18 research outputs found

    Report of Auditing Committee

    Get PDF

    Mu2e Technical Design Report

    Full text link
    The Mu2e experiment at Fermilab will search for charged lepton flavor violation via the coherent conversion process mu- N --> e- N with a sensitivity approximately four orders of magnitude better than the current world's best limits for this process. The experiment's sensitivity offers discovery potential over a wide array of new physics models and probes mass scales well beyond the reach of the LHC. We describe herein the preliminary design of the proposed Mu2e experiment. This document was created in partial fulfillment of the requirements necessary to obtain DOE CD-2 approval.Comment: compressed file, 888 pages, 621 figures, 126 tables; full resolution available at http://mu2e.fnal.gov; corrected typo in background summary, Table 3.

    C. Literaturwissenschaft.

    No full text

    Mu2e Run I Sensitivity Projections for the Neutrinoless mu(-) -> e(-) Conversion Search in Aluminum

    No full text
    The Mu2e experiment at Fermilab will search for the neutrinoless μ−→e− conversion in the field of an aluminum nucleus. The Mu2e data-taking plan assumes two running periods, Run I and Run II, separated by an approximately two-year-long shutdown. This paper presents an estimate of the expected Mu2e Run I search sensitivity and includes a detailed discussion of the background sources, uncertainties of their prediction, analysis procedures, and the optimization of the experimental sensitivity. The expected Run I 5σ discovery sensitivity is Rμe=1.2×10−15, with a total expected background of 0.11±0.03 events. In the absence of a signal, the expected upper limit is Rμe&lt;6.2×10−16 at 90% CL. This represents a three order of magnitude improvement over the current experimental limit of Rμe&lt;7×10−13 at 90% CL set by the SINDRUM II experiment.</jats:p

    The Upgraded D0 detector.

    Get PDF
    The DØ experiment enjoyed a very successful data-collection run at the Fermilab Tevatron collider between 1992 and 1996. Since then, the detector has been upgraded to take advantage of improvements to the Tevatron and to enhance its physics capabilities. We describe the new elements of the detector, including the silicon microstrip tracker, central fiber tracker, solenoidal magnet, preshower detectors, forward muon detector, and forward proton detector. The uranium/liquid-argon calorimeters and central muon detector, remaining from Run I, are discussed briefly. We also present the associated electronics, triggering, and data acquisition systems, along with the design and implementation of software specific to DØ

    CMS Physics: Technical Design Report Volume 1: Detector Performance and Software

    No full text
    corecore