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Abstract 

Identifying genetic determinants of reproductive success may highlight mechanisms underlying 

fertility and also identify alleles under present-day selection. Using data in 785,604 individuals 

of European ancestry, we identify 43 genomic loci associated with either number of children 

ever born (NEB) or childlessness. Individual loci are associated with diverse aspects of 

reproductive biology across the life course, including puberty timing, age at first birth, sex 

hormone regulation, endometriosis and age at menopause. Missense variants in ARHGAP27 

were associated with higher NEB but shorter reproductive lifespan, suggesting a trade-off at 

this locus between reproductive ageing and intensity. Other genes implicated by coding 

variants include PIK3IP1, ZFP82, LRP4, and suggest a novel role for the melanocortin 1 receptor 

(MC1R) in reproductive biology. As NEB is one component of evolutionary fitness, our identified 

associations indicate loci under present-day natural selection. Integration with data from scans 

for natural selection identifies a unique example of an allele in the FADS1/2 gene locus that has 

been under selection for thousands of years and remains so today. Collectively, our findings 

demonstrate that diverse biological mechanisms contribute to reproductive success, implicating 

both neuro-endocrine and behavioural factors. 
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Introduction 

Variation in human reproductive behaviour and success is epidemiologically associated with 

disease risk and has profound psychological, clinical and societal implications. This is 

particularly true for infertility, where efforts to elucidate the underlying biological mechanisms 

have been limited by the lack of large, well-phenotyped cohorts with relevant outcomes. This 

situation is mirrored across many reproductive traits and diseases, such as polycystic ovary 

syndrome1,2, where progress to identify genetic determinants and underlying mechanisms has 

lagged behind that of other complex diseases3. One reason for this is that natural selection 

limits the frequency of fertility-reducing alleles. The number of children ever born to an 

individual (NEB) has one of the highest degrees of polygenicity of any trait, consistent with a 

genetic architecture strongly influenced by negative selection4,5. Another reason is the fact that 

NEB is a behavioural phenotype influenced by multiple social, economic and environmental 

factors6–8. Nonetheless, studying the genetic basis of fertility may illuminate biological 

mechanisms underpinning infertility, with the advantage that relevant measures are more 

readily available. For example, recent studies have identified genetic determinants for NEB, age 

at first sexual intercourse and age at first birth9–12. These have provided several aetiological 

insights, such as highlighting a neuro-behavioural role for the estrogen receptor in men9 and 

identifying biological mechanisms linking reproductive ageing to late-onset diseases9,10,13,14.  

 

Fertility-associated loci may act through a broad array of mechanisms. They may have direct 

effects on reproductive biology, or act through traits that contribute to partner selection or 

other aspects of behaviour and personality. For example, alleles associated with higher 

educational attainment are associated with lower fertility in some populations15,16, reflecting 

the link between higher education and older age at childbearing7. Finally, fertility-associated 

loci might represent alleles under selection for some trait entirely disconnected from 

reproductive biology. By definition, any variant that is under natural selection affects fitness. 

Variants that affect fecundity would be detected by a genome-wide scan for NEB, although this 

scan would not capture all components of fitness.  

 

Our present study substantially builds upon two earlier studies9,10 to identify individual genetic 

determinants of NEB. In contrast to these previous studies, we double the sample size to 

785,604 individuals and increase the number of genetic loci associated with NEB from 5 to 43. 

By linking our findings to scans for ancient selection, we isolate a unique example of an allele 

that has remained under selection for thousands of years and remains under selection today. 

We also highlight a number of novel biological mechanisms that contribute to reproductive 

success and uncover a previously unknown role for the melanocortin 1 receptor (MC1R) in 

reproductive biology. 
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Results 

We identified genetic determinants of NEB by performing a genome-wide association study 

(GWAS) in 785,604 European ancestry individuals meta-analysed across 45 studies (Table S1-

S6). Detailed methodology for how this discovery analysis was performed can be found in the 

methods section. SNP array data was imputed to at least 1000 Genomes Project reference 

panel density (phase 1 version 3) across all studies. The distribution of genome-wide test 

statistics for NEB showed substantial inflation (λGC=1.36), however LD score regression17 

indicated that this was attributable to polygenicity rather than population stratification (LD 

intercept 1.01; s.e. 0.008). In total, 5,283 variants reached genome-wide significance (P<5x10-8) 

for association with NEB, which we resolved to 28 statistically independent signals (Table S7). 

These include all five signals previously reported for NEB in overlapping samples of up to 

343,072 individuals9,10. 

 

The genetic architecture of NEB was only moderately correlated between men and women 

(rg=0.74; 95% CI 0.66-0.82). Therefore, we ran separate GWAS meta-analyses in men 

(N=306,980) and women (N=478,624) and identified six additional statistically independent 

signals (two in men, four in women). We found evidence of heterogeneity (Phet<0.05) between 

sexes at 13/34 NEB loci (greater than expected by chance Pbinomial=4×10-9) and an overall trend 

for larger effect sizes in women than men (24/34, Pbinomial=0.02). Two notable examples were 

rs58117425 in testis expressed 41 (TEX41) gene which was significant only in men, and 

6:152202621_GT_G in the estrogen receptor alpha (ESR1) where the effect on NEB in women 

was double that in men (Table S7). For all NEB-associated loci we provide a summary of 

individual study effect estimates (Table S8, Figure S1). 

 

In the absence of well-powered studies of infertility, we performed a GWAS on lifetime 

childlessness (CL) in UK Biobank (N=450,082) and assessed the relevance of NEB-associated loci 

on susceptibility to CL. Effects on CL were modest, with the largest effect at the rs201815280-

CADM2 locus (sex combined OR=1.05, 95% CI [1.04-1.06], P=6.8x10-18]). Using LD score 

regression, the genetic correlation between NEB and CL was very high but not perfect (rg= -0.90 

[-0.88 to -0.92). Accordingly, of the 16 independent loci identified for CL, eight were distinct 

from the NEB signals (Table S7). Sex-stratified analyses revealed one additional female-specific 

CL signal (rs7580304, PPP3R1, Table S7). Several loci exhibited significantly smaller or larger 

effects on CL than expected given their effect on NEB (Figure S2, Table S7).  

 

In summary, we identified 43 independent signals comprised of 28 from the sex-combined NEB 

meta-analysis, six sex-specific NEB signals, eight additional sex-combined CL signals, and one 
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sex-specific CL locus. We did not identify any genome-wide significant signals on the X-

chromosome, likely due to a combination of chance and a slightly smaller discovery sample size 

(671,349 rather than 785,604 for autosomes). We note however that the heritability of all 

individual chromosomes – including the X chromosome – was broadly proportional to their size 

(Figure S3), suggesting that future expanded discovery efforts are likely to also identify signals 

there. To validate these findings, we examined associations of these signals in 34,367 women 

from the FinnGen study (Methods). Since NEB was not recorded for men in FinnGen, we only 

considered the 41 signals identified in sex-combined or female-specific analyses. Despite the 

small replication sample, 35 of 41 loci had the same direction of effect in FinnGen as in the 

discovery sample (binomial sign test P=5x10-6; Table S7 and Figure S4). 

 

Previous demographic research demonstrates NEB is strongly influenced by socio-

environmental factors such as education, employment uncertainty, religiosity, housing and 

larger trends such as economic and unemployment trends, policy measures (e.g., childcare, 

taxes) and contraceptive technologies6. None of our identified signals exhibited genome-wide 

significant associations with educational attainment, church attendance or social deprivation 

indices (all of which reported genetic associations18) (Table S9). To investigate the possibility of 

subtle stratification, we explored the effect of increasing the number of principal components 

in the GWAS model from 10 to 40 in UK Biobank and found little change in the sizes of effect 

estimates at the 43 significant loci (average change: -0.6%; range -8.7%% to +12.7% Table S10). 

However, since this type of stratification can never be fully controlled, we turned to alternative 

sources of information to identify plausible mechanisms and candidate genes in order to 

prioritize the association signals more likely to be driven by biology than stratification.   

 

Implicated genes and biological mechanisms 

We used a combination of in silico fine-mapping and summary-based Mendelian randomization 

(SMR) using expression quantitative trait loci (eQTL) data integration to identify putatively 

causal genes (Online Methods, Table S7). Firstly, 4 of the 43 signals were highly correlated 

(pairwise r2=0.9) with a non-synonymous variant, implicating ARHGAP27 (rs12949256, 

p.Ala117Thr), PIK3IP1 (rs2040533, p.Thr251Ser), ZFP82 (rs17206365, p.Leu59Met) and LRP4 

(rs6485702, p.Ile1086Val). Of note, PIK3IP1 is a negative regulator of the PI3K/Akt/mTOR 

pathway, which is an intracellular signalling pathway with well-established roles in cell cycle 

regulation. Oocyte-specific deletion of Pten in mice removes the inhibiting effect of the PI3K 

pathway on primordial follicle activation, leading to premature recruitment and exhaustion of 

the entire primordial follicle pool19. 
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We extended the approach of implicating genes using predicted deleterious variants by 

performing MAGMA20 multi-marker gene-burden analyses restricted to the same predicted 

deleterious variants (Table S11-13). This approach identified significant genes within 3 of our 

identified regions (Table S7), notably the gene encoding Melanocortin 1 receptor (MC1R, 

P=1.6x10-8). This was driven by 13 independent non-synonymous variants, none of which were 

individually genome-wide significant (Table S14). MC1R is expressed on the surface of skin and 

hair melanocytes and produces the pigment melanin by binding α-melanocyte stimulating 

hormone (α-MSH). Genetic variation at MC1R accounts for ~73% of the heritability of red hair 

colour21, including our lead non-coding variant in this region (rs8051733, Table S7) and the 

rarer coding alleles included in the MAGMA test. The NEB effect at this locus appeared 

significantly stronger in women than men (Table S7). Three sensitivity analyses suggested that 

hair colour association was not responsible for the observed NEB effect (either due to 

population structure or mating preference). Firstly, within women in the UK Biobank, the NEB 

effect remained significant when red-headed women were excluded from analyses and showed 

consistent direction of effect within women of the same hair colour (Table S16). Furthermore, 

inclusion of hair colour in the association model reduced the effect size by only 20-25% (Table 

S15), suggesting that mating preference based on hair colour is unlikely to fully explain the 

observed effect. Secondly, there was no concordance between individual SNP effects on hair 

colour and NEB (Table S14). For example, the red hair increasing allele at Arg151Cys decreased 

NEB (beta=-0.02, P=1.3x10-4), whilst the red hair increasing allele at Val92Met increased NEB 

(beta=0.016, P=3.9x10-3). Finally, we assessed the impact of MC1R loss of function using exome 

sequence data in ~450,000 UK Biobank participants. The 1511 carriers of MC1R loss of function 

alleles showed no difference in NEB (P=0.65), but these loss of function alleles had a very 

robust effect on presence of red hair (P=1.8x10-792), suggesting an alternative mechanism. 

Collectively, these data suggest a novel role of the melanocortin 1 receptor in reproduction, 

consistent with the recent observations that other pigmentation genes are associated with 

puberty timing in males22. 

MAGMA also highlighted 3 genes outside regions identified by the 43 loci; ATHL1 (6 variants), 

GLDN (11 variants) and RPS11 (2 variants). The association at RPS11 was primarily driven by a 

single rare variant (rs739346, p.Thr77Ser), which had a relatively large effect on NEB (‘T’ allele 

frequency=0.15%, beta=0.21, P=6.6x10-8). This gene encodes a key component of the complex 

which forms the ribosome and is one of the most differentially expressed genes in the sperm of 

men with asthenozoospermia23. 

Next, we systematically integrated publicly available gene expression QTL data with our GWAS 

meta-analysis results (Online Methods). To guide these analyses, we first assessed the relative 

genome-wide enrichment of NEB-associated variants near genes expressed in 53 GTEx cell 

types. In sex-combined analyses, a number of neuronal cell types reached significance (Table 
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S17). This pattern of enrichment is consistent with other reproductive traits such as puberty 

timing13, likely reflecting the established role of genes in the hypothalamic-pituitary-gonadal 

(HPG) axis regulating fertility and reproductive ageing. Sex-stratified analyses demonstrated a 

similar enrichment, whilst also highlighting genes expressed in the testis for men (Table S17). 

Focusing on genes expressed in the brain, gonads and blood, SMR analyses suggest that 7 of 

our 43 genetic variants influence NEB through expression levels of one or more nearby genes 

(Table S7). This includes IKZF3 which is a hematopoietic-specific transcription factor involved in 

B-cell differentiation and proliferation, where correlated variants were recently reportedly 

associated with mosaic Y chromosome loss24. 

Whilst we were unable to putatively link all our significantly associated genetic variants to gene 

function, we note that many are in or near genes with established links to aspects of 

reproductive biology (Table S7, S18). This includes genes such as estrogen receptor 1 (ESR1), 

ENO4 which is required for sperm motility and function as well as for male fertility in mice25, 

and WNT4 which regulates müllerian-duct formation and control of ovarian steroidogenesis. 

This signal in WNT4 is the same as that previously reported for both uterine fibroids and 

endometriosis, with the disease risk increasing allele associated with lower NEB in women but 

not men (Table S7, Pall=3.6x10-8, Pwomen=4.5x10-7, Pmen=0.19). We note that many of the gene-

mapping approaches described above may identify multiple genes at individual loci, highlighting 

the challenges of moving from variant to gene function in complex trait genetics. Ultimately 

further experimental work will be required to fully elucidate which genes our identified signals 

implicate. 

To further ascertain which loci might act directly on reproductive pathways, we integrated 

GWAS results from other reproductive traits (Figure 2). We confirm previously reported 

systematic correlations between NEB and Age at First Birth, and between NEB and Age at First 

Sex10,11. However, other associations are less consistent. For example, a missense allele (rs9730, 

r2=1 with rs12949256 / p.Ala117Thr) in ARHGAP27, which encodes a Rho GTPase, a small family 

of molecules involved in axon guidance, was associated with increased NEB but shorter 

reproductive lifespan – later age at menarche (P=1x10-11) and earlier menopause (P=2x10-

5) – and with earlier age at first birth (P=5.5x10-8), lower circulating testosterone concentrations 

in women (both bioavailable [P=2.1x10-4] and total [P=2.1x10-3)], but higher testosterone 

concentrations in men (both bioavailable [P=3.5x10-4] and total [P=1.9x10-11]). Another NEB 

signal, rs4730673 near MDFIC, is correlated with the most significantly associated GWAS signal 

reported for same-sex sexual behaviour26 (rs10261857; r2 = 0.74). At this locus, the NEB-

increasing allele was associated with lower likelihood of same-sex sexual behaviour. 
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Overlap between NEB and historical selection signals identifies the FADS locus 

 

Another approach to prioritize the most likely associations is to search for variants that show 

evidence of natural selection – i.e., they also affected fitness in ancient populations. Effect 

estimates for the 34 genome-wide significant NEB loci ranged from 0.012-0.025 children per 

allele. The population mean NEB is ~1.8 in UK Biobank, thus an effect size of 0.02 per allele 

implies that a group of 25 people homozygous for an NEB-increasing allele would have, on 

average, 46 children, compared with 45 children for a group of 25 people without that allele. 

Assuming no effect on pre-reproductive mortality, these effect sizes can be directly translated 

to selection coefficients of 0.67-1.4% per allele, which is within the range detectable by 

genome-wide historical selection scans27–29. Accordingly, we compared our NEB/CL GWAS 

results with the results of scans testing selection over different timescales from ~2,000 to 

~30,000 years before present27,28,30 (Online Methods) and evaluated overlap using Bayesian co-

localization analysis31 (Table S19-S20).  

 

The strongest overlap was observed at chr11:61.5Mb, which exhibited a posterior probability of 

96% that the lead variants for ancient selection and NEB represent the same underlying signal 

(Figure 3A). This locus contains the genes FADS1 and FADS2, which have been targeted by 

selection multiple times in human history32–35. In particular, the derived haplotype at this locus, 

which increases expression of FADS1, has increased from a frequency of <10% 10,000 years ago 

to 60-75% in present-day European populations (Figure 3B). While some of this increase is due 

to admixture, there is strong evidence of positive selection over the past few thousand years, 

even accounting for changes in ancestry27,32–36. FADS1 and FADS2 encode enzymes that catalyse 

the ω-3 and ω-6 lipid biosynthesis pathways that synthesize long chain polyunsaturated fatty 

acids (LC-PUFA) from short chain precursors. It has been hypothesised that selection in Europe 

was driven by dietary transitions, in particular the Bronze Age transition to a diet based 

intensively on agricultural products with relatively low LC_PUFA levels35,36. However, the 

mechanism through which this gene-environment interaction might affect fitness is unclear. 

Indeed, the FADS locus is highly pleiotropic. It is one of the strongest GWAS signals for 

circulating lipids37 and blood metabolites38, and is strongly associated with blood cell 

phenotypes, including erythrocyte and platelet sizes and counts (Table S21). 

 

In our data, each ‘C’ allele of the lead NEB SNP rs108499, which tags the selected FADS 

haplotype, increased NEB by 0.0134 children, corresponding to a selection coefficient of 0.74% 

(0.0134 divided by mean NEB of 1.8). Consistent with this, in the “White British” subset of UK 

Biobank, the derived allele increased in frequency by 0.009% per-year between the 1938 and 

1969 birth cohorts (Figure 3C), corresponding to a selection coefficient of 1.2% (95% CI -0.9-
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3.2%). One caveat is that GWAS results can always be affected by stratification. To provide 

additional evidence, we turned to exome sequence data as an independent validation dataset. 

In UK Biobank exome sequence data, 242 FADS1 loss of function carriers had lower NEB 

compared to non-carriers (Table S22, beta=-0.21, P=5.3x10-3). The NEB-increasing allele 

increases FADS1 expression, so this effect is directionally consistent.   

 

Further support for the association comes from three lines of evidence directly connecting 

FADS1 to reproductive biology. First, the NEB-increasing allele is associated with higher 

circulating sex-hormone binding globulin (SHBG, P=2.3x10-20), total testosterone (P=1.9x10-5) 

and estradiol concentrations (P=4x10-4) in men, and lower bioavailable testosterone 

concentrations in women (P=1.5x10-3). Second, FADS1 is expressed in human oocytes and 

granulosa cells at various stages of development (Table S23). Finally, in mice, knockout of 

Fads2, which acts in the same pathway, leads to infertility in both sexes which can be rescued 

by dietary supplementation of LC-PUFA40.  In contrast, when we assessed the dose-response 

relationship of all previously reported39 HDL, LDL, total cholesterol or triglyceride associated 

variants on NEB using a Mendelian Randomization (MR) framework, we found no association 

(P>0.05 in all models) with or without inclusion of the FADS locus. This suggests that the FADS 

locus does not affect NEB indirectly via these phenotypes. Ultimately, while further 

experimental work will be required to elucidate the mechanisms linking NEB-associated 

variants at this locus to reproductive success; our results support the association between FADS1 

variation and NEB.  

 

The two most significant NEB-associated genes exhibit signatures of balancing selection 

 

The most significant NEB-associated variants in the genome, in CADM2, show no evidence of 

historical positive selection. However, CADM2 is reported to exhibit one of the strongest 

genomic signals of long-term balancing selection42. Variants in CADM2 are associated with a 

range of behavioural and reproductive traits, plausibly explained by a primary effect on risk 

taking propensity 9,18,43. Variants that increase risk taking also increase NEB, with risk taking and 

behavioural disinhibition also linked to earlier reproductive onset11. ESR1–the gene identified 

with our second most significant association–also contains signals of balancing selection44, 

while other NEB-associated loci with nominal evidence of balancing selection contain the genes 

PTPRD and LINC00871 (Table S24). Balancing selection related to pleiotropy, time-varying or 

environmentally-varying selection might explain why variants with relatively large effects on 

NEB are able to remain segregating in the population. 
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Lack of contemporary selection at historical selection signals 

 

We next tested whether there was any evidence of ongoing selection (as measured by 

association with NEB/CL) at regions identified by the three genome-wide historical selection 

scans (Table S25). Other than the FADS locus, none of the other 53 regions tested exhibited an 

association with NEB, suggesting that few of the strong historical selective sweeps in humans 

are ongoing. For example, the sweep associated with lactase persistence – one of the strongest 

signals of selection in any human population – is not ongoing in the European ancestry 

populations in this study. Other sweeps, such as those associated with skin pigmentation-

decreasing loci, are likely not detected in the NEB GWAS because the selected variants are now 

virtually fixed among European ancestry populations. 

 

Different methods for detecting selection in humans are sensitive to selection across very 

different timescales – ranging from thousands to millions of years. Our GWAS can be 

interpreted as a genome-wide selection scan over the shortest timescale – living generations. 

The limited overlap between this and historical selection scans is consistent with the limited 

overlap among historical scans, reflecting a highly dynamic landscape of selection. Positively 

selected loci either fix, or stop being selected due to changing environmental pressures and 

remain at intermediate frequency. Balancing selection related to changing environment, or 

pleiotropic effects on other components of fitness also help to maintain NEB-associated 

variants at intermediate frequency. The FADS locus is unique in the sense that the selective 

sweep – starting at least several thousand years ago is still ongoing.  

 

In summary, our study identifies 38 signals that have not been previously reported for NEB and 

represent potential targets of ongoing natural selection. Further work should aim to parse 

these effects into mechanisms that directly influence reproductive biology, in contrast to those 

which affect behaviour or reduce fitness through premature morbidity or mortality. Finally, we 

note that our analysis includes only European ancestry individuals and is heavily weighted by 

the UK Biobank, which is not representative of the UK population41. It remains to be seen which 

of these effects are consistent across cohorts and populations. 
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Tables and Figures 

Figure 1 |Manhattan plots for genome-wide association analyses of NEB and CL. The green line indicates the genome-wide 

significance threshold (P=5x10-8). Variants that fall within 300 kb of an identified signal are highlighted: those in blue are specific to 

either NEB or childlessness, those in red were significant for both. Only SNPs with a p-value less than 0.01 are represented. 
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Figure 2 |Heat map of the effects of the 43 independent signals identified for NEB or CL on other reproductive traits. All 

associations based on trait-specific Z-scores aligned to NEB-increasing allele, with 0 (white) denoting no association. SHBG = sex 

hormone binding globulin, Bioavailable T = bioavailable testosterone. 
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Figure 3 | Evidence for historical and ongoing selection at the FADS locus. A: Colocalization of the ancient DNA selection signal27 

(upper panel) and the NEB GWAS signal (lower panel). B: Estimated frequency (95% confidence intervals) for the derived FADS allele 

in Europe, based on direct evidence from ancient DNA. Present-day frequencies in 1000 Genomes European populations shown in 

blue. C: Frequency (95% confidence intervals) of the derived FADS allele in UK biobank as a function of birth year from 1938 to 1968. 
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Online Methods 

 

Phenotype definitions 

Number of children ever born (NEB) is treated as a continuous measure that was either asked 

directly or could be created from several survey questions (e.g., birth histories). A standard 

question in most surveys asks: How many children have you given birth to? Or another variant 

is: How many children do you have? In most cases it was possible to distinguish between 

biological, adopted or step-children and when this was possible, we refer to live born biological 

children. Individuals were eligible for inclusion in the analysis if they were assessed for NEB and 

were at least age 45 for women and age 55 for men.  

 

Childlessness (CL) is a binary measure, derived from NEB, with 1 referring to childless and 0 if an 

individual had children with the same inclusion rules of biological live born children and age 

restrictions that applied to NEB. Detailed measures for both phenotypes per cohort are 

described in Table S2.  

 

Participating cohorts and analysis plan 

A total of 45 cohorts participated in our study (Table S1). Table S2 provides an overview of 

cohort-specific details, including an adjusted pooled analysis of women and men in the case of 

family data (see below). Cohorts who agreed to participate followed an Analysis Plan posted on 

the Open Science Framework preregistration site https://osf.io/b4r4b/ on February 08, 2017. 

 

Cohort-level data were quality-controlled and meta-analyzed by two separate independent 

centres at the University of Oxford and University of Cambridge. We follow the QC protocol of 

the GIANT consortium’s study of human height45 and employed the software packages 

QCGWAS46 and EasyQC47, which allowed us to harmonize the files and identify possible sources 

of errors in association results. This procedure entailed that diagnostic graphs and statistics 

were generated for each set of GWAS results. In the case where apparent errors could not be 

amended by stringent QC and correspondence with the local analyst of the respective cohort, 

cohorts were excluded from the meta-analysis. (See section below for details on cohort 

inclusion and errors).  

 

For NEB the total number of individuals in the pooled meta-analysis was 785,604. Not all 

cohorts provided data about the X chromosome (Table S3) meaning that the X chromosome 

analysis included only included 671,349 individuals. CL analysis was restricted to UK Biobank 

with 450,082 for both the autosomal and X chromosomes.  
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Sample exclusion criteria 

Individuals were eligible for inclusion if they met the following conditions: 

a. They were assessed for NEB at least at age 45 for women, age 55 for men. 

b. All relevant covariates (e. g. year of birth) were available for the individual. 

c. They were successfully genotyped genome-wide (recommended individual genotyping 

rate > 95%). 

d. They passed the cohort-specific standard quality controls, e.g. excluding individuals who 

are genetic outliers in the cohort. 

e. They were of European ancestry. 

 

Genotyping and Imputation 

Table S4 provides an overview of the cohort-specific details of the genotyping platform, pre-

imputation quality control filters applied to the genotype data, imputation software used, the 

reference panel used for imputation and the presence of X chromosome data.  We asked cohorts 

to include all autosomal SNPs imputed from the 1000G panel (at a minimum) to allow analyses 

across different genotyping platforms. Cohorts with denser reference panels we asked to 

communicate this to our team. Cohorts were asked to provide unfiltered results since filters on 

imputed markers were applied at the meta-analysis stage.  

 

Association testing models 

Analysts ran linear regression models for NEB and logistic regression models for CL. Analysts 

were asked to include birth year of the respondent (represented by birth year minus 1900), its 

square and cube to control for non-linear birth cohort effects. For cohorts with family-based 

data, we suggested controlling for family structure or excluding relatives. Combined analyses 

that included both men and women included interactions of birth year and its polynomials with 

sex. We asked cohorts to include top principal components to control for population 

stratification48 and cohort specific covariates if appropriate. Some cohorts only used birth year 

and not the polynomials because of multi-collinearity issues/convergence of the GWA analysis. 

Per-chromosome heritability estimates were calculated using restricted maximum likelihood 

(REML) implemented in BOLT-LMM49. This analysis was performed for NEB in UK Biobank, using 

directly genotyped variants in unrelated individuals of European ancestry. 

 

X chromosome analysis 

Analysis of X chromosome variants was performed using one of two approaches, XWAS or 

SNPtest, the results of which could be combined by meta-analysis. In XWAS software 
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(http://keinanlab.cb.bscb.cornell.edu/content/xwas) we used the --var-het-weight command. 

In SNPtest, we used the -method newml. Since this assumes complete X-inactivation (i.e., a 

hemizygous male is considered the same as a homozygous female) the effect estimates and  

standard errors approximate ½ of those produced by XWAS. 

 

Quality Control: filters & diagnostic checks 

We followed the quality control (QC) protocol described by the GIANT consortium’s GWAS of 

height45. We used an adapted version of the software package QCGWAS46, which allows the 

inclusion of structural variants, in order to standardize files across cohorts and we used 

EasyQC47 to filter variants by QC criteria and to produce diagnostic graphs and statistics as 

described below. Where errors could not be amended by combining stringent QC with file-

inspections, queries to cohorts and corrections, cohorts were excluded from the meta-analysis. 

See also Supplementary Tables S5-S6 for QC results on autosomal and X chromosomes for NEB 

and CL. Specific individual filters were: 

 

a) Missing data. We filtered variants where information on both reference and other allele 

were missing, where the estimated effect, p-value, standard error, expected allele frequency or 

number of observations were missing. 

 

b) Implausible values. We filtered variants where p-values > 1 or < 0, standard errors = 0 or 

infinite, expected allele frequency > 1 or < 0, N < 0, call rate > 1 or < 0, an SE of the effect 

estimate which was approximately 40% greater than the expected SE based on MAF and 

standard deviation and for those with an 𝑅2 >10% (see Winkler et al47 for the approximation for 

quantitative and Rietveld et al50 for quantitative and binary traits). 

 

c) Quality thresholds. We filtered variants where expected allele frequency = 1 or = 0 

(monomorphic variants), N < 100 to guard against spurious associations due to overfitting of 

the model, minor allele count <6 to guard against spurious associations with low frequency-

SNPs and genotyped SNPs which were not in Hardy-Weinberg Equilibrium (HWE), with 

significant thresholds of 10−3 in case N < 1,000, 10−4 in case 1,000 ≤ N < 2,000, 10−5 in case 

2,000≤N<10,000 and no filter in case N>10,000, imputed markers with imputation quality < 40% 

and SNPs with a call rate < 95%, if discrepancies between reported and expected p-value based 

on effect estimates and standard errors are detected (see also next section on diagnostic 

graphs). 

 

d) Data harmonization. We matched the cohort-based summary statistics with a 1000 Genome 

reference panel phase 1 version 3 reference panel provided by Winkler et al47. EasyQC drops 

http://keinanlab.cb.bscb.cornell.edu/content/xwas
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mismatched variants which cannot be resolved such as duplicates, allele mismatches or missing 

or invalid alleles. Based on graphical inspections (see below), we applied cohort specific filters 

to drop variants with obvious deviations between expected allele frequency based on the 

reference panel and observed allele frequency.  

 

Quality Control: Filtering results 

a) Autosomal chromosomes 

Overall, the quality of studies was good (for full results of the QC-filters described above see 

Tables S5 and S6 for autosomal SNPs). One cohort was excluded (INGI-Carlantino) due to the 

filter on sample size. For autosomal chromosomes and NEB, the remaining 45 cohorts provided 

81 files, 39 for women only, 28 for men only and 13 pooled (from cohorts with family data). 

Two studies did not provide imputation quality (KORA F3, N =1.066; and KORA F4, N =1,111) 

and contributed only 584,866 and 496,556 SNPs respectively. For the two HPFS cohorts, results 

from our last discovery GWAS10 based on HapMap 2 reference panels were recycled with 

number of SNPs between 2,394,353 and 2,412,487. For all other cohorts, the number of 

variants in the analysis range between 6,691,978 for men in LBC 1921 and 20,783,286 for 

women in EPIC with an average of 10,574,721. For CL, between 25,555,939 and 25,554,098 

variants from the UK Biobank entered the GWAS and between 13,539,540 and 13,661,642 

passed QC. 

 

b) X chromosome 

For NEB, 12 cohorts provided information on the X chromosome. Overall, we received 27 files, 

12 for women, 10 for men and 5 for the pooled analysis if there were relatives in the data. On 

average 325,872 variants passed QC with a minimum of 191,880 in men from LBC 1921 and a 

maximum 991,081 for the pooled UK Biobank sample. For CL, the UK Biobank provided results 

for between 980,779 and 991,081 variants on the X chromosome after QC. 
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GWAS meta-analysis, signal selection and replication 

Cohort association results (after applying the QC filters) were combined using sample-size 

weighted meta-analysis, implemented in METAL52. Sample-size weighting is based on Z-scores 

and can account for different phenotypic measurements among cohorts53. The two QC centres 

agreed in using sample-size weighting to allow cohorts to introduce study-specific covariates in 

their cohort-level analysis.  For each study, only SNPs that were observed in at least 50% of the 

participants for a given phenotype-sex combination were passed to the meta-analysis. SNPs 

were considered genome-wide significant at p-values smaller than 5×10-8 (α of 5%, Bonferroni-

corrected for a million tests). The meta-analyses were carried out by two independent analysts. 

Comparisons were made to ensure concordance of the identified signals between the two 

independent analysts. In order to identify independent signals, distance-based clumping (using 

a 1Mb window) was used to identify the most significant SNPs in associated regions (termed 

“lead SNPs”). This was then supplemented by approximate conditional analysis implemented in 

GCTA54,55, where we required additional independent signals to be genome-wide significant in 

both pre and post conditional models. 

 

We meta-analysed GWAS results for NEB and CL both in sex-combined and sex-specific models. 

To understand the magnitude of the estimated effects, we used an approximation method to 

compute unstandardized regression coefficients based on the Z-scores of METAL output 

obtained by sample-size-weighted meta-analysis, allele frequency and phenotype standard 

deviation. Table S8 provides the forest plots of all genome-wide significant SNPs to provide a 

visualization of the effect size estimates for each cohort and the summary meta-analysis in 

addition to the 95% confidence intervals. The genetic correlation between these two results 

was assessed using linkage disequilibrium score regression69. 

 

Replication 

Replication was performed using the FinnGen study - a public-private partnership project 

combining genotype data from Finnish biobanks and digital health record data from Finnish 

health registries (https://www.finngen.fi/en). Six regional and three country-wide Finnish 

biobanks participate in FinnGen which also incorporates data from previously established 

populations and disease-based cohorts. Release 4 of Finngen includes 176,899 participants. 

In this analysis we included women that participated to Finngen release 4 and were at least 45 

years of age by 31st December 2017. This was the last date we had information from national 

registries. We also excluded women younger than 16 in 1969 (the start of the registries). Using 

these inclusion criteria, we included women born between 1953 and 1973 and children born 
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between 1969 and 2017. We also excluded women that emigrated from Finland in the study 

period.  

To determine if a woman delivered a child we used the following codes obtained from the 

national inpatient registry (HILMO): 

● ICD-10 codes: O80-O84 
● ICD-9 code: 6440B, 6450B, 650[0-9]B-659[0-9]B 
● ICD-8 codes: 650-662 

 
When multiple codes were used within a 10-month period we counted as a single delivery. 

There were 37,741 women, the average (SD) number of children was 1.72 (1.32) and 20.4% of 

the women were childless. 

For principal components analysis, FinnGen data was combined with 1000 genomes data. 

Related individuals (<3rd degree) were removed using King software56. We considered common 

(MAF >= 0.05) high quality variants: not in chromosome X, imputation INFO>0.95, genotype 

imputed posterior probability>0.95 and missingess<0.01. LD-pruned (r2<0.1) common variants 

were used for computing PCA with Plink 1.92. SAIGE mixed model logistic regression 

(https://github.com/weizhouUMICH/SAIGE/releases/tag/0.35.8.8) was used for association 

analysis. Age and 10 PCs and genotyping batch were used as covariates. Each genotyping batch 

was included as a covariate to avoid convergence issues. 

Prioritizing and characterizing putatively functional genes in GWAS highlighted regions 

We utilized three distinct approaches to identify putatively functional genes at each genome-

wide significant locus. First, we assessed the coding impact of any variant in LD with our 43 lead 

index variants. We restricted assessment to variants with r2>0.8 and predicted moderate or 

high impact effects based on Variant Effect Predictor (VEP) annotations. We calculated LD using 

PLINK v1.9 from best guess genotypes for 1000 Genomes Phase 3/HRC imputed variants in 

~10,000 unrelated UK Biobank participants of white British ancestry. Second, we used MAGMA 

v1.0820 to collapse multiple predicted deleterious variants (using the same VEP categories 

above) into a single gene score. Finally, we integrated our genome-wide summary statistics 

with eQTL data using Summary data-based Mendelian Randomization (SMR)57. Publicly 

available expression datasets for ovary and testis tissues in GTEx v7, in addition to a meta-

analysis of eQTL brain tissues, were downloaded from the SMR website 

(https://cnsgenomics.com/software/smr/#eQTLsummarydata). Whole-blood data in an eQTL 

meta-analysis of 31,684 samples was available from the eQTLGen consortium70. A Bonferroni 

corrected p-value threshold was used in each expression dataset individually and only 

associations with HEIDI P > 0.01 were considered to avoid coincidental overlap due to extended 

patterns of LD. This resulted in a total of 11 (SMR P<6.6x10-6) significant transcriptions in the 

brain, 12 in whole blood (P<3.2x10-6) and 9 in the female-specific GTEx ovary analysis (SMR 

P<3.2x10-5). We additionally performed tissue enrichment analysis using linkage-disequilibrium 
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(LD) score regression to specifically expressed genes (LDSC-SEG)58. We used three datasets 

available on the LDSC-SEG resource page (https://github.com/bulik/ldsc/wiki/Cell-type-specific-

analyses), relating to cell and tissue-specific annotations from GTEx59. 

We characterized the phenotypic consequences of MC1R, FADS1 and FADS2 loss of function 

using up to 454,756 exome sequences in the UK Biobank study71. The exome-based association 

with variants in MC1R and hair colour was assessed with an interim release of 184,135 

individuals. All variants were annotated using Variant Effect Predictor and we only considered 

those predicted to be high impact loss of function defined by VEP. Individuals carrying one or 

more rare (MAF <=0.1%) loss of function alleles in a given gene were grouped together. We 

created dummy variables based on this definition for each gene and tested for association using 

BOLT-LMM49. 

All lookup data for additional traits was taken from previously described UK Biobank analyses. 

This includes sex hormones60, number of sexual partners and same-sex behavior26, age at 

menarche and BMI13, townsend deprivation index18, religious group attendance18 and years of 

education18. 

Assessment of FADS1-3 expression in human oocytes and granulosa cells at various stages of 

development 

We used processed RNA-seq data of Fetal Primordial Germ Cells from two studies:  

• Li et al61 (Accession code: GSE86146) report data from 17 human female embryos 
ranging from 5-26 weeks post-fertilisation.  

• Zhang et al62 (Accession code GSE107746), report data from follicles at 5 different stages 
of development from fresh ovarian tissue from 7 adult donors, separated into oocytes 
and granulosa cell fractions.  

We also generated novel single-cell RNA-seq data from human MII Oocytes. We performed 

sample QC and filtering of reads to remove low quality reads, adaptor sequences and low 

quality bases with trimmomatic version 0.3663 in two steps using ILLUMINACLIP:/ 

/Trimmomatic-0.36/adapters/NexteraPE-PE.fa:2:30:10 ( SLIDINGWINDOW:4:20 CROP:72 

HEADCROP:10 MINLEN:40 followed by and extra trim of headbases with HEADCROP:10). 

Subsequent to filtering, we used the remaining paired reads for alignment by hisat264 to the 

human genome GeneCode v.27 release with the paired GenCode v.27 gtf file containing gene 

annotations using: ($HISAT2 -p 22 --dta -x .gencode.v27   -1 R1.fastq -2 R2.fastq   -S 

sample.sam) (Pertea et al. 2016). The resulting sam files were sorted, indexed and transformed 

to bam files using samtools65. QC measures of aligned reads was generated using picard metrics 

(https://slowkow.github.io/picardmetrics) and the CollectRnaSeqMetrics tool from picard tools 

(http://broadinstitute.github.io/picard). We filtered the bam files for mitochondrial reads and 

applied Stringtie to merge and assemble reference guided transcripts for gene level 

quantifications of raw counts, and transcripts per million (TPM)66. Gene expression levels in 

https://slowkow.github.io/picardmetrics
http://broadinstitute.github.io/picard
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TPM are presented in Table S20 as this unit allows efficient comparison of gene expression 

levels between samples from different studies. 

 

Identifying overlap between NEB hits and previously-identified selection signals 

We assessed overlap of our NEB signals with the results of three genome-wide selection scans. 

First, the Composite of Multiple Signals test30 which combines information from different 

statistics to detect selection on the order of the past 50,000 years. Second, an ancient DNA 

based scan27 that uses direct inference of allele frequency from ancient populations to infer 

selection over the past 10,000 years. Finally, the Singleton Density Score28, which uses patterns 

of singleton variants to infer very recent selection – on the order of a few thousand years. 

 

For the Composite of Multiple Signals test30, we used the rankings of CMSGW statistics to obtain 

an empirical P-value for each SNP. For the Singleton Density Score 28, we converted normalized 

SDS scores to two-tailed P-values of the standard normal distribution. Finally, for the ancient 

DNA based selection scan27, we used the genomic control corrected P-values from the original 

scan. For each NEB hit, for each scan, we identified the SNP within 10kb, with a P-value < 10-6 

for NEB that had the most significant selection scan signal (SNP1 and PVAL1 in Table S19-20). 

We also identified the SNP within 10kb that had the most significant selection scan signal, 

regardless of its NEB P-value (SNP2 and PVAL2 in Table S19-20). Finally, we performed a 

Bayesian Colocalization analysis using the “coloc” package31 using all SNPs within 10kb of the 

lead NEB SNP.  This computes posterior probabilities for the hypotheses: H0 No causal SNPs, H1 

Causal SNP for selection but not NEB, H2 Causal SNP for NEB but not selection, H3 One 

independent causal SNP for each trait, H4 One shared causal SNP for both traits. We report the 

hypothesis with the maximum posterior probability (COLOC in Table S19-20). 

 

We also tested for overlap with a scan for balancing selection using the NCD2 statistic44 for the 

GBR population of 1000 genomes. We used the target frequency of 0.5 for these tests. For all 

SNPs, we report the value of the window that overlaps that SNP or, if more than one window 

overlaps a SNP, we report the lowest P-value of any window within 10kb. Finally, we report the 

lowest P-value for genes within 10kb of each SNP. 

 

Estimating FADS1 allele frequencies from ancient DNA 

We downloaded combined data from https://reich.hms.harvard.edu/allen-ancient-dna-

resource-aadr-downloadable-genotypes-present-day-and-ancient-dna-data (v37.2 accessed 14 

May 2019) and restricted to 652 samples west of 40°E, north of 35°S, more recent than 12,000 

years before present and with coverage at rs108499. We binned them into 2000-year bins, and 
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computed estimated allele frequencies and bootstrap confidence intervals. We also include the 

European sub-populations from phase 3 of the 1000 Genomes Project68. 
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