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Purpose: CHEK2*1100delC is a founder variant in European popu-
lations that confers a two- to threefold increased risk of breast cancer 
(BC). Epidemiologic and family studies have suggested that the risk 
associated with CHEK2*1100delC is modified by other genetic fac-
tors in a multiplicative fashion. We have investigated this empirically 
using data from the Breast Cancer Association Consortium (BCAC).

Methods: Using genotype data from 39,139 (624 1100delC carri-
ers) BC patients and 40,063 (224) healthy controls from 32 BCAC 
studies, we analyzed the combined risk effects of CHEK2*1100delC 
and 77 common variants in terms of a polygenic risk score (PRS) and 
pairwise interaction.
Results: The PRS conferred odds ratios (OR) of 1.59 (95% CI: 1.21–
2.09) per standard deviation for BC for CHEK2*1100delC carriers 

and 1.58 (1.55–1.62) for noncarriers. No evidence of deviation from 
the multiplicative model was found. The OR for the highest quintile 
of the PRS was 2.03 (0.86–4.78) for CHEK2*1100delC carriers, plac-
ing them in the high risk category according to UK NICE guidelines. 
The OR for the lowest quintile was 0.52 (0.16–1.74), indicating a life-
time risk close to the population average.
Conclusion: Our results confirm the multiplicative nature of risk 
effects conferred by CHEK2*1100delC and the common susceptibil-
ity variants. Furthermore, the PRS could identify carriers at a high 
lifetime risk for clinical actions.
Genet Med advance online publication 6 October 2016
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The protein-truncating mutation CHEK2*1100delC (check-
point kinase 2) is a moderate-penetrance breast cancer risk 
variant with an estimated relative risk of two- to threefold.1,2 
However, several studies have shown that the cumulative life-
time risk of breast cancer for CHEK2*1100delC carriers is 
markedly higher in women with a family history than in those 
without,3–5 and that CHEK2*1100delC carriers have a higher 
probability of developing bilateral breast cancer.6 These obser-
vations are quantitatively consistent with a simple polygenic 
model suggesting that CHEK2*1100delC combines multiplica-
tively with other genetic loci. However, this has not yet been 
established empirically.

Genome-wide association studies have identified com-
mon genetic variants that are associated with increased risk of 
breast cancer. A polygenic risk score (PRS) based on 77 low-
penetrance variants may explain approximately 12–14% of the 
excess familial risk and has been shown to identify individu-
als at high risk at the population level.7,8 Some of these variants 
predispose predominantly to either estrogen receptor–positive 
(ER+) or estrogen receptor–negative (ER−) disease, the two 
main etiological subclasses of breast cancer.9 CHEK2*1100delC 
carriers are more strongly predisposed to ER+ disease: approxi-
mately 90% of carrier tumors are ER+ in comparison to 77–78%  
of noncarrier tumors.10

Here, we report the synergistic risk effects attributable to 
CHEK2*1100delC and the common breast cancer susceptibil-
ity variants individually and summarized in terms of the PRS.7,8

MATERIALS AND METHODS
Study participants
Female patients with invasive breast cancer and healthy con-
trols of European ancestry from studies participating in the 
Breast Cancer Association Consortium (BCAC) were included 
(Supplementary Table S1 online). Data from a study were 
included if the study provided genotype data of the common 
variants from at least one breast cancer patient carrying the 
1100delC variant. This selection yielded data from 32 studies and 
a total of 79,202 study subjects, including 848 CHEK2*1100delC 
carriers (Supplementary Table S2 online) for pairwise inter-
action analyses. Complete quality-controlled7,10 genotype data 
for all common variants and CHEK2*1100delC were available 
from 33,624 study subjects (369 CHEK2*1100delC carriers, 
Supplementary Table S2 online). These data were used in the 
analyses involving the PRS.

All participating studies were approved by their institutional 
review committees. Each study followed national guidelines for 
participant inclusion and informed-consent procedures.

Genotyping
All variants except CHEK2*1100delC were genotyped cen-
trally using a custom Illumina iSelect genotyping array 
(iCOGS, Illumina, San Diego, CA) as part of the COGS con-
sortium studies as described.7,8 CHEK2*1100delC was geno-
typed primarily using a custom-made TaqMan assay (Applied 

Biosystems, Foster City, CA); a small minority was genotyped 
using iPLEX.10 In addition to the 38,549 study subjects geno-
typed using the iCOGS array, 40,653 BCAC study subjects were 
genotyped for up to 25 of the common risk variants. These data 
were used in the pairwise interaction analysis (Supplementary 
Tables S2 and S3 online). These samples were genotyped by 
independent studies following BCAC genotyping standards as 
described previously.11,12

Statistical analyses
Statistical analyses were performed using Stata SE 10 (StataCorp, 
College Station, TX) and R version 2.15.2 (R Foundation for 
Statistical Computing, Vienna, Austria).  For the common vari-
ants, a log-additive model was assumed; i.e., the risk was ana-
lyzed in terms of the number of disease-associated alleles (0, 1, 
2) carried. CHEK2*1100delC was assumed to follow a domi-
nant inheritance model because the number of rare homozy-
gotes was small (n = 19). All analyses adjusted for the study 
and seven principal components defined on the basis of the 
genome-wide data from the iCOGS project as described previ-
ously.7 All reported tests were two-sided.

Polygenic risk score
To investigate the combined effects of common variants and 
CHEK2*1100delC, a polygenic risk score (PRS) based on the 
main effects of the common variants was calculated using the 
formula a ORi

i

n

ilog2
1=
∑ , where n is the number of loci included 

in the model, a is the number of susceptibility alleles in locus i, 
and OR is the per-allele odds ratio for breast cancer, estimated 
separately for each variant in the entire data set (Supplementary 
Table S4a online, “All” column). Results using a PRS based on 
previously reported ORs7,8 were essentially identical (data not 
shown). The PRS was approximately normally distributed in 
all study subgroups and it was standardized by the mean and 
standard deviation of the PRS among healthy individuals.8 For 
pairs of linked variants with r2>0.75, we included in the PRS 
only the lead variant (rs2981579, not rs2981582; rs12662670, 
not rs3757318; rs554219, not rs614367). We excluded two vari-
ants (rs78540526 and rs75915166) included in the PRS used 
by Mavaddat et al.8 (which were not genotyped on the iCOGS 
array) as well as rs17879961, the CHEK2 missense variant 
I157T, because the number of study subjects carrying both 
1100delC and I157T was very low (n = 5). Thus, the resulting 
PRS included 74 variants. The interaction between PRS and 
CHEK2*1100delC was assessed by comparing the following 
nested logistic regression models: a model including the PRS 
and 1100delC genotype and a model supplemented with an 
interaction term coded as the product of the PRS and 1100delC. 
In the analyses of the PRS and positive family history of breast 
cancer, positive family history was defined as at least one first-
degree relative with breast cancer.

The cumulative lifetime breast cancer risk of CHEK2*1100delC 
carriers in different PRS percentiles was derived by assuming 
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an average lifetime risk of 22% for CHEK2*1100delC carriers13 
and previously published relative risk estimates associated with 
the PRS.8

Pairwise interaction analyses
We tested for pairwise interaction between each common vari-
ant and CHEK2*1100delC as described for the interaction 
between the PRS and 1100delC. P values were corrected for 
77 parallel tests using the Benjamini-Hochberg method.14 The 
OR for breast cancer was estimated separately for each of the 
common variants for the whole dataset and for the subgroup 
of 1100delC carriers. These analyses were also performed sepa-
rately using a subgroup of breast cancer patients with ER+ dis-
ease because 1100delC is associated with ER+ breast cancer.10 
We tested for heterogeneity in the ORs among different BCAC 
studies by including (separately for each variant) an interaction 
term between the variant and the study. No significant hetero-
geneity was found for any variant (data not shown). Statistical 
power was estimated as previously suggested for risk interac-
tion analyses.15

RESULTS
We analyzed the combined effects of CHEK2*1100delC and 
common low-penetrance breast cancer risk variants using data 
from the international Breast Cancer Association Consortium 
(Supplementary Table S2 online). The PRS summarizing the 
individual effects of 74 common variants was strongly associ-
ated with breast cancer risk among CHEK2*1100delC carriers 
(OR per unit of standard deviation 1.59 (1.21–2.09), P = 0.0008) 
and the OR was similar to that of noncarriers (1.58 (1.55–1.62), 
Pinteraction = 0.93). ORs for the highest and lowest quintiles of the 
PRS distribution were 2.03 (0.86–4.78) and 0.52 (0.16–1.74) for 
CHEK2*1100delC carriers, respectively, when compared to the 
middle quintile (Table 1). Both estimates were similar to those 
among noncarriers.

The OR associated with CHEK2*1100delC in the analysis 
data set (2.99 (2.32–3.85)) was attenuated when the model was 
adjusted for positive family history of breast cancer. The OR 
associated with the PRS was also slightly attenuated (Table 2). 

No significant interaction between risk effects associated 
with 1100delC, PRS, and positive family history was found. 
However, in a case-only analysis, there was a significant asso-
ciation between the PRS and family history of breast cancer 
among both CHEK2*1100delC carriers (OR 1.29 (1.01–1.65), 
P = 0.04) and noncarriers (OR 1.17 (1.12–1.21), P = 4E-16) 
(Supplementary Figure S1 online).

When 77 common variants were considered individu-
ally, we found nominally significant interactions between 
five variants and CHEK2*1100delC for overall breast cancer 
(rs11249433, rs11780156, rs204247, rs2981582, and rs704010; 
Supplementary Table S4a online). Two of these represented 
synergistic (more than multiplicative) and three antagonistic 
interactions (the estimated effect in 1100delC carriers being in 
the direction opposite to that in noncarriers). However, none 
of the interactions was significant after correction for multiple 
testing. Nine variants showed a nominally significant interac-
tion for ER-positive breast cancer (Supplementary Table S4b 
online).

DISCUSSION
Our analyses of the synergistic effects of CHEK2*1100delC 
and 77 common low-penetrance variants on breast cancer 
risk strongly support the predicted multiplicative polygenic 
model.8,16,17 Although this has previously been shown for com-
binations of low-penetrance variants8 and for variants in com-
bination with BRCA1 and BRCA2 mutations,18 this is the first 
direct demonstration of a “moderate” risk gene; therefore, it 
has important implications for risk prediction. The PRS was a 
significant risk factor for CHEK2*1100delC carriers, and the 
estimated OR per unit of standard deviation was very similar 
in CHEK2*1100delC carriers and in noncarriers, consistent 
with the hypothesis that the common susceptibility variants 
combine with the rare CHEK2*1100delC variant in an approxi-
mately multiplicative fashion. Similarly, the PRS risk estimates 
for the highest and lowest quintiles did not differ between the 
CHEK2*1100delC carriers and noncarriers. These two esti-
mates for the CHEK2*1100delC carriers alone did not reach 
statistical significance (Table 1), possibly reflecting limited sta-
tistical power due to the relatively low number of healthy vari-
ant carriers (Supplementary Table S2 online). However, this 
is the largest study genotyped for CHEK2*1100delC and these Table 1 Breast cancer risk associated with the PRS for 

noncarriers and the carriers of CHEK2*1100delC

Noncarriers

P

CHEK2*1100delC 
carriers

POR (95% CI) OR (95% CI)

PRSa 1.58 (1.55–1.62) <1.0E-10 1.59 (1.21–2.09)b 0.0008

Percentile of PRS, %

<20 0.52 (0.48–0.56) <1.0E-10 0.52 (0.16–1.74) 0.29

20–40 0.78 (0.72–0.84) 2E-11 0.72 (0.28–1.88) 0.51

40–60 Referent Referent

60–80 1.25 (1.16–1.34) 8E-10 0.93 (0.39–2.25) 0.88

>80 1.92 (1.80–2.06) <1.0E-10 2.03 (0.86–4.78) 0.11

OR, odds ratio; PRS, polygenic risk score.
aOR was estimated per unit of standard deviation of the PRS. bP value = 0.93 for 
pairwise interaction between CHEK2*1100delC and PRS.

Table 2 Relative breast cancer risk associated with 
CHEK2*1100delC, PRS, and positive family history of 
breast cancer in the analysis data set
Risk model Parameters OR 95% CI P

BC~1100delC + PRS 1100delC 2.99 2.32–3.85 <1.0−10

PRS 1.58 1.55–1.62 <1.0−10

BC~1100delC +  
PRS + family history

1100delC 2.42 1.71–3.47 9.4−7

PRS 1.55 1.50–1.60 <1.0−10

Family historya 2.73 2.48–3.47 <1.0−10

OR, odds ratio; PRS, polygenic risk score.
aNo significant interaction between positive family history of breast cancer and 
either CHEK2*1100delC or PRS was found.
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common variants. Even though some of the point estimates are 
not significant, they are consistent with previous reports. Most 
importantly, we did not find evidence for deviation from the 
multiplicative model, suggesting that the PRS could be used in 
risk stratification of 1100delC carriers in a manner similar to 
that for noncarriers.

The unadjusted OR for the CHEK2*110delC variants 
(Table 2) was higher in our analysis data set than that in previous 
reports.2,13 Adjusting for positive family history markedly atten-
uated the CHEK2*1100delC-associated OR, suggestive of some 
oversampling of familial cases. The PRS OR was also slightly 
attenuated after the adjustment. However, CHEK2*1100delC, 
PRS, and family history remained significant risk factors in the 
combined model (Table 2), suggesting that the common vari-
ants together explain part of the excess familial risk as previ-
ously suggested,16 but that the PRS also has predictive value in 
breast cancer families segregating CHEK2*1100delC.

Recently, a large study estimating the risk associated with 
CHEK2*1100delC in relation to age, tumor subtype, and family 
history reported that the cumulative lifetime risk for 1100delC 
carriers was approximately 22%.13 Assuming that the relative 
effect of the PRS is the same in carriers and noncarriers (OR 
>1.48 (1.39–1.57) or <0.65 (0.60–0.70) for percentiles >80% 
or <20%, respectively),8 20% of the 1100delC carriers with the 
highest PRS would have a lifetime risk higher than 32.6% (30.6–
34.5%), thus exceeding the threshold for the high-risk category 
(>30%) according to the UK NICE guidelines for familial breast 
cancer.19 Similarly, for the 20% of 1100delC carriers with the 
lowest PRS, the lifetime risk would be less than 14.3% (13.2%-
15.4%), i.e., close to the average population risk. These obser-
vations imply that if CHEK2*1100delC is to be used for risk 
prediction, then it can be made more effective by including the 
PRS, which represents the risk-modifying effects of common 
variants, in the prediction.

CHEK2*1100delC carrier cancers do not represent a pheno-
typically distinct subgroup of breast carcinomas. Instead, the 
phenotypic diversity of CHEK2*1100delC-associated cancers 
resembles that of breast tumors in general.10 Thus, it was not 
surprising that the relative risks conferred by the common 
variants were similar for the CHEK2*1100delC carriers and 
noncarriers, and that no significant pairwise interaction was 
found. We estimated that we had sufficient statistical power 
(80%, at P < 0.05) to detect a pairwise interaction between 
CHEK2*1100delC and any of the common variants if the inter-
action OR was 2.5 or more, but not enough power to detect 
interactions comparable in magnitude to the risk effects asso-
ciated with the low-penetrance variants (OR 1.1–1.5). Thus, it 
remains possible that more modest departures from a multipli-
cative model may exist. However, if so, then much larger case-
control studies, perhaps combined with pedigree analyses, will 
be required to detect them.

In conclusion, our analyses confirm the predicted multiplica-
tive relationship between CHEK2*1100delC and the common 
low-penetrance variants. Hence, the PRS could be applied to 
risk prediction of the variant carriers in a manner similar to 

that used for the general population. Most importantly, the PRS 
could help identify the high-risk group of the CHEK2*1100delC 
carriers who would benefit most from clinical intervention.
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