54 research outputs found

    Kan nordnorske kantsoner bli mer insektsvennlige?

    Get PDF
    Jordbrukets kulturlandskap er i stadig endring, og mellomrommene mellom dyrket areal og andre typer areal er fremhevet som viktige for biomangfold for pollinerende insekter. I Europa er hovedtrenden en intensivering i landbruksdrifta og dermed et press på disse viktige områdene. I Nord-Norge derimot foregår det en ekstensivering av landbruket – driften opphører. Hva kan det ha å si for mellomrommene og leveforholdene for våre pollinerende insekter?publishedVersio

    Diversity patterns in high-latitude grasslands

    Get PDF
    Aim Grasslands of varying land-use intensity and history were studied to describe and test species richness and compositional patterns and their relationships with the physical environment, land cover of the surrounding landscape, patch geometry, and grazing. Location The mainland of Norway. Methods We utilized data from the Norwegian Monitoring Programme for Agricultural Landscapes, which recorded vascular plants from 569 plots, placed within 97 monitoring squares systematically distributed throughout agricultural land on the Norwegian mainland. We identified four grassland types: (i) moderately fertilized, moist meadows; (ii) overgrown agricultural land; (iii) cultivated pastures and disturbed ground; and (iv) natural/unfertilized and outfield pastures. Results Soil moisture and grazing measures were found to be important in explaining species compositional variation in all grassland types. Richness patterns were best explained by complex and differing combinations of environmental indicators. Nevertheless, negative (nitrogen and light level) or unimodal (pH) responses were similar across grassland types. Vegetation plots adjacent to areas historically and/or currently dominated by mires, forests, or pastures, as well as abandoned and overgrown grasslands, had a slightly higher species richness. Larger grasslands surrounding the vegetation plots had slightly less species than smaller grasslands. Conclusions This study demonstrates that data from a national monitoring programme on agricultural grasslands can be used for plant ecological research. The results indicate that climate-change-related shifts along moisture and nutrient gradients (increases) may alter both species composition and species richness in the studied grasslands. It is likely that large and contiguous managed (grass)land might affect areas perceived as remnants, probably caused by the transformation to homogeneous (agri)cultural landscapes reducing edge zones, which in turn may threaten the species pool and richness. The importance of land use and land-cover composition should be considered when planning management actions in extensively used high-latitude grasslands.acceptedVersio

    GrassPlot v. 2.00 : first update on the database of multi-scale plant diversity in Palaearctic grasslands

    Get PDF
    GrassPlot is a collaborative vegetation-plot database organised by the Eurasian Dry Grassland Group (EDGG) and listed in the Global Index of Vegetation-Plot Databases (GIVD ID EU-00-003). Following a previous Long Database Report (Dengler et al. 2018, Phyto-coenologia 48, 331–347), we provide here the first update on content and functionality of GrassPlot. The current version (GrassPlot v. 2.00) contains a total of 190,673 plots of different grain sizes across 28,171 independent plots, with 4,654 nested-plot series including at least four grain sizes. The database has improved its content as well as its functionality, including addition and harmonization of header data (land use, information on nestedness, structure and ecology) and preparation of species composition data. Currently, GrassPlot data are intensively used for broad-scale analyses of different aspects of alpha and beta diversity in grassland ecosystems

    Changing contributions of stochastic and deterministic processes in community assembly over a successional gradient

    Get PDF
    Successional dynamics in plant community assembly may result from both deterministic and stochastic ecological processes. The relative importance of different ecological processes is expected to vary over the successional sequence, between different plant functional groups, and with the disturbance levels and land-use management regimes of the successional systems. We evaluate the relative importance of stochastic and deterministic processes in bryophyte and vascular plant community assembly after fire in grazed and ungrazed anthropogenic coastal heathlands in Northern Europe. A replicated series of post-fire successions (n = 12) were initiated under grazed and ungrazed conditions, and vegetation data were recorded in permanent plots over 13 years. We used redundancy analysis (RDA) to test for deterministic successional patterns in species composition repeated across the replicate successional series and analyses of co-occurrence to evaluate to what extent species respond synchronously along the successional gradient. Change in species co-occurrences over succession indicates stochastic successional dynamics at the species level (i.e., species equivalence), whereas constancy in co-occurrence indicates deterministic dynamics (successional niche differentiation). The RDA shows high and deterministic vascular plant community compositional change, especially early in succession. Co-occurrence analyses indicate stochastic species-level dynamics the first two years, which then give way to more deterministic replacements. Grazed and ungrazed successions are similar, but the early stage stochasticity is higher in ungrazed areas. Bryophyte communities in ungrazed successions resemble vascular plant communities. In contrast, bryophytes in grazed successions showed consistently high stochasticity and low determinism in both community composition and species co-occurrence. In conclusion, stochastic and individualistic species responses early in succession give way to more niche-driven dynamics in later successional stages. Grazing reduces predictability in both successional trends and species-level dynamics, especially in plant functional groups that are not well adapted to disturbance. bryophytes; burning; Calluna vulgaris; coexistence; conservation management; determinism; disturbance; grazing; heathland; randomization test; stochasticity; vascular plants.Changing contributions of stochastic and deterministic processes in community assembly over a successional gradientpublishedVersio

    Abundance changes of marsh plant species over 40 years are better explained by niche position water level than functional traits

    Get PDF
    Acknowledgements: This study was supported by the National Natural Science Foundation of China (grants No.41671109 and 41371107) and by the Natural Science Foundation of Jilin Province (grant No. 20190201281JC). We thank Xiaofeng Xu for the suggestions and Håkan Rydin for the comments on the manuscript.Peer reviewedPostprin

    Assessing the relation between geodiversity and species richness in mountain heaths and tundra landscapes

    Get PDF
    Context Recent studies show that geodiversity—the diversity of Earth's landforms, materials, and processes—has a positive relationship with biodiversity at a landscape scale. However, there is a substantial lack of evidence from finer scales, although this knowledge could improve the understanding of biodiversity patterns. Objectives We investigate whether plot-scale geodiversity and plant species richness (vascular plants, bryophytes, lichens, and total richness) are positively linked in different tundra landscapes. Methods We collected geodiversity (presence of different geofeatures) and plant species richness data from 165 sites in three distinct regions: isolated low-lying mountain heaths, and in sporadic and continuous mountain heaths and tundra. We used non-metric multidimensional scaling (NMDS) ordination to explore the correlations between the composition of geofeatures and species richness, followed by univariate and multivariate generalized linear models (GLM), to assess whether georichness is important for species richness. Results Geofeature composition was linked to species richness in all regions, as indicated by NMDS ordination. Both univariate and multivariate GLM models showed statistically significant relationship between species richness and georichness in all studied species richness groups in continuous Arctic-alpine tundra. Additionally, there was a positive link between georichness and lichen richness in isolated boreal mountain tops. Main conclusions We showed that plot-scale geodiversity has a positive relationship with species richness, yet the effect varies regionally and between species groups. Our study provides strong empirical evidence that geodiversity supports species richness in continuous Arctic-alpine tundra. This information can be used in species richness models but also be applied in biodiversity management and conservation.publishedVersio

    GrassPlot v. 2.00 – first update on the database of multi-scale plant diversity in Palaearctic grasslands

    Get PDF
    Abstract: GrassPlot is a collaborative vegetation-plot database organised by the Eurasian Dry Grassland Group (EDGG) and listed in the Global Index of Vegetation-Plot Databases (GIVD ID EU-00-003). Following a previous Long Database Report (Dengler et al. 2018, Phyto- coenologia 48, 331–347), we provide here the first update on content and functionality of GrassPlot. The current version (GrassPlot v. 2.00) contains a total of 190,673 plots of different grain sizes across 28,171 independent plots, with 4,654 nested-plot series including at least four grain sizes. The database has improved its content as well as its functionality, including addition and harmonization of header data (land use, information on nestedness, structure and ecology) and preparation of species composition data. Currently, GrassPlot data are intensively used for broad-scale analyses of different aspects of alpha and beta diversity in grassland ecosystems

    GrassPlot - a database of multi-scale plant diversity in Palaearctic grasslands

    Get PDF
    GrassPlot is a collaborative vegetation-plot database organised by the Eurasian Dry Grassland Group (EDGG) and listed in the Global Index of Vegetation-Plot Databases (GIVD ID EU-00-003). GrassPlot collects plot records (releves) from grasslands and other open habitats of the Palaearctic biogeographic realm. It focuses on precisely delimited plots of eight standard grain sizes (0.0001; 0.001;... 1,000 m(2)) and on nested-plot series with at least four different grain sizes. The usage of GrassPlot is regulated through Bylaws that intend to balance the interests of data contributors and data users. The current version (v. 1.00) contains data for approximately 170,000 plots of different sizes and 2,800 nested-plot series. The key components are richness data and metadata. However, most included datasets also encompass compositional data. About 14,000 plots have near-complete records of terricolous bryophytes and lichens in addition to vascular plants. At present, GrassPlot contains data from 36 countries throughout the Palaearctic, spread across elevational gradients and major grassland types. GrassPlot with its multi-scale and multi-taxon focus complements the larger international vegetationplot databases, such as the European Vegetation Archive (EVA) and the global database " sPlot". Its main aim is to facilitate studies on the scale-and taxon-dependency of biodiversity patterns and drivers along macroecological gradients. GrassPlot is a dynamic database and will expand through new data collection coordinated by the elected Governing Board. We invite researchers with suitable data to join GrassPlot. Researchers with project ideas addressable with GrassPlot data are welcome to submit proposals to the Governing Board

    <scp>ReSurveyEurope</scp>: A database of resurveyed vegetation plots in Europe

    Get PDF
    AbstractAimsWe introduce ReSurveyEurope — a new data source of resurveyed vegetation plots in Europe, compiled by a collaborative network of vegetation scientists. We describe the scope of this initiative, provide an overview of currently available data, governance, data contribution rules, and accessibility. In addition, we outline further steps, including potential research questions.ResultsReSurveyEurope includes resurveyed vegetation plots from all habitats. Version 1.0 of ReSurveyEurope contains 283,135 observations (i.e., individual surveys of each plot) from 79,190 plots sampled in 449 independent resurvey projects. Of these, 62,139 (78%) are permanent plots, that is, marked in situ, or located with GPS, which allow for high spatial accuracy in resurvey. The remaining 17,051 (22%) plots are from studies in which plots from the initial survey could not be exactly relocated. Four data sets, which together account for 28,470 (36%) plots, provide only presence/absence information on plant species, while the remaining 50,720 (64%) plots contain abundance information (e.g., percentage cover or cover–abundance classes such as variants of the Braun‐Blanquet scale). The oldest plots were sampled in 1911 in the Swiss Alps, while most plots were sampled between 1950 and 2020.ConclusionsReSurveyEurope is a new resource to address a wide range of research questions on fine‐scale changes in European vegetation. The initiative is devoted to an inclusive and transparent governance and data usage approach, based on slightly adapted rules of the well‐established European Vegetation Archive (EVA). ReSurveyEurope data are ready for use, and proposals for analyses of the data set can be submitted at any time to the coordinators. Still, further data contributions are highly welcome.</jats:sec

    Changes in subarctic vegetation after one century of land use and climate change

    Get PDF
    Questions Have species richness and composition in subarctic vegetation changed over the past ca. 90 years? Are compositional shifts linked to changes in land management or climate? Are observed changes associated with vegetation type, life form, or habitat preference? Location Rybachy and Sredny Peninsulas, NW Russia. Methods We resurveyed vegetation ca. 90 years after the first sampling in 1927–1930 to study changes in species richness, abundance and composition. Because of missing plot‐related environmental measurements we used a weighted averaging approach calculating relative changes in species‐specific optimum values for different environmental gradients represented by species indicator values to identify compositional change in relation to the environment. Changes in species composition were visualised using detrended correspondence analyses. Significances of observed changes in species richness and frequency were evaluated using restricted permutation tests. A χ2 test was used to test if observed changes in abundances were related to species’ life form and habitat preferences. Results Species composition has changed significantly over the past ca. 90 years, as indicated by significant changes in species’ frequencies and values of optima for the environmental gradients temperature, moisture, nutrients and light. Species richness decreased significantly, in particular in nitrophilous and wet growing vegetation. Species typical for grazed grasslands and meadows and species of wet habitats became less abundant, while dwarf shrubs and forest species increased. Conclusions Land abandonment, in combination with climate change, is likely to have caused the observed changes in the subarctic vegetation of NW Russia. Shifts in the species dominance ratios and interspecific competition (e.g. for reallocated nutrients) after land abandonment may have been promoted by the subsequent change towards a warmer climate, facilitating the regrowth of previously open meadows with grazing‐intolerant tall herbs, forest herbs and dwarf shrubs. This study illustrates clearly the long‐term effects of land‐use change, the consequences of which are still visible even after almost one century in the subarctic.publishedVersio
    corecore