243 research outputs found

    Mucosal CD8 T Cell Responses Are Shaped by Batf3-DC After Foodborne Listeria monocytogenes Infection

    Get PDF
    While immune responses have been rigorously examined after intravenous Listeria monocytogenes (Lm) infection, less is understood about its dissemination from the intestines or the induction of adaptive immunity after more physiologic models of foodborne infection. Consequently, this study focused on early events in the intestinal mucosa and draining mesenteric lymph nodes (MLN) using foodborne infection of mice with Lm modified to invade murine intestinal epithelium (InlAM Lm). InlAM Lm trafficked intracellularly from the intestines to the MLN and were associated with Batf3-independent dendritic cells (DC) in the lymphatics. Consistent with this, InlAM Lm initially disseminated from the gut to the MLN normally in Batf3–/– mice. Activated migratory DC accumulated in the MLN by 3 days post-infection and surrounded foci of InlAM Lm. At this time Batf3–/– mice displayed reduced InlAM Lm burdens, implicating cDC1 in maximal bacterial accumulation in the MLN. Batf3–/– mice also exhibited profound defects in the induction and gut-homing of InlAM Lm-specific effector CD8 T cells. Restoration of pathogen burden did not rescue antigen-specific CD8 T cell responses in Batf3–/– mice, indicating a critical role for Batf3 in generating anti-InlAM Lm immunity following foodborne infection. Collectively, these data suggest that DC play diverse, dynamic roles in the early events following foodborne InlAM Lm infection and in driving the establishment of intestinal Lm-specific effector T cells.Fil: Imperato, Jessica Nancy. Stony Brook University Renaissance School Of Medicine; Estados UnidosFil: Xu, Daqi. Uconn Health; Estados UnidosFil: Romagnoli, Pablo Alberto. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - Cordoba. Instituto de Investigacion Medica Mercedes y Martin Ferreyra. Grupo Vinculado Centro de Investigacion En Medicina Traslacional Severo R. Amuchastegui - Cimetsa | Universidad Nacional de Cordoba. Instituto de Investigacion Medica Mercedes y Martin Ferreyra. Grupo Vinculado Centro de Investigacion En Medicina Traslacional Severo R. Amuchastegui - Cimetsa | Instituto de Investigacion Medica Mercedes y Martin Ferreyra. Instituto de Investigacion Medica Mercedes y Martin Ferreyra. Grupo Vinculado Centro de Investigacion En Medicina Traslacional Severo R. Amuchastegui - Cimetsa.; ArgentinaFil: Qiu, Zhijuan. Stony Brook University Renaissance School Of Medicine; Estados UnidosFil: Perez, Pedro. Stony Brook University Renaissance School Of Medicine; Estados UnidosFil: Khairallah, Camille. Stony Brook University Renaissance School Of Medicine; Estados UnidosFil: Pham, Quynh Mai. Uconn Health; Estados UnidosFil: Andrusaite, Anna. University of Glasgow; Reino UnidoFil: Bravo Blas, Alberto. The Beatson Institute For Cancer Research; Reino UnidoFil: Milling, Simon W. F.. University of Glasgow; Reino UnidoFil: Lefrancois, Leo. Uconn Health; Estados UnidosFil: Khanna, Kamal M.. University of New York; Estados UnidosFil: Puddington, Lynn. Uconn Health; Estados UnidosFil: Sheridan, Brian S.. Stony Brook University Renaissance School Of Medicine; Estados Unido

    Pure-quartic solitons

    Get PDF
    Temporal optical solitons have been the subject of intense research due to their intriguing physics and applications in ultrafast optics and supercontinuum generation. Conventional bright optical solitons result from the interaction of anomalous group-velocity dispersion and self-phase modulation. Here we experimentally demonstrate a class of bright soliton arising purely from the interaction of negative fourth-order dispersion and self-phase modulation, which can occur even for normal group-velocity dispersion. We provide experimental and numerical evidence of shape-preserving propagation and flat temporal phase for the fundamental pure-quartic soliton and periodically modulated propagation for the higher-order pure-quartic solitons. We derive the approximate shape of the fundamental pure-quartic soliton and discover that is surprisingly Gaussian, exhibiting excellent agreement with our experimental observations. Our discovery, enabled by precise dispersion engineering, could find applications in communications, frequency combs and ultrafast lasers

    Cell-surface residence of sphingosine 1-phosphate receptor 1 on lymphocytes determines lymphocyte egress kinetics

    Get PDF
    The sphingosine 1-phosphate receptor 1 (S1P1) promotes lymphocyte egress from lymphoid organs. Previous work showed that agonist-induced internalization of this G protein–coupled receptor correlates with inhibition of lymphocyte egress and results in lymphopenia. However, it is unclear if S1P1 internalization is necessary for this effect. We characterize a knockin mouse (S1p1rS5A/S5A) in which the C-terminal serine-rich S1P1 motif, which is important for S1P1 internalization but dispensable for S1P1 signaling, is mutated. T cells expressing the mutant S1P1 showed delayed S1P1 internalization and defective desensitization after agonist stimulation. Mutant mice exhibited significantly delayed lymphopenia after S1P1 agonist administration or disruption of the vascular S1P gradient. Adoptive transfer experiments demonstrated that mutant S1P1 expression in lymphocytes, rather than endothelial cells, facilitated this delay in lymphopenia. Thus, cell-surface residency of S1P1 on T cells is a primary determinant of lymphocyte egress kinetics in vivo

    Measurement of the CKM angle γ from a combination of B±→Dh± analyses

    Get PDF
    A combination of three LHCb measurements of the CKM angle γ is presented. The decays B±→D K± and B±→Dπ± are used, where D denotes an admixture of D0 and D0 mesons, decaying into K+K−, π+π−, K±π∓, K±π∓π±π∓, K0Sπ+π−, or K0S K+K− final states. All measurements use a dataset corresponding to 1.0 fb−1 of integrated luminosity. Combining results from B±→D K± decays alone a best-fit value of γ =72.0◦ is found, and confidence intervals are set γ ∈ [56.4,86.7]◦ at 68% CL, γ ∈ [42.6,99.6]◦ at 95% CL. The best-fit value of γ found from a combination of results from B±→Dπ± decays alone, is γ =18.9◦, and the confidence intervals γ ∈ [7.4,99.2]◦ ∪ [167.9,176.4]◦ at 68% CL are set, without constraint at 95% CL. The combination of results from B± → D K± and B± → Dπ± decays gives a best-fit value of γ =72.6◦ and the confidence intervals γ ∈ [55.4,82.3]◦ at 68% CL, γ ∈ [40.2,92.7]◦ at 95% CL are set. All values are expressed modulo 180◦, and are obtained taking into account the effect of D0–D0 mixing

    Measurement of the tau lepton lifetime

    Get PDF
    The mean lifetime of the tau lepton is measured in a sample of 25700 tau pairs collected in 1992 with the ALEPH detector at LEP. A new analysis of the 1-1 topology events is introduced. In this analysis, the dependence of the impact parameter sum distribution on the daughter track momenta is taken into account, yielding improved precision compared to other impact parameter sum methods. Three other analyses of the one- and three-prong tau decays are updated with increased statistics. The measured lifetime is 293.5+/-3.1+/-1.7 fs. Including previous (1989-1991) ALEPH measurements, the combined tau lifetime is 293.7+/-2.7+/-1.6 fs

    Differential branching fractions and isospin asymmetries of B -> K ((*)) μ(+) μ(-) decays

    Get PDF
    The isospin asymmetries of B -> K μ(+) μ(-) and B -> K (*) μ(+) μ(-) decays and the partial branching fractions of the B (0) -> K (0) μ(+) μ(-), B (+) -> K (+) μ(+) μ(-) and B (+) -> K (*+) μ(+) μ(-) decays are measured as functions of the dimuon mass squared, q (2). The data used correspond to an integrated luminosity of 3 fb(-1) from proton-proton collisions collected with the LHCb detector at centre-of-mass energies of 7 TeV and 8 TeV in 2011 and 2012, respectively. The isospin asymmetries are both consistent with the Standard Model expectations. The three measured branching fractions favour lower values than their respective theoretical predictions, however they are all individually consistent with the Standard Model

    Measurement of the CP-violating phase ϕs in B¯s0→Ds+Ds− decays

    Get PDF
    We present a measurement of the CP-violating weak mixing phase ϕs using the decay B¯0s→D+sD−s in a data sample corresponding to 3.0 fb−1 of integrated luminosity collected with the LHCb detector in pp collisions at center-of-mass energies of 7 and 8 TeV. An analysis of the time evolution of the system, which does not use the constraint |λ|=1 to allow for the presence of CP violation in decay, yields ϕs=0.02±0.17(stat)±0.02(syst)  rad, |λ|=0.91+0.18−0.15(stat)±0.02(syst). This result is consistent with the standard model expectation

    Study of the kinematic dependences of Λ0b production in pp collisions and a measurement of the Λ0 b → Λ+c π− branching fraction

    Get PDF
    The kinematic dependences of the relative production rates, fΛ0 b /fd, of Λ0 b baryons and B0 mesons are measured using Λ0 b → Λ + c π − and B 0 → D+π − decays. The measurements use proton-proton collision data, corresponding to an integrated luminosity of 1 fb−1 at a centre-of-mass energy of 7 TeV, recorded in the forward region with the LHCb experiment. The relative production rates are observed to depend on the transverse momentum, pT, and pseudorapidity, η, of the beauty hadron, in the studied kinematic region 1.5 < pT < 40 GeV/c and 2 < η < 5. Using a previous LHCb measurement of fΛ0 b /fd in semileptonic decays, the branching fraction B Λ 0 b → Λ + c π − = 4.30±0.03 +0.12 −0.11±0.26± 0.21 ×10−3 is obtained, where the first uncertainty is statistical, the second is systematic, the third is from the previous LHCb measurement of fΛ0 b /fd and the fourth is due to the B 0 → D+π − branching fraction. This is the most precise measurement of a Λ0 b branching fraction to date

    Search for CP violation in D±KS0K±D^{\pm}\rightarrow K^0_{\mathrm{S}} K^{\pm} and Ds±KS0π±D^{\pm}_{s}\rightarrow K^0_{\mathrm{S}} π^{\pm} decays

    Get PDF
    A search for \CP violation in Cabibbo-suppressed D±KS0K±D^{\pm}\rightarrow K^0_{\mathrm{S}} K^{\pm} and Ds±KS0π±D^{\pm}_{s}\rightarrow K^0_{\mathrm{S}} \pi^{\pm} decays is performed using pppp collision data, corresponding to an integrated luminosity of 3~fb1^{-1}, recorded by the LHCb experiment. The individual CPCP-violating asymmetries are measured to be \begin{eqnarray*} \mathcal{A}_{CP}^{D^{\pm}\rightarrow K^0_{\mathrm{S}} K^{\pm}} & = & (+0.03 \pm 0.17 \pm 0.14) \% \mathcal{A}_{CP}^{D^{\pm}_{s}\rightarrow K^0_{\mathrm{S}} \pi^{\pm}} & = & (+0.38 \pm 0.46 \pm 0.17) \%, \end{eqnarray*} assuming that CPCP violation in the Cabibbo-favoured decays is negligible. A combination of the measured asymmetries for the four decay modes D(s)±KS0K±D^{\pm}_{(s)}\rightarrow K^0_{\mathrm{S}} K^{\pm} and D(s)±KS0π±D^{\pm}_{(s)}\rightarrow K^0_{\mathrm{S}} \pi^{\pm} gives the sum ACPD±KS0K±+ACPDs±KS0π±=(+0.41±0.49±0.26)%. \mathcal{A}_{CP}^{D^{\pm}\rightarrow K^0_{\mathrm{S}} K^{\pm}} + \mathcal{A}_{CP}^{D^{\pm}_{s}\rightarrow K^0_{\mathrm{S}} \pi^{\pm}} = (+0.41 \pm 0.49 \pm 0.26) \%. In all cases, the first uncertainties are statistical and the second systematic. The results represent the most precise measurements of these asymmetries to date and show no evidence for CP violation
    corecore