5,181 research outputs found

    DEVELOPMENT AND OPTIMIZATION OF CARVEDILOL FORMULATION USING EXPERIMENTAL DESIGN

    Get PDF
    The aim of this paper was to develop and optimize the carvedilol tablets formulation using the full factorial design. The content of binder (PVP K30), content of disintegrant (crospovidone) and main compression force were used as the independent variables. Tablets were prepared by wet granulation. The percentage of released carvedilol from prepared formulation after 10 minutes was defined as the response. It has been found that formulation with the low content of binding agents (4.8%), high content of disintegrant (4.5%) and compression force of 50 N has the best profile of drug. The optimal formulation was defined based on implementation of pharmaceuticaltechnological tests (testing strength, friability, disintegrating, contents of drug substance, drug release profiles). The stability of the optimal formulation with carvedilol was estimated using the aging tests

    Free time and physical activities of students of pedagogical faculties

    Get PDF
    The goal of the research is: To examine to what extent and in what way students of pedagogical faculties practice physical activities in their free tim

    Endoscopic submucosal dissection with a novel high viscosity injection solution (LiftUp) in an ex vivo model: a prospective randomized study

    Get PDF
    Introduction  Endoscopic submucosal dissection (ESD) is increasingly being used in the western world. Submucosal injectates are an essential tool for the ESD procedure. In this study, we evaluated a novel copolymer injectate (LiftUp, Ovesco, Tübingen Germany) in an established ESD model (EASIE-R) in comparison to existing submucosal injectables. Materials and methods  We conducted a prospective, randomized ex vivo study performing ESD with three injectates: LiftUp, hydroxyethyl starch (HAES 6 %) and normal saline solution (NaCl 0.9 %). A total of 60 artificial lesions, each 3 × 3 cm in size, were resected in an ex vivo porcine model, utilizing one of the three studied injectates (n = 20 ESDs per injectate). Study parameters were: en bloc resection rate, perforation rate, lifting property, time of injection, injectate volume, general ESD procedure time, and overall procedure time. Results  All 60 lesions were successfully resected using the standard ESD technique. LiftUp had no procedure related perforations, one perforation occurred in the HAES group, and two perforations in the NaCl group ( P  > 0.05). Furthermore, adequate lifting was achieved in 16/20 (80 %) using LiftUp, 6/20 (30 %) in the HAES group and 6/20 (30 %) in the NaCl group ( P  < 0.0002). En bloc resection was achieved in 19 (95 %) with LiftUp, in 20 (100 %) with HAES, and in 16 (80 %) with NaCl. General ESD procedure time and overall procedure time were not different among the three groups. Conclusion  LiftUp appears to be a safe alternative to established fluids for ESD. It had a significantly improved lifting effect and required significantly less injected volume compared to well-established lifting solutions

    Implementation and performance of the Detector Control System for the electromagnetic calorimeter of the CMS experiment

    Get PDF
    In this presentation we describe the main design objectives, the detailed specifications and the final layout of the Detector Control System (DCS) for the electromagnetic calorimeter (ECAL) of the CMS experiment. Emphasis is put on the system implementation and specific hardware and software solutions in each of its sub-systems. The latest results from the tests of final prototypes of these subsystems during the 2006 ECAL test-beam programme, as well as the installation and commissioning of the whole DCS at the CMS experimental construction site are discussed

    Radiation hardness qualification of PbWO4 scintillation crystals for the CMS Electromagnetic Calorimeter

    Get PDF
    This is the Pre-print version of the Article. The official published version can be accessed from the link below - Copyright @ 2010 IOPEnsuring the radiation hardness of PbWO4 crystals was one of the main priorities during the construction of the electromagnetic calorimeter of the CMS experiment at CERN. The production on an industrial scale of radiation hard crystals and their certification over a period of several years represented a difficult challenge both for CMS and for the crystal suppliers. The present article reviews the related scientific and technological problems encountered

    Detector Control System for the Electromagnetic Calorimeter of the CMS experiment

    Get PDF
    The Compact Muon Solenoid (CMS) is one of the general purpose particle detectors at the Large Hadron Collider (LHC) at CERN. The challenging constraints on the design of one of its sub-detectors, the Electromagnetic Calorimeter (ECAL), required the development of a complex Detector Control System (DCS). In this paper the general features of the CMS ECAL DCS during the period of commissioning and cosmic running will be presented. The feedback from the people involved was used for several upgrades of the system in order to achieve a robust, flexible and stable control system. A description of the newly implemented features for the CMS ECAL DCS subsystems will be given as well

    Intercalibration of the barrel electromagnetic calorimeter of the CMS experiment at start-up

    Get PDF
    Calibration of the relative response of the individual channels of the barrel electromagnetic calorimeter of the CMS detector was accomplished, before installation, with cosmic ray muons and test beams. One fourth of the calorimeter was exposed to a beam of high energy electrons and the relative calibration of the channels, the intercalibration, was found to be reproducible to a precision of about 0.3%. Additionally, data were collected with cosmic rays for the entire ECAL barrel during the commissioning phase. By comparing the intercalibration constants obtained with the electron beam data with those from the cosmic ray data, it is demonstrated that the latter provide an intercalibration precision of 1.5% over most of the barrel ECAL. The best intercalibration precision is expected to come from the analysis of events collected in situ during the LHC operation. Using data collected with both electrons and pion beams, several aspects of the intercalibration procedures based on electrons or neutral pions were investigated

    Search for New Physics with Jets and Missing Transverse Momentum in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    A search for new physics is presented based on an event signature of at least three jets accompanied by large missing transverse momentum, using a data sample corresponding to an integrated luminosity of 36 inverse picobarns collected in proton--proton collisions at sqrt(s)=7 TeV with the CMS detector at the LHC. No excess of events is observed above the expected standard model backgrounds, which are all estimated from the data. Exclusion limits are presented for the constrained minimal supersymmetric extension of the standard model. Cross section limits are also presented using simplified models with new particles decaying to an undetected particle and one or two jets

    Search for the standard model Higgs boson in the H to ZZ to 2l 2nu channel in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    A search for the standard model Higgs boson in the H to ZZ to 2l 2nu decay channel, where l = e or mu, in pp collisions at a center-of-mass energy of 7 TeV is presented. The data were collected at the LHC, with the CMS detector, and correspond to an integrated luminosity of 4.6 inverse femtobarns. No significant excess is observed above the background expectation, and upper limits are set on the Higgs boson production cross section. The presence of the standard model Higgs boson with a mass in the 270-440 GeV range is excluded at 95% confidence level.Comment: Submitted to JHE
    corecore