3,809 research outputs found

    Stellar Population Properties and Evolution Analysis of NGC 628 with the Panchromatic Photometry

    Full text link
    Panchromatic spectral energy distribution (SED) from the ultraviolet (UV), optical to infrared (IR) photometry of NGC 628, combined with the evolutionary stellar population synthesis, is used to derive the spatially resolved age, metallicity and reddening maps. These parameter distributions show that the bulge of this galaxy is a disk-like pseudobulge, which has the S{\'e}rsic index close to the exponential law, rich gas, and a young circumnuclear ring structure. We also discover the disk has two distinct regions with different radial age and metallicity gradients. The inner region is older and has a much steeper age gradient than the outer region of the disk. Both these two regions and the central young structure can be seen in the radial profile of the optical color. Based on the age and reddening distributions, we consider that the pseudobulge and disk are likely to have grown via the secular evolution, which is the redistribution of mass and energy through the angular momentum transport caused by the non-axisymmetric potential of the spirals. However, possible gas accretion events could affect the outer region of the disk, due to abundant H{\sc i} gas accumulating in the outer disk.Comment: 9 figures, accepted for publication in A

    Nitrogen acquisition strategy and its effects on invasiveness of a subtropical invasive plant

    Get PDF
    IntroductionPreference and plasticity in nitrogen (N) form uptake are the main strategies with which plants absorb soil N. However, little effort has been made to explore effects of N form acquisition strategies, especially the plasticity, on invasiveness of exotic plants, although many studies have determined the effects of N levels (e.g. N deposition).MethodsTo address this problem, we studied the differences in N form acquisition strategies between the invasive plant Solidago canadensis and its co-occurring native plant Artemisia lavandulaefolia, effects of soil N environments, and the relationship between N form acquisition strategy of S. canadensis and its invasiveness using a 15N-labeling technique in three habitats at four field sites.ResultsTotal biomass, root biomass, and the uptakes of soil dissolved inorganic N (DIN) per quadrat were higher for the invasive relative to the native species in all three habitats. The invader always preferred dominant soil N forms: NH4+ in habitats with NH4+ as the dominant DIN and NO3- in habitats with NO3- as the dominant DIN, while A. lavandulaefolia consistently preferred NO3- in all habitats. Plasticity in N form uptake was higher in the invasive relative to the native species, especially in the farmland. Plant N form acquisition strategy was influenced by both DIN levels and the proportions of different N forms (NO3-/NH4+) as judged by their negative effects on the proportional contributions of NH4+ to plant N (fNH4+) and the preference for NH4+ (βNH4+). In addition, total biomass was positively associated with fNH4+ or βNH4+ for S. canadensis, while negatively for A. lavandulaefolia. Interestingly, the species may prefer to absorb NH4+ when soil DIN and/or NO3-/NH4+ ratio were low, and root to shoot ratio may be affected by plant nutrient status per se, rather than by soil nutrient availability.DiscussionOur results indicate that the superior N form acquisition strategy of the invader contributes to its higher N uptake, and therefore to its invasiveness in different habitats, improving our understanding of invasiveness of exotic plants in diverse habitats in terms of utilization of different N forms

    The hornwort genome and early land plant evolution

    Get PDF
    Hornworts, liverworts and mosses are three early diverging clades of land plants, and together comprise the bryophytes. Here, we report the draft genome sequence of the hornwort Anthoceros angustus. Phylogenomic inferences confirm the monophyly of bryophytes, with hornworts sister to liverworts and mosses. The simple morphology of hornworts correlates with low genetic redundancy in plant body plan, while the basic transcriptional regulation toolkit for plant development has already been established in this early land plant lineage. Although the Anthoceros genome is small and characterized by minimal redundancy, expansions are observed in gene families related to RNA editing, UV protection and desiccation tolerance. The genome of A. angustus bears the signatures of horizontally transferred genes from bacteria and fungi, in particular of genes operating in stress-response and metabolic pathways. Our study provides insight into the unique features of hornworts and their molecular adaptations to live on land

    Rapid determination of fumonisin (FB\u3csub\u3e1\u3c/sub\u3e) by syringe SPE coupled with solid-phase fluorescence spectrometry

    Get PDF
    © 2019 Fumonisin B1 is the most prevalent member of a family of toxins, known as fumonisins, which occurs mainly in maize, wheat and other cereals. Due to its hepatotoxic and nephrotoxic in all animal species, very strict regulations have been imposed on the levels of fumonisin B1 in cereal and cereal-based foods worldwide. In this work, a rapid determination method of fumonisin B1 by membrane solid phase extraction coupled with solid-phase fluorescence analysis is developed. A rhodamine based fluorescent probe was used for derivatization with fumonisin B1. After derivatization and extraction by nylon membrane, the enriched fumonisin B1 can be detected directly on the membrane without further elution process that is placed in a designed spectra collection device. The established method showed a linear relationship in concentration range of 0.5–5.0 μg/L, with the R2 = 0.991, and a limit of detection of 0.119 μg/L. Method accuracy was further confirmed using LC-MS method by comparing the detection results of 3 corn powder samples spiked with FB1, that demonstrated equivalent results. The results of this study indicated that the proposed method was simple, sensitive, reliable and suitable for trace fumonisins B1 quantitation in corn-based feeds

    Cereal progenitors differ in stand harvest characteristics from related wild grasses

    Get PDF
    The domestication of crops in the Fertile Crescent began approximately 10,000 years ago indicating a change from a hunter-gatherer lifestyle to a sedentary, agriculture-based existence. The exploitation of wild plants changed during this transition, such that a small number of crops were domesticated from the broader range of species gathered from the wild. However, the reasons for this change are unclear. Previous studies have shown unexpectedly that crop progenitors are not consistently higher yielding than related wild grass species, when growing without competition. In this study, we replicate more closely natural competition within wild stands, using two greenhouse experiments to investigate whether cereal progenitors exhibit a greater seed yield per unit area than related wild species that were not domesticated. Stands of cereal progenitors do not provide a greater total seed yield per unit ground area than related wild species, but these crop progenitors do have greater reproductive efficiency than closely related wild species, with nearly twice the harvest index (the ratio of harvested seeds to total shoot dry mass). These differences arise because the progenitors have greater seed yield per tiller than closely related wild species, due to larger individual seed size but no reduction in seed number per tiller. The harvest characteristics of cereal progenitors may have made them a more attractive prospect than closely related wild species for the early cultivators who first planted these species, or could suggest an ecological filtering mechanism. Synthesis. Overall, we show that the maintenance of a high harvest index under competition, the packaging of seed in large tillers, and large seeds, consistently distinguish crop progenitors from closely related wild grass species. However, the archaeological significance of these findings remains unclear, since a number of more distantly related species, including wild oats, have an equally high or higher harvest index and yield than some of the progenitor species. Domestication of the earliest cereal crops from the pool of wild species available cannot therefore be explained solely by species differences in yield and harvest characteristics, and must also consider other plant traits

    Six Years of Chandra Observations of Supernova Remnants

    Full text link
    We present a review of the first six years of Chandra X-ray Observatory observations of supernova remnants. From the official "first-light" observation of Cassiopeia A that revealed for the first time the compact remnant of the explosion, to the recent million-second spectrally-resolved observation that revealed new details of the stellar composition and dynamics of the original explosion, Chandra observations have provided new insights into the supernova phenomenon. We present an admittedly biased overview of six years of these observations, highlighting new discoveries made possible by Chandra's unique capabilities.Comment: 82 pages, 28 figures, for the book Astrophysics Update
    corecore