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1. Introduction

Aflatoxin B1 (AFB1) is an important aflatoxin produced by some strains of the moulds Aspergil‐
lus parasiticus and Aspergillus flavus [1-3]. This aflatoxin was discovered as a contaminant of
human and animal food, especially peanuts (ground nuts), core, soya sauce, and fermented soy
beans in tropical areas such as the Southeastern China as a result of fungal contamination during
growth and after harvest which under hot and humid conditions in the late 1950s and early 1960s
[1-4]. Increasing evidences have shown that AFB1 exposure levels are consistent with hepatocel‐
lular carcinoma (HCC) risk values [1, 2, 4-7]. DNA damage by AFB1 plays the central role of car‐
cinogenesis of HCC-related to this toxin in the toxic studies [2, 8-10]. Today, AFB1 has been
classified as a known human carcinogen by the International Agency for Research on Cancer [1,
2, 5, 10, 11]. However, more and more epidemiological evidence has exhibited that although
many people are exposed to the same levels of AFB1, only a relatively small proportion of expo‐
sure person develop HCC [6, 12-23]. This indicates individual DNA repair capacity related to
AFB1-induced DNA damage might be associated with HCC carcinogenesis [4].

This study attempts to briefly review currently available data on genetic polymorphisms of
DNA repair genes and DNA repair capacity related to AFB1-induced DNA Damages, with em‐
phasis on: (1) DNA damage types, (2) DNA repair pathways, (3) the role of DNA repair genetic
polymorphisms in the repair process of DNA damage by AFB1, and (4) the elucidation of corre‐
sponding DNA repair capacity. Additionally, we summarized the association between genetic
polymorphisms of DNA repair genes and AFB1-related DNA repair capacity via a meta-analy‐
sis based on published data.

© 2013 Xia et al.; licensee InTech. This is an open access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



2. AFB1’s chemistry

In 1963, Asao et al. accomplished the structural elucidation of AFB1 and found AFB1 was a
member of aflatoxins family (AFF) highly substituted coumarins containing a fused dihy‐
drofurofuran moiety [24]. AFF consists of four members: AFB1, aflatoxin B2 (AFB2), aflatox‐
in G1 (AFG1), and aflatoxin G2 (AFG2). Among of these members, AFB1 is the most
important toxin and structurally is characterized by fusion of a cyclopentenone ring to the
lactone ring of the coumarin moiety [24]. AFB1 is so named because of its strong blue fluo‐
rescence in ultraviolet light. These properties facilitated the very rapid development in the
early 1960s of methods for monitoring peanuts, cores, grains, and other food commodities
for the presence of the toxins (Fig. 1) [1]. This type AFF possesses an unsaturated bond at the
8,9 position on the terminal furan ring, and subsequent studies have demonstrated that
AFB1 may be metabolized by cytochrome P450 (CYP) enzymes to its reactive form at this
position, also called AFB1-8,9-epoxide (AFB1-epoxide) [2, 10]. AFB1-epoxide can covalently
bind to DNA and induce DNA damage, thus this epoxidation at at the 8,9 position is critical
for AFB1’s DNA genotoxic and carcinogenic potency [2]. Noticeably, another important
chemiatric feature of AFB1 is the attraction of liver organ, possibly because the metabolic en‐
zymes CYPs are mainly produced by liver [2, 10, 25].

Figure 1. Biotransformation pathways for AFB1. AFB1, mainly produced by the moulds Aspergillus parasiticus (right
upper figure) and Aspergillus flavus (right under figure), is metabolized by cytochrome P450 enzymes to its reactive
form, AFB1-8,9-epoxide (AFB1-epoxide). AFB1-epoxide covalently binds to DNA strands and results in the formation of
AFB1-DNA adducts (including AFB1-N7-Gua adduct and AFB1-FAPy adduct).
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3. DNA damage by AFB1

Several previous reviews have significantly summarized the DNA toxicity of AFB1 [1, 2, 8].
Generally, the severity of DNA toxic effects in human or animals vary with exposure levels,
exposure years and nutritional status [1, 2, 26]. For large doses of exposure, this agent can
induce acute damage of DNA such as inhabiting DNA synthesis, decreasing DNA-depend‐
ent RNA polymerase activity, and restraining messenger RNA (mRNA) and protein synthe‐
sis, and subsequently resulting in the lethal changes of liver cells: hepatocellular severe
degeneration and necrosis [1, 2].

For long-times and low-levels exposure mainly induces chronic DNA damage [1, 2]. This
damage can result in neoplasia, primarily HCC, in many animals or human. Chronic DNA
damages induced by AFB1 include AFB1-DNA adducts, oxidative DNA damage, DNA
strand break damage, and gene mutation [1, 2, 4].

3.1. AFB1-DNA adducts

AFB1-DNA adducts, including 8,9-di-hydro-8-(N7-guanyl)-9-hydroxy–AFB1 (AFB1-N7-
Gua) adduct and formamidopyridine AFB1 (AFB1-FAPy) adduct (Fig. 1), is the main type of
AFB1-induced DNA damage [1-4, 25-39]. Among these AFB1-DNA adducts, AFB1-N7-Gua
adduct is the most common type identified and confirmed in vivo researches [2, 25]. This
type adduct is formed from two pathways: (1) Binding reaction of AFB1-epoxide with DNA;
and (2) enzymatic oxidation of AFP1, AFM1, and others with unsaturated in the 8,9-position
[2, 25]. In the first pathway, the formations of AFB1-N7-Gua adduct proceeds by a precova‐
lent intercalation complex between double-stranded DNA and the highly electrophilic, un‐
stable AFB1-epoxide isomer. After that, the induction of a positive charge on the imidazole
portion of the formed AFB1-N7-Gua adduct gives rise to another important a DNA adduct, a
ring-opened AFB1-FAPy adduct. Accumulation of AFB1-FAPy adduct is characterized by
time-dependence, non-enzyme, and may be of biological basis of genes mutation because of
its apparent persistence in DNA. Another pathway only gives rise to minor AFB1-DNA ad‐
ducts [1, 2, 25]. Additionally, some other DNA-adducts types, ex. covalent binding of AFB1
to adenosine or cytosine in DNA, has also been reported, however, needing more evidences
to support this adducts [2].

Although AFB1-DNA adducts are mainly produced in liver cells, they are also found in the
peripheral blood white cells [2]. Recent studies have shown that the levels of AFB1-DNA ad‐
duct of the peripheral blood white cells are positively and lineally correlated with that of liv‐
er cells, implying analysis of AFB1-DNA adducts in the peripheral blood white cells may
substitute for the elucidation of tissular levels of adducts [40].

3.2. Oxidative DNA damage

In the process of agent AFB1 metabolism, this agent can induced reactive oxygen species
(ROS) [2]. Especially, the metabolic particulate phases, including I and II phase involved by
detoxicate enzymes such as CYP and glutathione S-transferase (GST), is postulated to con‐
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tain long-lived ROS that can lead to oxidative DNA damage [2, 4]. Nowadays, ROS have al‐
so been suggested to be involved in the progression of chronic liver disease and the
occurrence of HCC; whereas its’ subsequent Oxidative DNA damage is generally regarded
as a significant contributory cause of cancer from environmental exposures such as AFB1 ex‐
posure [41]. Of oxidative DNA damage, 8-oxodeoxyguanosine (8-oxodG), a kind of especial
DNA adduct, is found as a sensitive marker of the DNA damage due to hydroxyl radical
attack at the C8 of guanine [2, 4, 25, 42]. This adduct, different from the aforementioned
AFB1-DNA adducts, is the most abundant endogenous DNA lesion caused by ROS, and has
been classified as a biomarker of oxidative DNA damage [2, 10, 43, 44].

Previous studies have shown that in vitro treatment of hepatocytes with AFB1 resulted in a
dose-dependent increase in ROS formation [45]; whereas exposure of rats to AFB1 produced
a time- and dose-dependent increase in 8-oxodG in hepatic DNA [46, 47]. In 2007, Wu, et al.
investigated the association between AFB1 exposure levels and oxidative damage levels in
high AFB1 areas from Taiwan, China [48]. In this case–control study nested within a com‐
munity-based cohort (74 HCC cases and 290), researchers tested the levels of urinary excre‐
tion of 8-oxodG, a biomarker of oxidative DNA damage and urinary AFB1 metabolites, a
biomarker of AFB1 exposure, through enzyme-linked immunosorbent assays (ELISA). Re‐
sults showed 8-oxodG levels were significantly positive correlated with AFB1 exposure,
suggesting AFB1 exposure should induce oxidative DNA damage [48]. Together, these data
suggest that AFB1-induced oxidative DNA damage may constitute an important pathway in
AFB1 toxicity.

3.3. DNA strand break damage

Previous reviewed adducts are capable of forming subsequent repair-resistant adducts, dep‐
urination, or lead to error-prone DNA repair resulting in single-strand breaks (SSBs) and
double-strand breaks (DSBs). SSBs and DSBs are two kinds of important DNA damage types
by AFB1 exposure. For SSBs, there are three pathways to produce this type DNA damage
under the AFB1 exposure conditions: direct attack by ROS, through base hydrolysis, and en‐
zymatic consequence of the repair of spontaneous base damage and base loss (such as re‐
sulting from abasic AP. sites arising spontaneously or from the action of glycosylases in the
process of BER pathway) [49-51]. As the most abundant lesion occurring in cellular DNA,
SSBs can play havoc with replication and transcription if not efficiently eliminated. Howev‐
er, they might cause other DNA damage such as genic mutations, DSBs, or carcinogenesis of
cells [51, 52]. While DSBs is rare and severe DNA damage type among DNA damage in‐
duced by AFB1 exposure [25], mainly produced under the high-dose AFB1 exposure condi‐
tions. This damage can lead to chromosomal rearrangements at the first mitosis after
exposure to the DNA strand-breaking agent [53].

3.4. Gene mutations

For genes mutations induced by AFB1 exposure, the experimental and theoretical researches
are briefly on the p53 gene [54-56]. Reaction with DNA at the N7 position of guanine prefer‐
entially causes a G:C > T:A mutation in codon 249 of this gene, leading to an amino acid sub‐
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stitution of arginine to serine [54-56]. In high AFB1-exposure areas, this mutation is present
in more than 40% of HCC and can be detected in serum DNA of patients with preneoplastic
lesions and HCC. While codon 249 transversion mutations are either very rare or absent in
low or no AFB1-exposure areas [4]. Using the human p53 gene in an in vitro assay, codon
249 has been exhibited to be a preferential site for formation of AFB1-N7-Gua adducts evi‐
dence consistent with a role for AFB1 in the mutations observed in HCC [57-65]. Therefore,
the codon 249 mutation of p53 gene has been defined as the hot-spot mutation of p53 gene
(TP53M) resulting from AFB1 and has become the molecular symbol of HCC induced by
AFB1 exposure. The frequency of TP53M is also regarded as the molecular biomarker of
AFB1-related DNA repair capacity [4].

4. DNA repair pathways of AFB1-related DNA damage

A wide diversity of DNA damage induced by AFB1 exposure, if not repaired, may cause
chromosomal aberrations, micronuclei, sister chromatid exchange, unscheduled DNA syn‐
thesis, and chromosomal strand breaks, and can be converted into gene mutations and ge‐
nomic instability, which in turn results in cellular malignant transformation [4].
Nevertheless, human cells have evolved surveillance mechanisms that monitor the integrity
of genome to minimize the consequences of detrimental mutations [9]. AFB1-induced DNA
damage can be repaired through the following pathways: nucleotide excision repair (NER),
base excision repair (BER), single-strand break repair (SSBR), and double-strand break re‐
pair (DSBR) [4, 25].

4.1. NER pathway

NER pathway, a major DNA repair pathways in human cells featuring genomic DNA dam‐
age, can remove structurally such diverse lesions as pyrimidine dimers, irradiative damage,
and bulky chemical adducts, and DNA damage from carcinogens and some chemotherapeu‐
tic drugs [66]. To date, the mechanism of this pathway is well understood and has been re‐
constituted in vitro. It consists of several sequential steps: lesion sensing, opening of a
denaturation bubble, incision of the damaged strand, displacement of the lesion-containing
oligonucleotide, gap filling, and ligation [66, 67]. In the fibroblast cells with the deficiency of
xeroderma pigmentosum A (XPA) gene, conversion of the initial AFB1-N7-Gua adduct to
the AFB1-FAPy adduct has been found to be more extensive. This suggests that NER should
be a major mechanism for enzymatic repair of AFB1 adducts. Its defects lead to severe dis‐
eases related AFB1 exposure, including liver injury and HCC [4].

4.2. BER

Of the oxidative DNA damage resulting from AFB1 exposure, the formation of 8-oxodG is
thought to be important due to being abundant and highly mutagenic and hepatocarcino‐
genesis [4, 25]. The 8-oxodG lesions are repaired primarily through the BER pathway. The
BER pathway facilitates DNA repair through two general pathways: a. the short-patch BER
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pathway, leading to a repair tract of a single nucleotide; b. the long-patch BER pathway,
producing a repair tract of at least two nucleotides [68, 69]. In these two repair sub-path‐
ways, DNA glycosylases play a central role because they can recognize and catalyze the re‐
moval of damaged bases [68, 69]. This suggests that the defect of DNA glycosylases should
be related to the decreasing capacity of the BER pathway and might increase the risk of such
toxicity as AFB1 [4, 25].

4.3. SSBR

SSB is a relative severe type of DNA damage produced by AFB1 exposure. If not repaired, it
can disrupt transcription and replication and can be converted into potentially clastogenic
and/or lethal DSBs [51]. This DNA damage is repaired via SSBR pathway. SSBR pathway in‐
cludes four basic steps: a. SSB detection and signaling, through poly (ADP-ribose) polymer‐
ase (PARP); b. DNA break end processing, through the role of polynucleotide kinase (PNK),
AP endonuclease-1 (APE1), DNA polymerase β (Pol β), tyrosyl phosphodiesterase 1 (TDP1),
and flap endonuclease-1 (FEN-1); c. gap filling, involving in multiple DNA polymerases; d.
DNA ligation, involving in multiple DNA ligases [49, 50, 52]. This pathway mainly plays an
important role in the repair process of SSBs induced AFB1.

4.4. DSBR

DSBs, although only make up a very small proportion of AFB1-induced DNA damage, are
critical lesions that can result in cell death or a wide variety of genetic alterations including
large- or small-scale deletions, loss of heterozygosity, translocations, and chromosome loss
[70]. This type damage is repaired DSBR consisting of non-homologous end-joining (NHEJ)
and homologous recombination (HR) [71, 72]. There are several decades DNA repair genes
involve in DSBR pathway and the defects in these genes cause genome instability and pro‐
mote tumorigenesis [71-77]. During the process of damage removed by aforementioned re‐
pair pathways, DNA repair genes play a central role, because their function determines
DNA repair capacity [4]. It has been shown that reduction in DNA repair capacity related to
DNA repair genes is associated with increasing frequency of genic mutation, levels of DNA
adducts, and risk of cancers [8, 78]. Thus, genetic polymorphisms in DNA repair genes
might be correlated with AFB1-related DNA repair capacity.

5. The elucidation of DNA repair capacity related to AFB1-induced DNA
damage

As shown in the previous review, two main characteristics of AFB1-induced DNA dam‐
age are AFB1-DNA adducts and the hot-spot mutation of tumor suppressor gene p53 at
codon 249 (TP53M) [4, 25]. Thus, DNA repair capacity related to this type DNA damage
might be elucidated using the analysis of AFB1-DNA-adducts levels and TP53M frequen‐
cy in the liver tissues or other tissues. For AFB1-DNA adducts,  many researchers in the
relative  fields  regard  AFB1-FAPy  adduct  as  a  validated  biomarker  of  AFB1  exposure
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based on as following reasons:  (1) that AFB1-FAPy adduct is  the imidazole ring-opened
product  of  AFB1-N7-Gua  adduct,  also  the  stable  of  form of  the  later  adduct,  and  may
play an important role in the development of  HCC. Moreover,  the accumulation of this
adduct is  time-dependent and non-enzymatic,  and may have potential  biological  impor‐
tance because of its apparent persistence in DNA; (2) that AFB1-N7-Gua adduct is unsta‐
ble  and  easily  lost  from  DNA.  Increasing  evidences  have  exhibited  that  AFB1-FAPy-
adducts levels in the liver or placenta tissues are lineally correlated with AFB1 exposure
levels and HCC risk [79, 80],  suggesting this adduct should be regarded as a biomarker
for DNA repair capacity related to AFB1-induced DNA damage. Remarkably, the mono‐
clonal  antibodies  recognizing  AFB1-FAPy  adduct  have  been  developed  by  several  re‐
search groups.  These types of  antibodies are not  only used to orientationally and semi-
quantitatively  test  AFB1-DNA  adduct  information  in  the  tissue  specimens  through
immunochemistry (IHC),  but  to  quantitatively analyze the levels  of  this  adduct  using a
competitive  enzyme-linked  immunosorbent  assay  (ELISA)  in  human  liver  and  placenta
tissue specimens. Additionally, a quantitative indirect immunofluorescence method using
monoclonal  antibody 6A10 has  also  been developed to  measure  AFB1-DNA adducts  in
liver tissues. In 2009, Long et al.  evaluated the validation of AFB1-FAPy adduct in DNA
samples  from  peripheral  blood  leukocytes  representing  AFB1  exposure  levels  [40].
Through linear regression analysis of the adduct levels in DNA samples from peripheral
blood  leukocytes  and  from  liver  tissue  specimens,  they  found  peripheral  blood  leuko‐
cytes'  adduct  levels  were  positively  and linearly  related to  AFB1-DNA adduct  levels  of
the HCC cancerous tissue.  These data suggested that the levels of  peripheral  blood leu‐
kocytes'  DNA adducts were representative of  the tissues'  DNA-adduct levels and might
be regard as a biomarker for AFB1 exposure [4, 25, 40, 78]. Together, AFB1-FAPy adduct
in DNA from such tissues as liver and placenta or from such as blood leukocytes should
be  potential  biological  importance  in  the  elucidation  of  DNA repair  capacity  related  to
AFB1-caused DNA damage.

As regard of the mutations of p53 gene, because AFB1 exposure results in G to T transver‐
sion in both bacteria and human cells and AFB1 preferentially binds to codon 249 of p53
gene, as previous mentioned, AFB1 mainly induces the transversion of G → T in the third
position at codon 249 of TP53M. The frequent value of TP53M is more persistent biomarker
and more directly represents DNA repair capacity compared with AFB1-DNA adducts. In
the studies from higher AFB1 exposure areas, researchers have found TP53M frequency as‐
sociates with AFB1 exposure levels and HCC risk. Thus, this mutation is the selective eluci‐
dative marker for DNA repair capacity correlated with AFB1-induced DNA damage as well
as AFB1-DNA adducts.

Additionally, HCC is the most common malignant tumors caused by AFB1 exposure. More
and more epidemiological studies have shown AFB1-related HCC risk is related to different
DNA repair capacity [4, 8, 15, 22, 40, 78, 81-90], suggesting that tumor risk value might be
regard as a selective elucidative marker for DNA repair capacity correlated with AFB1-in‐
duced DNA damage.
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6. Genetic polymorphisms of DNA repair genes involved in NER
pathway for AFB1-related DNA damage repair

Accumulating evidences have implied that genetic polymorphisms in NER genes are as‐
sociated with DNA repair capacity related to AFB1-induced DNA damage. Molecular ep‐
idemiology  studies  in  this  field  are  mainly  from high  AFB1  exposure  areas  such  as  in
China.  To date,  two genes  involved in  NER pathway,  namely xeroderma pigmentosum
C (XPC) and xeroderma pigmentosum D (XPD),  have been investigated in the DNA re‐
pair capacity analysis.

6.1. XPC

XPC gene (Genbank accession NO. AC090645), consisting of 16 exons and 15 introns, spans
33kb on chromosome 3p25. This gene encodes a 940-amino acid protein, an important DNA
damage recognition molecule which plays an important role in NER pathway. XPC protein
binds tightly with another important NER protein HR23B to form a stable XPC-HR23B com‐
plex, the first protein component that recognizes and binds to the DNA damage sites
[91-98]. XPC-HR23B complex can recognize a variety of DNA adducts formed by exogenous
carcinogens such as AFB1 and binds to the DNA damage sites [4, 91, 99]. Therefore, it may
play a role in the process of DNA repair of DNA damage related to AFB1 exposure.

Some recent studies have showed that  defects  in XPC have been related to many types
of malignant tumors [99-114]. Transgenic mice researches have also exhibited predisposi‐
tion to  many kinds of  neoplasms in  mice  model  with  XPC gene knockout  [115].  More‐
over,  pathological  and  cellular  studies  have  shown  that  increasing  expression  of  this
gene  is  associated  with  hepatocarcinogenesis  [116].  Together,  these  studies  suggest  the
genetic polymorphisms localizing at  conserved sites of  XPC gene might modify the risk
of HCC induced by AFB1 exposure and decrease DNA repair capacity related to AFB1-
related DNA damage.  Recently,  four  studies  from high AFB1-exposure  areas  have sup‐
ported abovementioned hypothesis [84, 89, 101, 117].

The  first  study conducted by  Cai  et  al.[117]  is  from Shunde area,  Guangdong Province
which  is  characterized  by  high  AFB1  exposure  and  high  incidence  rate  of  HCC.  Re‐
searchers  analyzed  the  association  between  two  common  polymorphisms—Ala499Val
and Lys939Gln—of XPC gene and risk of  HCC via an 1-1 case-control  study (including
78 HCC patients  and 78 age-  and sex-matching controls)  method,  and found these  two
polymorphisms modified HCC risk [adjusted odds ratios (ORs) were 3.77 with 95% con‐
fidence interval (CI) 1.34-12.89 for Ala499Val and 6.78 with 95% CI 2.03-22.69]. Although
they  did  not  directly  evaluated  the  effects  of  genetic  polymorphisms  of  XPC gene  and
DNA  repair  capacity  related  to  AFB1-caused  DNA  damage,  study  population  in  their
study is from high AFB1 exposure areas and.

The other three studies, from Guangxi Zhuang Autonomous Region which is the most com‐
mon of high AFB1 exposure area all over the world [4, 118], directly investigated the modi‐
fying effects of genetic polymorphisms XPC on AFB1-related DNA repair capacity and HCC
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risk based on hospitals via molecular epidemiological studies [84, 89, 101]. Their results
showed XPC codon 939 Gln alleles increased about 2-times risk of HCC and decreased
AFB1-related DNA repair capacity. Furthermore, Wu, et al.[89] and Long, et al. [84] quantita‐
tively elucidated AFB-exposure time and levels and their interactive effects with the genetic
polymorphisms of XPC gene and found some evidence of AFB1 exposure-risk genotypes of
XPC codon 939 on AFB1-related DNA repair capacity (HCC risk: XPC risk genotypes and
18.38 > 1.11 × 4.62 for the interaction of AFB1-exposure levels and XPC risk genotypes; 22.33
> 1.88 × 8.69 for the interaction of AFB1-exposure time).

Additionally, Long, et al. [84] also observed that Gln alleles at codon 939 of XPC gene was
associated with the decrease of XPC expression levels in cancerous tissues (r = - 0.369, P <
0.001) and with the poorer overall survival of HCC patients (the median survival times are
30, 25, and 19 months for patients with XPC gene codon 939 Lys/Lys, Lys/Gln, and Gln/Gln
respectively). Interestingly, this decreasing 5-years survival rates would be noticeable under
high AFB1 exposure conditions (the median survival times are 17 month for the joint of XPC
gene codon 939 Gln/Gln and high AFB1-exposure level and 15 months for the joint of XPC
gene codon 939 Gln/Gln and long-term AFB1-exposure time) [84].

As a result, these data suggest that genetic polymorphism at codon 939 of XPC gene is not
only a genetic determinant in the DNA repair process of DNA damage induced by AFB1 ex‐
posure, and a risk and prognostic factor influencing HCC developing, but also is an inde‐
pendent genetic factor of evaluating DNA repair capacity related to AFB1-caused DNA
damage. A possible reason is that this genetic polymorphism down-regulates XPC expres‐
sion [84] and decrease the repair function of XPC protein [116].

However, Li et al. [101] reported that the proportional distribution of the Val/Val genotype
at codon 499 of XPC gene did not differ between HCC cases and controls in Guangxi
Zhuang Autonomous Region, China (P > 0.05), dissimilar to the data from another high
AFB1 exposure area of China, Guangdong Province, suggesting this genetic polymorphism
might not modify AFB1-related DNA repair capacity. Possible explanations for these incon‐
sistent finding may be either due to unknown confounders or due to small sample size.

6.2. XPD

XPD protein, a DNA-dependent ATPase/helicase encoded by DNA repair gene XPD (also
called excision repair cross-complementing rodent repair deficiency complementation group
2 (ERCC2), COFS2, EM9, or TTD.) (Genbank ID. 2068) which spans about 20 kb on chromo‐
some 19q13.3 and contains 23 exons and 22 introns is one of seven central proteins in the
NER pathway [119-122]. This protein is associated with the TFIIH transcription-factor com‐
plex, and plays a role in NER pathway [66, 67, 119-121, 123-125]. During NER, XPD partici‐
pates in the opening of the DNA helix to allow the excision of the DNA fragment containing
the damaged base [119-122].

There are four described polymorphisms that induce amino acid changes in the protein: at
codons 199 (Ile to Met), at codon 201 (His to Tyr), at codon 312 (Asp to Asn) and at codon
751 (Lys to Gln) [123]. To date, the first two polymorphisms have not investigated because
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they are quite rare (~0.04%) in most population, whereas the latter two polymorphisms in
conserved region of XPD have been extensively studied [123]. Several groups have done
genotype-phenotype analyses with these two polymorphisms and have shown that the var‐
iant allele genotypes are associated with low DNA repair ability [126, 127]. Recent studies
have showed the polymorphisms at codon 312 and 751 of XPD are correlated with DNA-
adducts levels, p53 gene mutation, and cancers risk [86, 123, 128-131]. In a hospital-based
case-control study conducted in a high AFB1 exposure area [40], Long, et al. found that the
variant XPD codon 751 genotypes (namely Lys/Gln and Gln/Gln) detected by TaqMan-MGB
PCR was significantly different between HCC cases (35.9% and 20.1% for Lys/Gln and Gln/
Gln, respectively) and controls (26.3% for Lys/Gln and 8.6% for Gln/Gln, P < 0.001). Individ‐
uals having variant alleles had about 1.5- to 2.5-fold risk of developing the cancer (adjusted
OR 1.75 and 95% CI 1.30-2.37 for Lys/Gln; adjusted OR 2.47 and 95% CI 1.62-3.76 for Gln/
Gln). Based on relative large sample size (including 618 HCC cases and 712 controls), re‐
searchers stratified genotypes of XPD codon 751 according to matching factors and observed
some evidence of interaction between XPD codon 751 Gln alleles and sex. These female with
Gln alleles featured increasing HCC risk compared with those without these alleles. More‐
over, the multiple interactive effects of between mutant genotypes of XPD gene codon 751
environment variant AFB1 or another NER gene XPC on HCC risk were also found, with
interactive value 0.85, 1.04, and 1.71 for AFB1-exposure years, AFB1-exposure levels, and
XPC gene codon 939 risk genotypes (Pinteraction < 0.05).

Together, these results suggest the genetic polymorphisms at conserved sequence of XPD
gene such as at codon 751 may have potential effect on AFB1-related HCC susceptibility.
This supports different AFB1-related DNA repair capacity might be modified by genetic
polymorphisms at codon 751 in DNA repair gene XPD. However, the study from AFB1-
exposure  areas  shows  that  the  genetic  polymorphism  at  codon  312  in  XPD  polymor‐
phism  is  not  significantly  correlated  with  DNA  repair  capacity  related  AFB1-induced
DNA damage [4, 40].

7. Genetic polymorphisms of DNA repair genes involved in BER
pathway for AFB1-related DNA damage repair

As previous described, DNA glycosylases play a central role in the BER pathway because
they can recognize and catalyze the removal of damaged bases [68, 69]. Among having been
reported genetic polymorphisms of DNA glycosylases, only human 8-oxoguanine DNA gly‐
cosylase (hOGG1) correlates with DNA repair capacity [132-143]. This gene (Genbank ID#
4968), also called HMMH, OGG1, MUTM, OGH1, 8-hydroxyguanine DNA glycosylase, AP
lyase, DNA-apurinic or apyrimidinic site lyase, and N-glycosylase/DNA lyase, consisting of
7 exons and 6 introns, spans 17 kb on chromosome 3p26.2 (PubMed). This gene encodes a
546-amino acid protein, a specific DNA glycosylase that catalyzes the release of 8-oxodG and
the cleavage of DNA at the AP site [142]. Genetic structure study has shown the presence of
several polymorphisms within hOGG1 locus [136]. Among these polymorphisms, the poly‐
morphism at position 1245 in exon 7 causes an amino acid substitution (namely Ser to Cys)
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at codon 326, suggesting this polymorphism may glycosylase function and decrease DNA
repair capacity [136].

In the past twenty years, increasing epidemiological evidences have validated aforemen‐
tioned the hypothesis [132-144]. In 2003, Peng, et al. [138] analyzed the correlation among 8-
oxodG levels, hOGG1 expression, and hOGG1 Cys326Ser polymorphism in the high AFB1
exposure areas Guangxi Autonomous Region. They found that individuals having geno‐
types with hOGG1 codon 326 Cys alleles faced lower level of hOGG1 expression and higher
8-oxodG levels. Supporting their results, Cheng, et al. [141] reported that hOGG1 expression
was significantly linear correlated with HCC. Recently, using the molecular epidemiological
methods, Zhang, et al. [134] found that the distribution of Cys alleles at codon 326 of hOGG1
in HCC cases (43.0%) significantly differed from in controls (33.1%). Logistic regression
analysis next showed that the genotypes with Cys alleles, compared to without this alleles,
increased HCC risk of Chinese population, with adjusted OR-value (95% CI) 1.5 (0.79-2.93)
for Cys/Ser and 1.9 (0.83-4.55) for Cys/Cys. Similar results are also observed in the study
from low AFB1 exposure areas of China [144]. A functional complementation activity assay
exhibited that hOGG1 protein encoded by the 326 Cys allele had substantially lower DNA
repair activity than that encoded by the 326 Ser allele [140]. Similar results were observed in
human cells in vivo [137, 139]. Therefore, low capacity of 8-oxodG repair resulting from
hOGG1 326 Cys polymorphism might contribute to the persistence of 8-oxodG in genomic
DNA in vivo, which, in turn, could be associated with increased cancer risk [4, 137, 138].

As a result, these findings suggested the genetic polymorphism at codon 326 of DNA repair
gene hOGG1 should modify AFB1-related DNA repair capacity. However, another case-
control study from Japan shows this genetic polymorphism is not associated with HCC risk.
This might result from lower AFB1 exposure in this area and not showing the relative low
DNA repair capacity related to AFB1-induced DNA damage.

8. Genetic polymorphisms of DNA repair genes involved in SSBR
pathway for AFB1-related DNA damage repair

SSBR pathway involves in several central DNA repair genes such as XRCC1, poly (ADP-ri‐
bose) polymerase-1 (PARP-1), APE (or DNA glycosylase), DNA ligase III, Pol β, and so on
[49-51]. Of these DNA repair genes, only XRCC1 is investigated to correlate with AFB1-re‐
lated DNA repair capacity. This gene, also called RCC, spans about 32 kb on chromosome
19q13.2 and contains 17 exons and 16 introns is one of three submits of DNA repair complex
in the SSBR pathway (Gene dbase from PubMed). Its’ encoding protein (633 amino acids),
consists of three functional domains: N-terminal domain (NTD), central breast cancer sus‐
ceptibility protein-1 homology C-terminal (BRCT I), and C-terminal breast cancer suscepti‐
bility protein-1 homology C-terminal (BRCT II) [4, 51, 145-151]. This protein is directly
associated with Pol β, DNA ligase III, and PARP, via their three functional domains and is
implicated in the core processes in SSBR and BER pathway [4, 51, 145, 150-152]. Mutant
hamster ovary cell lines that lack XRCC1 genes are hypersensitive to DNA damage agents
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such as ionizing radiation, hydrogen peroxide, and alkylating agents [4, 51]. Furthermore,
this kind of cells usually faces increasing frequency of spontaneous chromosome aberrations
and deletions. Three single nucleotide polymorphisms in the coding region of XRCC1 gene
that lead to amino acid substitution have been described and investigated [25]. Among these
polymorphisms, the codon 399 polymorphism is of special concern, because this polymor‐
phism resides in functionally significant regions (BRCT II) and may be related to decreasing
DNA repair capacity [85, 153-179].

In 2008, Long, et al. [85] investigated the effects of genetic polymorphism at codon 399 in
DNA repair gene XRCC1 based on the analysis of 501 AFB1-related HCC samples. They
found that the HCC patients with XRCC1 genotypes with 399 Gln alleles (namely: XRCC1
codon 399 Arg/Gln or Gln/Gln) faced a significantly higher frequency of TP53M than those
with the wild-type homozygote of XRCC1 [namely: XRCC1 codon 399 Arg/Arg, adjusted
odds ratio (OR) = 6.13, 95% confidence interval (CI) = 3.87-9.72 for Arg/Gln; OR = 13.66, 95%
CI = 4.44-42.08 for Gln/Gln, respectively]. Additionally, another study from high AFB1 areas
Taiwan in China exposure showed the XRCC1 codon 399 Gln alleles were significantly asso‐
ciated with higher levels of AFB1-DNA adducts. Individuals with these alleles were at risk
for detectable adducts (OR, 2.4; 95% CI, 1.1–5.4; P = 0.03) [80].

As regards of risk biomarker for DNA repair capacity namely AFB1-related HCC risk, a to‐
tal of fourteen molecular epidemiological studies involving genetic polymorphism at codon
399 of DNA repair gene XRCC1 were found in PubMed database, Sprinker database, Ovid
database, Wangfang Database, and Weipu database [22, 81, 83, 162, 164, 175, 180-186], sum‐
marized in Table 1. However, associations between this genetic polymorphism and DNA re‐
pair capacity have been reported in these case-control studies with the results being
contradictory [172, 187]. Possible reasons are as follows: different study population, non-sci‐
entific design, the loss of matching methods or improper match, the loss of stratified analy‐
sis based on AFB1 exposure information, repeated data, and so on. To avoid above error and
achieve more scientific results, we analyzed the possible causes of contradictory using meta-
analysis method (Comprehensive Meta-Analysis Version 2, http://www.meta-analy‐
sis.com/). Fig. 2, 3, and 4 showed the meta-analysis results of the modifying effects of genetic
polymorphism at codon 399 of XRCC1 gene on AFB1-related DNA repair capacity. Based on
meta-analysis of overall studies including known published literature (Fig. 2), we found
contradictive results; whereas we would observe significant modifying effects of genetic
polymorphism at codon 399 of XRCC1 gene on DNA repair capacity related to AFB1-caused
DNA damage if these possible repeated studies from the same researchers (Fig. 3) or adding
these studies from low/no AFB1 exposure areas (Fig. 4) were excluded. Actually, although
Yang, et al. [162] and Ren, et al. [173] did not observed significantly modifying effects of
XRCC1 gene codon 399 polymorphism in crude logistic regression, they found Gln alleles
would decrease DNA repair capacity in stratified analysis with susceptive environment var‐
iants. A individually matching case-controls demonstrated that subjects having codon 399
Gln alleles might feature remarkably increasing risk of HCC under longer-term AFB1-expo‐
sure years or higher AFB1-exposure levels conditions (adjusted OR > 10) [22]. This suggests
that the genotypes with codon 399 Gln alleles of XRCC1 should be a risk biomarker of low
DNA repair ability related DNA damage by AFB1 exposure.
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NO. Ref. Year Population

AFB1

exposurea Methods

Matching

Factor

Cases

(n)

Controls

(n)

Risk valueb

(OR)

1

Yu et al.

(2003) 2003 Taiwanese high case-control age, sex 577 389

1.54

(P = 0.129)

2

Han et al.

(2004) 2004 Qidongese high case-control age, sex 69 136

about 1

(P > 0.05)

3

Kirk et al.

(2005) 2005 Gimbia high case-control age, sex 149 294

2.66

(P < 0.05)

4

Long et

al.(2005) 2005 Guangxiese high case-control

age, sex,

HBV, HCV,

race 140 536

2.18

(P = 0.0001)

5

Long et

al.(2006) 2006 Guangxiese high case-control

age, sex,

HBV, HCV,

race 257 649

2.47

(P = 0.0001)

6

Ren et al.

(2008) 2008 Beijingese low case-control age, sex 50 92

0.49

(P < 0.05)

7

Borentai

n et al.

(2007) 2007 French low case-control age, sex 56 61

1.84

(P = 0.015)

8

Kiran et

al.(2009) 2009 Indian low case-control no 63 142

0.33-0.63

(P < 0.05)

9

Kiran et

al.(2009) 2009 Indian low case-control no 63 142

0.33-0.63

(P < 0.05)

10

Su et al.

(2008) 2008 Liaoningese low case-control age, sex 100 111

2.95

(P < 0.001)

11

Yang et

al.(2004) 2004 Qidongese high case-control age, sex 69 136

about 1

(P > 0.05)

12

Pan et al.

(2012) 2012 Shangdongese medium case-control age, sex 202 236

1.35-1.55

(P > 0.05)

13

Li et al.

(2012) 2012 Shangdongese medium case-control age, sex 150 158

1.69-1.78

(P < 0.05)

14

Chen et

al.(2005) 2005 Taiwanese high case-control age, sex 577 389

1.57

(P > 0.05)

a Defined by means of Ref Henry, et al. (Science, 1999).

b AFB1-related DNA repair capacity is evaluated using risk biomarker AFB1-related HCC risk (see “DNA repair capacity
elucidation related to AFB1-induced DNA damage” section). Based on this thesis, AFB1-related DNA repair capacity will
decrease if OR > 1 and corresponding P-value < 0.05; will increase if OR < 1 and corresponding P-value < 0.05; and will
not change if OR is about 1 and/or corresponding P-value > 0.05.

Table 1. Characteristics of studies about genetic polymorphism at codon 399 of DNA repair gene XRCC1 and risk
biomarker for DNA repair capacity (namely HCC risk)
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Figure 2. The meta-analysis of the relationship between genetic polymorphism at codon 399 (Arg/Gln) XRCC1 and
AFB1-related HCC risk, a biomarker for DNA repair capacity correlated with AFB1-induced DNA damage, based on
overall studies size. Compared with Arg/Arg genotype, Arg/Gln (A) genotype decreased AFB1-related DNA repair ca‐
pacity. This effect was not observed in Gln/Gln genotype (B).
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Figure 3. The meta-analysis of the relationship between genetic polymorphism at codon 399 (Arg/Gln) XRCC1 and
AFB1-related HCC risk, a biomarker for DNA repair capacity correlated with AFB1-induced DNA damage, based on
overall studies size excluded possible repeated studies. Compared with Arg/Arg genotype, Arg/Gln (A) and Gln/Gln
(B) genotype decreased AFB1-related DNA repair capacity.
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Figure 4. The meta-analysis of the relationship between genetic polymorphism at codon 399 (Arg/Gln) XRCC1 and
AFB1-related HCC risk, a biomarker for DNA repair capacity correlated with AFB1-induced DNA damage, based on
overall studies size excluded possible repeated studies and studies from low AFB1 exposure areas. Compared with
Arg/Arg genotype, Arg/Gln (A) and Gln/Gln (B) genotype decreased AFB1-related DNA repair capacity.

These data support XRCC1 codon 399 Gln alleles decrease AFB1-related DNA repair capaci‐
ty. Additionally, several studies have shown that the other two genetic polymorphisms (at
codon 194 and codon 280) of XRCC1 also decrease DNA repair capacity related AFB1-in‐
duced DNA damage, with adjusted value 2.25-2.27 for codon 194 polymorphism and
4.95-6.27 for codon 280 polymorphism (P < 0.05) [175]. Furthermore, this decreasing DNA
repair ability might more noticeable under the haplotypes with both codon 194 Arg alleles
and codon codon 280 His alleles conditions [183].
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9. Genetic polymorphisms of DNA repair genes involved in DSBR
pathway for AFB1-related DNA damage repair

DSBR pathway involves a series of DNA repair genes. In published molecular epidemiologi‐
cal studies, only XRCC3 gene codon Thr241Met polymorphism and XRCC7 rs#7003908
polymorphism affect AFB1-related DNA repair capacity [8, 15, 78].

9.1. XRCC3

The product of the XRCC3 gene is one of identified paralogs of the strand-exchange protein
RAD51 in human beings [188-192]. This protein correlates directly with DNA breaks and fa‐
cilitates of the formation of the RAD51 nucleoprotein filament, which is crucial both for ho‐
mologous recombination and HRR [188-192]. Previous studies have shown that a common
polymorphism at codon 241 of XRCC3 gene (Thr to Met) modifies the function of this gene
[193-205]. Two reports from high AFB1-exposure areas all of world supported above-men‐
tioned conclusions [15, 90].

In the first frequent case-control study in Guangxiese [90], we observed that the genotypes
with XRCC3 codon 241 Met alleles (namely Thr/Met and Met/Met) was significantly differ‐
ent between controls (33.01%) and HCC cases (61.48%, P < 0.001). Met alleles increases about
2- to 10-fold risk of HCC and this running-up risk is modulated by the number of Met alleles
(adjusted OR 2.48 and 10.06 for one and two this alleles). Considering small sample size in
this study, we recruited, in another independent frequent case-control study [15], a relative‐
ly larger sample size to compare the results. Subjects included in this study, 491 HCC cases
and 862 age-, sex, race, hepatitis virus infection information-matching controls, were perma‐
nent residents of Guangxi areas. Similar to the results of the first report, the distribution of
XRCC3 codon 241 Met allele frequencies was found to be significantly different between cas‐
es (59.7%) and controls (32.1%). Individuals having the Thr/Met or Met/Met were at a 2.22-
fold or 7.19 fold increased risk of developing HCC cancer. Above two studies showed this
allele multiplicatively interacted with AFB1 exposure in the process of hepato-tumorigene‐
sis. These results exhibits that the polymorphism at codon 241 of XRCC3 gene is a genetic
determinant in AFB1-related DNA repair ability for DSBR pathway.

9.2. XRCC7

DNA repair gene XRCC7, called DNA-dependent protein kinase catalytic subunit (DNA-
PKcs),  DNAPK, DNPK1,  HYRC, HYRC1,  or  p350)  (Genbank ID.  5591),  spans about  197
kb on chromosome 8q11 and contains 85 exons and 86 introns (Gene dBase in PubMed).
This gene encodes DNA-PKcs that constitutes the large catalytic subunit of the DNA-PK
complex. When DNA-PKcs is recruited to the site of DSBs by the Ku70/Ku80 heterodim‐
er, DNA-PK complex changes into its active form and subsequently initiates the non-ho‐
mologous  end  joining  (NHEJ)  repair,  an  important  DSBR  pathway  [206-213].  Murine
mutants  defective  in  the  XRCC7 have  non-detectable  DNA-PK  activity,  suggesting  that
XRCC7 is  required for NHEJ pathway protein.  More than 20 polymorphisms have been
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reported in the XRCC7 gene, some of which are correlated with malignant tumors such
as bladder cancer (dbSNP in NCBI Database). Of these genetic polymorphisms in XRCC7
gene,  only  two  loci  (rs7003908  and  rs10109984)  are  investigated  their  modifying  effects
on AFB1-related DNA repair capacity [8].

In this hospital-based case-control study conducted by Long, et al. [8], they found that these
individuals with XRCC7 rs7003908 G alleles increased HCC risk compared the homozygote
of XRCC7 rs7003908 T alleles (XRCC7-TT), with OR value 3.45 (2.40–4.94) for XRCC7-TG
and 5.04 (3.28–7.76) for XRCC7-GG, respectively. Additionally, they also found this genetic
polymorphism was correlated with higher the levels of AFB1-DNA adducts (r = 0.142, P <
0.001). However, another polymorphism rs10109984 did not modify AFB1-related HCC risk
(P > 0.05). As a result, these data explore that genetic polymorphism of XRCC7 rs7003908
but not rs10109984 might decrease AFB1-related DSBR capacity, inquiring more studies to
support this conclusion.

10. Future directions

Recently, great progress has been made in understanding the molecular mechanisms of the
genetic susceptibility to DNA repair capacity related to AFB1-induced DNA damages. How‐
ever, we are still far from a comprehensive view of the issue. The molecular mechanism
about genetic polymorphisms in the DNA repair genes modifying DNA repair capacity re‐
lated AFB1-induced DNA damages remains largely unknown. Although several reports
have shown the spot mutation resulting from genetic polymorphisms may decrease DNA
repair capacity via changing the structure of DNA repair proteins, downregulating expres‐
sion of DNA repair genes or decreasing the function of DNA repair genes, more direct evi‐
dence is lost. Disclosing the roles of different genetic types of DNA repair genes in the
different toxicity of AFB1 will greatly benefit our understanding of pathological mecha‐
nisms of the genetic polymorphisms in the DNA repair genes affecting DNA repair capacity
related to AFB1-induced DNA damage, and will shed important light on the clinical therapy
for these patients with risk types.

11. Summary

AFB1  is  an  important  environment  variation  of  DNA  damage.  This  toxic  variation  is
characterized  by:  (1)  the  attraction  of  specific  organs,  especially  liver;  (2)  genotoxicity,
mainly inducing the formation of AFB1-DNA adducts and the hot-spot mutation of p53
gene;  and (3)  carcinogenicity,  primarily causing HCC. Among these chronic  DNA dam‐
age characteristics,  AFB1-DNA adducts  play a  central  role  because of  their  genotoxicity
and interactions with genetic susceptive factors. In human, there are several repair path‐
ways, including NER, BER, SSBR, and DSBR, is able to repair this type damage. Genetic
polymorphisms in DNA repair  genes might modify the expression and the functions of

New Research Directions in DNA Repair394



DNA  repair  proteins  encoded  by  the  relative  genes  and  decrease  the  AFB1-correlated
DNA repair capacity. Based on this knowledge, DNA repair capacity related to AFB1-in‐
duced DNA damage can be elucidated via the following three methods:  testing the lev‐
els  of  AFB1-DNA  adducts  (mainly  AFB1-FAPy  adduct),  analyzing  the  frequency  of
TP53M, and evaluating the risk of HCC by AFB1 exposure.

Numerous studies reviewed in this paper have demonstrated that the hereditary variations
in DNA repair genes are associated with DNA repair capacity of DNA damage induced by
AFB1. These molecular epidemiological studies have significantly contributed to our knowl‐
edge of the importance of genetic polymorphisms in DNA repair genes in the individual’s
susceptibility to AFB1 exposure. It would be expected that genetic susceptibility factors in‐
volved in DNA repair genes for AFB1-induced DNA damage repair could serve as useful
biomarkers for identifying at-low-DNA-repair-capacity individuals by AFB1 exposure and,
therefore, targeting prevention of this toxicity-related malignant tumor.

However, there are several issues to be noted. The conclusions should first be drawn care‐
fully, because of conflicting data existing in the same ethnic population in view of between
some genotypes of DNA repair genes and the AFB1-related DNA damage repair capacity.
Second, because of the fact that AFB1-related DNA repair is polygenic, no single genetic
marker may sufficiently predict DNA repair capacity. Therefore, a panel of susceptive bio‐
markers is warranted to define individuals at low DNA repair capacity. Last, the corre‐
sponding molecular mechanisms of risk types modifying DNA repair capacity correlated
with AFB1-induced DNA damages should be paid close attention.
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