35 research outputs found

    A flexible one-step synthesis of dienamides: approaches towards a total synthesis of the Crocacins

    Get PDF
    Dienamides are prevalent in many biologically active natural products and pharmaceutical drug leads. A number of different approaches have been reported for the synthesis of dienamides. These mathods have varying degrees of success in terms of yield and selectivity. In particular, the control of double bond geometry presents a significant challenge. Presented, is an efficient one-step synthesis of dienamide units starting from previously established N-formyl imide building blocks. This approach presents an attractive alternative to other methods available currently in terms of the number of steps, yield and overall simplicity. The one-step approach to the synthesis of dienamides relies on olefination of N-formyl imides through the use of conjugated ylides. A number of final dienamide compounds have been synthesised, characterised and published thus far. In all cases the sole or major isomer observed was the (Z,E)-dienamide. The Crocacins are a group of linear dipeptides incorporating a reactive N-acyl enamine or enamide unit, crucial to their biological activity. Retrosynthetically, Crocacins A, B and D are derived from Crocacin C via an enamide linkage. It is proposed that Crocacins A, B and D can be synthesised from Crocacin C using the dienamide methodology developed previously. Although several syntheses of the individual members of the Crocacins have been reported, this method represents a potential route to a convergent synthesis for the whole family of compounds. Presented, are the approaches towards the total synthesis of Crocacin C

    Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases: subgroup analyses of the RESTART randomised, open-label trial

    Get PDF
    Background Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy

    Genome-wide analysis identifies genetic effects on reproductive success and ongoing natural selection at the FADS locus

    Get PDF
    : Identifying genetic determinants of reproductive success may highlight mechanisms underlying fertility and identify alleles under present-day selection. Using data in 785,604 individuals of European ancestry, we identified 43 genomic loci associated with either number of children ever born (NEB) or childlessness. These loci span diverse aspects of reproductive biology, including puberty timing, age at first birth, sex hormone regulation, endometriosis and age at menopause. Missense variants in ARHGAP27 were associated with higher NEB but shorter reproductive lifespan, suggesting a trade-off at this locus between reproductive ageing and intensity. Other genes implicated by coding variants include PIK3IP1, ZFP82 and LRP4, and our results suggest a new role for the melanocortin 1 receptor (MC1R) in reproductive biology. As NEB is one component of evolutionary fitness, our identified associations indicate loci under present-day natural selection. Integration with data from historical selection scans highlighted an allele in the FADS1/2 gene locus that has been under selection for thousands of years and remains so today. Collectively, our findings demonstrate that a broad range of biological mechanisms contribute to reproductive success

    Sex-stratified Genome-wide Association Studies Including 270,000 Individuals Show Sexual Dimorphism in Genetic Loci for Anthropometric Traits

    Get PDF
    Peer reviewe

    Genomic epidemiology of SARS-CoV-2 in a UK university identifies dynamics of transmission

    Get PDF
    AbstractUnderstanding SARS-CoV-2 transmission in higher education settings is important to limit spread between students, and into at-risk populations. In this study, we sequenced 482 SARS-CoV-2 isolates from the University of Cambridge from 5 October to 6 December 2020. We perform a detailed phylogenetic comparison with 972 isolates from the surrounding community, complemented with epidemiological and contact tracing data, to determine transmission dynamics. We observe limited viral introductions into the university; the majority of student cases were linked to a single genetic cluster, likely following social gatherings at a venue outside the university. We identify considerable onward transmission associated with student accommodation and courses; this was effectively contained using local infection control measures and following a national lockdown. Transmission clusters were largely segregated within the university or the community. Our study highlights key determinants of SARS-CoV-2 transmission and effective interventions in a higher education setting that will inform public health policy during pandemics.</jats:p

    Bi-allelic Loss-of-Function CACNA1B Mutations in Progressive Epilepsy-Dyskinesia.

    Get PDF
    The occurrence of non-epileptic hyperkinetic movements in the context of developmental epileptic encephalopathies is an increasingly recognized phenomenon. Identification of causative mutations provides an important insight into common pathogenic mechanisms that cause both seizures and abnormal motor control. We report bi-allelic loss-of-function CACNA1B variants in six children from three unrelated families whose affected members present with a complex and progressive neurological syndrome. All affected individuals presented with epileptic encephalopathy, severe neurodevelopmental delay (often with regression), and a hyperkinetic movement disorder. Additional neurological features included postnatal microcephaly and hypotonia. Five children died in childhood or adolescence (mean age of death: 9 years), mainly as a result of secondary respiratory complications. CACNA1B encodes the pore-forming subunit of the pre-synaptic neuronal voltage-gated calcium channel Cav2.2/N-type, crucial for SNARE-mediated neurotransmission, particularly in the early postnatal period. Bi-allelic loss-of-function variants in CACNA1B are predicted to cause disruption of Ca2+ influx, leading to impaired synaptic neurotransmission. The resultant effect on neuronal function is likely to be important in the development of involuntary movements and epilepsy. Overall, our findings provide further evidence for the key role of Cav2.2 in normal human neurodevelopment.MAK is funded by an NIHR Research Professorship and receives funding from the Wellcome Trust, Great Ormond Street Children's Hospital Charity, and Rosetrees Trust. E.M. received funding from the Rosetrees Trust (CD-A53) and Great Ormond Street Hospital Children's Charity. K.G. received funding from Temple Street Foundation. A.M. is funded by Great Ormond Street Hospital, the National Institute for Health Research (NIHR), and Biomedical Research Centre. F.L.R. and D.G. are funded by Cambridge Biomedical Research Centre. K.C. and A.S.J. are funded by NIHR Bioresource for Rare Diseases. The DDD Study presents independent research commissioned by the Health Innovation Challenge Fund (grant number HICF-1009-003), a parallel funding partnership between the Wellcome Trust and the Department of Health, and the Wellcome Trust Sanger Institute (grant number WT098051). We acknowledge support from the UK Department of Health via the NIHR comprehensive Biomedical Research Centre award to Guy's and St. Thomas' National Health Service (NHS) Foundation Trust in partnership with King's College London. This research was also supported by the NIHR Great Ormond Street Hospital Biomedical Research Centre. J.H.C. is in receipt of an NIHR Senior Investigator Award. The research team acknowledges the support of the NIHR through the Comprehensive Clinical Research Network. The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR, Department of Health, or Wellcome Trust. E.R.M. acknowledges support from NIHR Cambridge Biomedical Research Centre, an NIHR Senior Investigator Award, and the University of Cambridge has received salary support in respect of E.R.M. from the NHS in the East of England through the Clinical Academic Reserve. I.E.S. is supported by the National Health and Medical Research Council of Australia (Program Grant and Practitioner Fellowship)

    Electrospray Mass Spectrometry Investigation into the Formation of CPO-27

    Get PDF
    Electrospray ionization mass spectrometry (ESI-MS) has been utilized to investigate the self-assembly processes occurring during the formation of the microporous metal–organic framework CPO-27-M (M = Co, Ni). The mono- and dinuclear building units {M(Hxdhtp)} and {M2(Hxdhtp)}, where Hxdhtp is the organic linker HxC8O6 and fragments thereof, were identified as key species present in the reaction mixture during the product formation. Time-resolved powder X-ray diffraction analysis was used to follow the synthesis and confirmed that no other crystalline products occur in the reaction mixture prior to the crystallization of CPO-27-Ni. When equimolar reactions were performed at room temperature, compounds [(M(H2dhtp)(H2O)4·2H2O] (M = Co, Ni) crystallized instead of CPO-27 obtained at the higher temperature of the solvothermal procedure. It was confirmed that mono- and dinuclear species are key building blocks not only in the formation of CPO-27-M but also in the formation of the 1D chain structure (M(H2dhtp)(H2O)4) obtained from these room-temperature reactions
    corecore