17 research outputs found
A checklist for using Beals’ index with incomplete floristic monitoring data : reply to Christensen et al. (2021): Problems in using Beals’ index to detect species trends in incomplete floristic monitoring data
Christensen et al. criticized the application of Beals’ index of sociological favourability to adjust for incomplete species lists when comparing repeated surveys. Their main argument was that using Beals’ conditional occurrence probabilities would systematically underestimate biodiversity change compared to using observed frequencies. Although this might be the case for rare species, as we explicitly stated in our original publication, we here use a worked-out example to show that this criticism is unjustified for species that are sufficiently represented in the reference data set. In our opinion, the misconception derives from ignoring one of the key requirements for applying Beal's index, which is the use of a sufficiently large reference data set to derive a reliable co occurrence matrix. We here show how the predicted probability for the occurrence of a species depends on the size of the reference data set and give recommendations on the premises for applying Beals’ approach for monitoring purposes
Elective Cancer Surgery in COVID-19-Free Surgical Pathways During the SARS-CoV-2 Pandemic: An International, Multicenter, Comparative Cohort Study.
PURPOSE: As cancer surgery restarts after the first COVID-19 wave, health care providers urgently require data to determine where elective surgery is best performed. This study aimed to determine whether COVID-19-free surgical pathways were associated with lower postoperative pulmonary complication rates compared with hospitals with no defined pathway. PATIENTS AND METHODS: This international, multicenter cohort study included patients who underwent elective surgery for 10 solid cancer types without preoperative suspicion of SARS-CoV-2. Participating hospitals included patients from local emergence of SARS-CoV-2 until April 19, 2020. At the time of surgery, hospitals were defined as having a COVID-19-free surgical pathway (complete segregation of the operating theater, critical care, and inpatient ward areas) or no defined pathway (incomplete or no segregation, areas shared with patients with COVID-19). The primary outcome was 30-day postoperative pulmonary complications (pneumonia, acute respiratory distress syndrome, unexpected ventilation). RESULTS: Of 9,171 patients from 447 hospitals in 55 countries, 2,481 were operated on in COVID-19-free surgical pathways. Patients who underwent surgery within COVID-19-free surgical pathways were younger with fewer comorbidities than those in hospitals with no defined pathway but with similar proportions of major surgery. After adjustment, pulmonary complication rates were lower with COVID-19-free surgical pathways (2.2% v 4.9%; adjusted odds ratio [aOR], 0.62; 95% CI, 0.44 to 0.86). This was consistent in sensitivity analyses for low-risk patients (American Society of Anesthesiologists grade 1/2), propensity score-matched models, and patients with negative SARS-CoV-2 preoperative tests. The postoperative SARS-CoV-2 infection rate was also lower in COVID-19-free surgical pathways (2.1% v 3.6%; aOR, 0.53; 95% CI, 0.36 to 0.76). CONCLUSION: Within available resources, dedicated COVID-19-free surgical pathways should be established to provide safe elective cancer surgery during current and before future SARS-CoV-2 outbreaks
Elective cancer surgery in COVID-19-free surgical pathways during the SARS-CoV-2 pandemic: An international, multicenter, comparative cohort study
PURPOSE As cancer surgery restarts after the first COVID-19 wave, health care providers urgently require data to determine where elective surgery is best performed. This study aimed to determine whether COVID-19–free surgical pathways were associated with lower postoperative pulmonary complication rates compared with hospitals with no defined pathway. PATIENTS AND METHODS This international, multicenter cohort study included patients who underwent elective surgery for 10 solid cancer types without preoperative suspicion of SARS-CoV-2. Participating hospitals included patients from local emergence of SARS-CoV-2 until April 19, 2020. At the time of surgery, hospitals were defined as having a COVID-19–free surgical pathway (complete segregation of the operating theater, critical care, and inpatient ward areas) or no defined pathway (incomplete or no segregation, areas shared with patients with COVID-19). The primary outcome was 30-day postoperative pulmonary complications (pneumonia, acute respiratory distress syndrome, unexpected ventilation). RESULTS Of 9,171 patients from 447 hospitals in 55 countries, 2,481 were operated on in COVID-19–free surgical pathways. Patients who underwent surgery within COVID-19–free surgical pathways were younger with fewer comorbidities than those in hospitals with no defined pathway but with similar proportions of major surgery. After adjustment, pulmonary complication rates were lower with COVID-19–free surgical pathways (2.2% v 4.9%; adjusted odds ratio [aOR], 0.62; 95% CI, 0.44 to 0.86). This was consistent in sensitivity analyses for low-risk patients (American Society of Anesthesiologists grade 1/2), propensity score–matched models, and patients with negative SARS-CoV-2 preoperative tests. The postoperative SARS-CoV-2 infection rate was also lower in COVID-19–free surgical pathways (2.1% v 3.6%; aOR, 0.53; 95% CI, 0.36 to 0.76). CONCLUSION Within available resources, dedicated COVID-19–free surgical pathways should be established to provide safe elective cancer surgery during current and before future SARS-CoV-2 outbreaks
Data from: Collision sensitive niche profile of the worst affected bird-groups at wind turbine structures in the federal state of Brandenburg, Germany
Biodiversity-related impacts at wind energy facilities have increasingly become a cause of conservation concern, central issue being the collision of birds. Utilizing spatial information of their carcass detections at wind turbines (WTs), we quantified the detections in relation to the metric distances of the respective turbines to different land-use types. We used ecological niche factor analysis (ENFA) to identify combinations of land-use distances with respect to the spatial allocation of WTs that led to higher proportions of collisions among the worst affected bird-groups: Buntings, Crows, Larks, Pigeons and Raptors. We also assessed their respective similarities to the collision phenomenon by checking for overlaps amongst their distance combinations. Crows and Larks showed the narrowest “collision sensitive niche”; a part of ecological niche under higher risk of collisions with turbines, followed by that of Buntings and Pigeons. Raptors had the broadest niche showing significant overlaps with the collision sensitive niches of the other groups. This can probably be attributed to their larger home range combined with their hunting affinities to open landscapes. Identification of collision sensitive niches could be a powerful tool for landscape planning; helping avoid regions with higher risks of collisions for turbine allocations and thus protecting sensitive bird populations
RELATIONSHIPS BETWEEN THE SINGING ABILITY OF PREKINDERGARTEN CHILDREN ANDTHEIR HOME MUSICAL ENVIRONMENT. - Page 113
With the increase in wind turbines, bird collisions have developed as a potential hazard. In the federal state of Brandenburg, Germany, despite the on-going mitigation efforts of increasing the distances of wind turbines from the breeding areas of the more severely affected populations of red kites (Milvus milvus), the additional detrimental influences on the buzzard populations (Buteo buteo) have added to the challenges for wind power expansion. Using data on the regional distribution of the buzzards, along with their carcass detections around the wind turbines (WTs), we aimed to better understand their collision distribution patterns in relation to their habitat use patterns to predict their exposure to collision risk using boosted regression trees (BRTs). Additionally, we integrated the developed collision potential map with the regional density map of buzzards to identify areas of increased strike susceptibility in turbine installations. Our study showed that the buzzard collisions were primarily concentrated at the turbines situated at sensitive distances from the edges of watercourses (>1000 metres), as well as those along the edges of grasslands (>750 metres), in the green open areas around/areas with minimal settlements (750 metres-1750 metres), and along the edges of bushlands (>1500 metres), together explaining 58% of the variance in their collision distribution. Conclusively, our study is applicable to conservation because it demonstrates the identification of potential collision areas along with the causes of the collisions, in addition to demonstrating the benefits of incorporating a species collision dataset as a proxy for species presence into species distribution models to make informed management decisions to eventually combat biodiversity loss
A GIS-based policy support tool to determine national responsibilities and priorities for biodiversity conservation.
Efficient biodiversity conservation requires that limited resources be allocated in accordance with national responsibilities and priorities. Without appropriate computational tools, the process of determining these national responsibilities and conservation priorities is time intensive when considering many species across geographic scales. Here, we have developed a computational tool as a module for the ArcGIS geographic information system. The ArcGIS National Responsibility Assessment Tool (NRA-Tool) can be used to create hierarchical lists of national responsibilities and priorities for global species conservation. Our tool will allow conservationists to prioritize conservation efforts and to focus limited resources on relevant species and regions. We showcase our tool with data on 258 bird species and various biophysical regions, including Environmental Zones in 58 Asian countries and regions. Our tool provides a decision support system for conservation policy with attractive and easily interpretable visual outputs illustrating national responsibilities and priorities for species conservation. The graphical output allows for smooth integration into assessment reports, such as the European Article 17 report, the Living Planet Index report, or similar regional and global reports
More losses than gains during one century of plant biodiversity change in Germany
Long-term analyses of biodiversity data highlight a 'biodiversity conservation paradox': biological communities show substantial species turnover over the past century, but changes in species richness are marginal. Most studies, however, have focused only on the incidence of species, and have not considered changes in local abundance. Here we asked whether analysing changes in the cover of plant species could reveal previously unrecognized patterns of biodiversity change and provide insights into the underlying mechanisms. We compiled and analysed a dataset of 7,738 permanent and semi-permanent vegetation plots from Germany that were surveyed between 2 and 54 times from 1927 to 2020, in total comprising 1,794 species of vascular plants. We found that decrements in cover, averaged across all species and plots, occurred more often than increments; that the number of species that decreased in cover was higher than the number of species that increased; and that decrements were more equally distributed among losers than were gains among winners. Null model simulations confirmed that these trends do not emerge by chance, but are the consequence of species-specific negative effects of environmental changes. In the long run, these trends might result in substantial losses of species at both local and regional scales. Summarizing the changes by decade shows that the inequality in the mean change in species cover of losers and winners diverged as early as the 1960s. We conclude that changes in species cover in communities represent an important but understudied dimension of biodiversity change that should more routinely be considered in time-series analyses