485 research outputs found

    Birman-Wenzl-Murakami Algebra and the Topological Basis

    Full text link
    In this paper, we use entangled states to construct 9x9-matrix representations of Temperley-Lieb algebra (TLA), then a family of 9x9-matrix representations of Birman-Wenzl-Murakami algebra (BWMA) have been presented. Based on which, three topological basis states have been found. And we apply topological basis states to recast nine-dimensional BWMA into its three-dimensional counterpart. Finally, we find the topological basis states are spin singlet states in special case.Comment: 11pages, 1 figur

    On a nonstandard two-parametric quantum algebra and its connections with Up,q(gl(2))U_{p,q}(gl(2)) and Up,q(gl(1∣1))U_{p,q}(gl(1|1))

    Get PDF
    A quantum algebra Up,q(ζ,H,X±)U_{p,q}(\zeta ,H,X_\pm ) associated with a nonstandard RR-matrix with two deformation parameters(p,q)(p,q) is studied and, in particular, its universal R{\cal R}-matrix is derived using Reshetikhin's method. Explicit construction of the (p,q)(p,q)-dependent nonstandard RR-matrix is obtained through a coloured generalized boson realization of the universal R{\cal R}-matrix of the standard Up,q(gl(2))U_{p,q}(gl(2)) corresponding to a nongeneric case. General finite dimensional coloured representation of the universal R{\cal R}-matrix of Up,q(gl(2))U_{p,q}(gl(2)) is also derived. This representation, in nongeneric cases, becomes a source for various (p,q)(p,q)-dependent nonstandard RR-matrices. Superization of Up,q(ζ,H,X±)U_{p,q}(\zeta , H,X_\pm ) leads to the super-Hopf algebra Up,q(gl(1∣1))U_{p,q}(gl(1|1)). A contraction procedure then yields a (p,q)(p,q)-deformed super-Heisenberg algebra Up,q(sh(1))U_{p,q}(sh(1)) and its universal R{\cal R}-matrix.Comment: 17pages, LaTeX, Preprint No. imsc-94/43 Revised version: A note added at the end of the paper correcting and clarifying the bibliograph

    A Pontine Region is a Neural Correlate of the Human Affective Processing Network

    Get PDF
    The in vivo neural activity of the pons during the perception of affective stimuli has not been studied despite the strong implications of its role in affective processing. To examine the activity of the pons during the viewing of affective stimuli, and to verify its functional and structural connectivity with other affective neural correlates, a multimodal magnetic resonance imaging methodology was employed in this study. We observed the in vivo activity of the pons when viewing affective stimuli. Furthermore, small-world connectivity indicated that the functional connectivity (FC) between the pons and the cortico-limbic affective regions was meaningful, with the coefficient λ being positively associated with self-reported emotional reactivity. The FC between the pons and the cortico-limbic-striatal areas was related to self-reported negative affect. Corroborating this finding was the observation that the tract passing through the pons and the left hippocampus was negatively related to self-reported positive affect and positively correlated with emotional reactivity. Our findings support the framework that the pons works conjunctively with the distributed cortico-limbic-striatal systems in shaping individuals' affective states and reactivity. Our work paves the path for future research on the contribution of the pons to the precipitation and maintenance of affective disorders.published_or_final_versio

    Quantum algebra in the mixed light pseudoscalar meson states

    Full text link
    In this paper, we investigate the entanglement degrees of pseudoscalar meson states via quantum algebra Y(su(3)). By making use of transition effect of generators J of Y(su(3)), we construct various transition operators in terms of J of Y(su(3)), and act them on eta-pion-eta mixing meson state. The entanglement degrees of both the initial state and final state are calculated with the help of entropy theory. The diagrams of entanglement degrees are presented. Our result shows that a state with desired entanglement degree can be achieved by acting proper chosen transition operator on an initial state. This sheds new light on the connect among quantum information, particle physics and Yangian algebra.Comment: 9 pages, 3 figure

    CHIP: Commodity based Hazard Identification Protocol for emerging diseases in plants and animals

    Get PDF
    This project comprised the development of a commodity-based hazard identification protocol for biological hazards in plants and animals as a decision support tree programmed in Excel. The content of the decision tree is based on the results of a systematic review of pest and pathogen characteristics, a review of risk assessment schemes and on expert judgement. Application of the protocol results in an indication of the level of likelihood of entry of animal and plant pathogens/pests in the area of destination associated with the commodity/pathway, and it guides the decision regarding potential actions to be undertaken in the search for existing and emerging pathogens/pests

    The relativistic Sagnac Effect: two derivations

    Full text link
    The phase shift due to the Sagnac Effect, for relativistic matter and electromagnetic beams, counter-propagating in a rotating interferometer, is deduced using two different approaches. From one hand, we show that the relativistic law of velocity addition leads to the well known Sagnac time difference, which is the same independently of the physical nature of the interfering beams, evidencing in this way the universality of the effect. Another derivation is based on a formal analogy with the phase shift induced by the magnetic potential for charged particles travelling in a region where a constant vector potential is present: this is the so called Aharonov-Bohm effect. Both derivations are carried out in a fully relativistic context, using a suitable 1+3 splitting that allows us to recognize and define the space where electromagnetic and matter waves propagate: this is an extended 3-space, which we call "relative space". It is recognized as the only space having an actual physical meaning from an operational point of view, and it is identified as the 'physical space of the rotating platform': the geometry of this space turns out to be non Euclidean, according to Einstein's early intuition.Comment: 49 pages, LaTeX, 3 EPS figures. Revised (final) version, minor corrections; to appear in "Relativity in Rotating Frames", ed. G. Rizzi and M.L. Ruggiero, Kluwer Academic Publishers, Dordrecht, (2003). See also http://digilander.libero.it/solciclo

    Fluorescent carbon dioxide indicators

    Get PDF
    Over the last decade, fluorescence has become the dominant tool in biotechnology and medical imaging. These exciting advances have been underpinned by the advances in time-resolved techniques and instrumentation, probe design, chemical / biochemical sensing, coupled with our furthered knowledge in biology. Complementary volumes 9 and 10, Advanced Concepts of Fluorescence Sensing: Small Molecule Sensing and Advanced Concepts of Fluorescence Sensing: Macromolecular Sensing, aim to summarize the current state of the art in fluorescent sensing. For this reason, Drs. Geddes and Lakowicz have invited chapters, encompassing a broad range of fluorescence sensing techniques. Some chapters deal with small molecule sensors, such as for anions, cations, and CO2, while others summarize recent advances in protein-based and macromolecular sensors. The Editors have, however, not included DNA or RNA based sensing in this volume, as this were reviewed in Volume 7 and is to be the subject of a more detailed volume in the near future

    Nucleon Decay Searches with large Liquid Argon TPC Detectors at Shallow Depths: atmospheric neutrinos and cosmogenic backgrounds

    Get PDF
    Grand Unification of the strong, weak and electromagnetic interactions into a single unified gauge group is an extremely appealing idea which has been vigorously pursued theoretically and experimentally for many years. The detection of proton or bound-neutron decays would represent its most direct experimental evidence. In this context, we studied the physics potentialities of very large underground Liquid Argon Time Projection Chambers (LAr TPC). We carried out a detailed simulation of signal efficiency and background sources, including atmospheric neutrinos and cosmogenic backgrounds. We point out that a liquid Argon TPC, offering good granularity and energy resolution, low particle detection threshold, and excellent background discrimination, should yield very good signal over background ratios in many possible decay modes, allowing to reach partial lifetime sensitivities in the range of 1034−1035 years with exposures up to 1000 kton×year, often in quasi-background-free conditions optimal for discoveries at the few events level, corresponding to atmospheric neutrino background rejections of the order of 105. Multi-prong decay modes like e.g. p→Ό−π+K+ or p→e+π+π− and channels involving kaons like e.g. p→K+ÎœÂŻ, p→e+K0 and p→Ό+K0 are particularly suitable, since liquid Argon imaging (...)This work was in part supported by ETH and the Swiss National Foundation. AB, AJM and SN have been supported by CICYT Grants FPA-2002-01835 and FPA-2005-07605-C02-01. SN acknowledges support from the Ramon y Cajal Programme. We thank P. Sala for help with FLUKA while she was an ETH employee

    Measurement of the polarisation of W bosons produced with large transverse momentum in pp collisions at sqrt(s) = 7 TeV with the ATLAS experiment

    Get PDF
    This paper describes an analysis of the angular distribution of W->enu and W->munu decays, using data from pp collisions at sqrt(s) = 7 TeV recorded with the ATLAS detector at the LHC in 2010, corresponding to an integrated luminosity of about 35 pb^-1. Using the decay lepton transverse momentum and the missing transverse energy, the W decay angular distribution projected onto the transverse plane is obtained and analysed in terms of helicity fractions f0, fL and fR over two ranges of W transverse momentum (ptw): 35 < ptw < 50 GeV and ptw > 50 GeV. Good agreement is found with theoretical predictions. For ptw > 50 GeV, the values of f0 and fL-fR, averaged over charge and lepton flavour, are measured to be : f0 = 0.127 +/- 0.030 +/- 0.108 and fL-fR = 0.252 +/- 0.017 +/- 0.030, where the first uncertainties are statistical, and the second include all systematic effects.Comment: 19 pages plus author list (34 pages total), 9 figures, 11 tables, revised author list, matches European Journal of Physics C versio
    • 

    corecore