possible to transfer the received data to a personal computer. Currently, in the field of wearable technologies and health monitoring, a vital need is the development of flexible sensors attached to the human body to track various indicators. By integrating the sensor with the joints of the human hand, effective movement sensing has been demonstrated
    corecore