2,171 research outputs found
Prognostic factors for patients treated with abiraterone
© Cecilia Melo Alvim. This work is licensed under the Creative Commons Attribution4.0 License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/Aim: To evaluate prostate-specific antigen response (PSAr) defined as a ≥50% decrease in PSA concentration from the pretreatment value, as a prognostic factor in patients with metastatic castration-resistant prostate cancer (mCRPC) treated with abiraterone acetate (AA).
Methods: Retrospective evaluation of patients with mCRPC treated with AA.
Results: 124 patients were identified. Median overall survival and progression-free survival for patients achieving PSAr versus patients without PSAr were 29.3 versus 9.7 months and 17.0 versus 5.2 months, respectively. Multivariate analysis confirmed that PSAr correlated with better overall survival (hazard ratio: 0.19; 95% CI: 0.10-0.38; p < 0.001) and progression-free survival (hazard ratio: 0.24; 95% CI: 0.14-0.41; p < 0.001).
Conclusion: PSAr can be utilized as prognostic and predictive factors in mCRPC patients treated with AA.info:eu-repo/semantics/publishedVersio
Endosymbiosis in trypanosomatids: the genomic cooperation between bacterium and host in the synthesis of essential amino acids is heavily influenced by multiple horizontal gene transfers
Background
Trypanosomatids of the genera Angomonas and Strigomonas live in a mutualistic association characterized by extensive metabolic cooperation with obligate endosymbiotic Betaproteobacteria. However, the role played by the symbiont has been more guessed by indirect means than evidenced. Symbiont-harboring trypanosomatids, in contrast to their counterparts lacking symbionts, exhibit lower nutritional requirements and are autotrophic for essential amino acids. To evidence the symbiont’s contributions to this autotrophy, entire genomes of symbionts and trypanosomatids with and without symbionts were sequenced here. Results
Analyses of the essential amino acid pathways revealed that most biosynthetic routes are in the symbiont genome. By contrast, the host trypanosomatid genome contains fewer genes, about half of which originated from different bacterial groups, perhaps only one of which (ornithine cyclodeaminase, EC:4.3.1.12) derived from the symbiont. Nutritional, enzymatic, and genomic data were jointly analyzed to construct an integrated view of essential amino acid metabolism in symbiont-harboring trypanosomatids. This comprehensive analysis showed perfect concordance among all these data, and revealed that the symbiont contains genes for enzymes that complete essential biosynthetic routes for the host amino acid production, thus explaining the low requirement for these elements in symbiont-harboring trypanosomatids. Phylogenetic analyses show that the cooperation between symbionts and their hosts is complemented by multiple horizontal gene transfers, from bacterial lineages to trypanosomatids, that occurred several times in the course of their evolution. Transfers occur preferentially in parts of the pathways that are missing from other eukaryotes. Conclusion
We have herein uncovered the genetic and evolutionary bases of essential amino acid biosynthesis in several trypanosomatids with and without endosymbionts, explaining and complementing decades of experimental results. We uncovered the remarkable plasticity in essential amino acid biosynthesis pathway evolution in these protozoans, demonstrating heavy influence of horizontal gene transfer events, from Bacteria to trypanosomatid nuclei, in the evolution of these pathways
The ocean sampling day consortium
Ocean Sampling Day was initiated by the EU-funded Micro B3 (Marine Microbial Biodiversity, Bioinformatics, Biotechnology) project to obtain a snapshot of the marine microbial biodiversity and function of the world’s oceans. It is a simultaneous global mega-sequencing campaign aiming to generate the largest standardized microbial data set in a single day. This will be achievable only through the coordinated efforts of an Ocean Sampling Day Consortium, supportive partnerships and networks between sites. This commentary outlines the establishment, function and aims of the Consortium and describes our vision for a sustainable study of marine microbial communities and their embedded functional traits
Pervasive gaps in Amazonian ecological research
Biodiversity loss is one of the main challenges of our time and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space. While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes, vast areas of the tropics remain understudied. In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity, but it remains among the least known forests in America and is often underrepresented in biodiversity databases. To worsen this situation, human-induced modifications may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge, it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost
Genotype and phenotype landscape of MEN2 in 554 medullary thyroid cancer patients: the BrasMEN study
Multiple endocrine neoplasia type 2 (MEN2) is an autosomal dominant genetic disease caused by RET gene germline mutations that is characterized by medullary thyroid carcinoma (MTC) associated with other endocrine tumors. Several reports have demonstrated that the RET mutation profile may vary according to the geographical area. In this study, we collected clinical and molecular data from 554 patients with surgically confirmed MTC from 176 families with MEN2 in 18 different Brazili an centers to compare the type and prevalence of RET mutations with those from other countries. The most frequent mutations, classified by the number of families affected, occur in codon 634, exon 11 (76 families), followed by codon 918, exon 16 (34 families: 26 with M918T and 8 with M918V) and codon 804, exon 14 (22 families: 15 with V804M and 7 with V804L). When compared with other major published series from Europe, there are several similarities and some differences. While the mutations in codons C618, C620, C630, E768 and S891 present a similar prevalence, some mutations have a lower prevalence in Brazil, and others are found mainly in Brazil (G533C and M918V). These results reflect the singular proportion of European, Amerindian and African ancestries in the Brazilian mosaic genome83289298CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQCOORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIOR - CAPESFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESPFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DO RIO GRANDE DO SUL - FAPERGSSem informaçãoSem informação2006/60402-1; 2010/51547-1; 2013/01476-9; 2014/06570-6; 2009/50575-4; 2010/51546-5; 2012/21942-116/2551-0000482-
Correction: Pervasive gaps in Amazonian ecological research
In the original version of the article, the authors incorrectly stated the value of current and projected deforestation in the results: the values should be 23.50% and 27.29%, respectively. This error does not impact the results or conclusions presented in the paper. The error has now been corrected online. The authors apologize for the error and any confusion that may have resulted
The Ocean Sampling Day Consortium
Ocean Sampling Day was initiated by the EU-funded Micro B3 (Marine Microbial Biodiversity, Bioinformatics, Biotechnology) project to obtain a snapshot of the marine microbial biodiversity and function of the world’s oceans. It is a simultaneous global mega-sequencing campaign aiming to generate the largest standardized microbial data set in a single day. This will be achievable only through the coordinated efforts of an Ocean Sampling Day Consortium, supportive partnerships and networks between sites. This commentary outlines the establishment, function and aims of the Consortium and describes our vision for a sustainable study of marine microbial communities and their embedded functional traits
- …