61 research outputs found

    Retrieval of nitric oxide in the mesosphere from SCIAMACHY nominal limb spectra

    Get PDF
    We present a retrieval algorithm for nitric oxide (NO) number densities from measurements from the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY, on Envisat) nominal limb mode (0--91 km). The NO number densities are derived from atmospheric emissions in the gamma bands in the range 230--300 nm, measured by the SCIAMACHY ultra-violet (UV) channel 1. The retrieval is adapted from the mesosphere and lower thermosphere mode (MLT, 50--150 km) NO retrieval (Bender et al., 2013, arXiv:1808.02388), including the same 3-D ray tracing, 2-D retrieval grid, and regularisations with respect to altitude and latitude. Since the nominal mode limb scans extend only to about 91 km, we use NO densities in the lower thermosphere (above 92 km), derived from empirical models, as a priori input. The priors are the Nitric Oxide Empirical Model (NOEM; Marsh et al., 2004) and a regression model derived from the MLT NO data comparison (Bender et al., 2015). Our algorithm yields plausible NO number densities from 60 to 85 km from the SCIAMACHY nominal limb mode scans. Using a priori input substantially reduces the incorrect attribution of NO from the lower thermosphere, where no direct limb measurements are available. The vertical resolution lies between 5 and 10 km in the altitude range 65--80 km. Analysing all SCIAMACHY nominal limb scans provides almost 10 years (from August 2002 to April 2012) of daily NO measurements in this altitude range. This provides a unique data record of NO in the upper atmosphere and is invaluable for constraining NO in the mesosphere, in particular for testing and validating chemistry climate models during this period.Comment: 12 pages, 9 figures, published 201

    Measurements of the vertical fluxes of atomic Fe and Na at the mesopause: implications for the velocity of cosmic dust entering the atmosphere

    Get PDF
    The downward fluxes of Fe and Na, measured near the mesopause with the University of Colorado lidars near Boulder, and a chemical ablation model developed at the University of Leeds, are used to constrain the velocity/mass distribution of the meteoroids entering the atmosphere and to derive an improved estimate for the global influx of cosmic dust. We find that the particles responsible for injecting a large fraction of the ablated material into the Earth's upper atmosphere enter at relatively slow speeds and originate primarily from the Jupiter Family of Comets. The global mean Na influx is 17,200 ± 2800 atoms/cm2/s, which equals 298 ± 47 kg/d for the global input of Na vapor and 150 ± 38 t/d for the global influx of cosmic dust. The global mean Fe influx is 102,000 ± 18,000 atoms/cm2/s, which equals 4.29 ± 0.75 t/d for the global input of Fe vapor

    Impacts of a sudden stratospheric warming on the mesospheric metal layers

    Get PDF
    We report measurements of atomic sodium, iron and temperature in the mesosphere and lower thermosphere (MLT) made by ground-based lidars at the ALOMAR observatory (69°N, 16°E) during a major sudden stratospheric warming (SSW) event that occurred in January 2009. The high resolution temporal observations allow the responses of the Na and Fe layers to the SSW at high northern latitudes to be investigated. A significant cooling with temperatures as low as 136 K around 90 km was observed on 22 − 23 January 2009, along with substantial depletions of the Na and Fe layers (an ~80% decrease in the column abundance with respect to the mean over the observation period). The Whole Atmosphere Community Climate Model (WACCM) incorporating the chemistry of Na, Fe, Mg and K, and nudged with reanalysis data below 60 km, captures well the timing of the SSW, although the extent of the cooling and consequently the depletion in the Na and Fe layers is slightly underestimated. The model also predicts that the perturbations to the metal layers would have been observable even at equatorial latitudes. The modelled Mg layer responds in a very similar way to Na and Fe, whereas the K layer is barely affected by the SSW because of the enhanced conversion of K+ ions to K atoms at the very low temperatures

    A multilaboratory comparison of calibration accuracy and the performance of external references in analytical ultracentrifugation.

    Get PDF
    Analytical ultracentrifugation (AUC) is a first principles based method to determine absolute sedimentation coefficients and buoyant molar masses of macromolecules and their complexes, reporting on their size and shape in free solution. The purpose of this multi-laboratory study was to establish the precision and accuracy of basic data dimensions in AUC and validate previously proposed calibration techniques. Three kits of AUC cell assemblies containing radial and temperature calibration tools and a bovine serum albumin (BSA) reference sample were shared among 67 laboratories, generating 129 comprehensive data sets. These allowed for an assessment of many parameters of instrument performance, including accuracy of the reported scan time after the start of centrifugation, the accuracy of the temperature calibration, and the accuracy of the radial magnification. The range of sedimentation coefficients obtained for BSA monomer in different instruments and using different optical systems was from 3.655 S to 4.949 S, with a mean and standard deviation of (4.304 ± 0.188) S (4.4%). After the combined application of correction factors derived from the external calibration references for elapsed time, scan velocity, temperature, and radial magnification, the range of s-values was reduced 7-fold with a mean of 4.325 S and a 6-fold reduced standard deviation of ± 0.030 S (0.7%). In addition, the large data set provided an opportunity to determine the instrument-to-instrument variation of the absolute radial positions reported in the scan files, the precision of photometric or refractometric signal magnitudes, and the precision of the calculated apparent molar mass of BSA monomer and the fraction of BSA dimers. These results highlight the necessity and effectiveness of independent calibration of basic AUC data dimensions for reliable quantitative studies

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival

    DNA damage-induced Fas ligand expression by epidermal dendritic cells mediates UV-induced immune suppression of contact hypersensitivity

    No full text
    Exposure to UVB radiation induces local and systemic immune suppression, evidenced by inhibition of the contact hypersensitivity response (CHS). Epidermal dendritic cells, the primary antigen presenting cells responsible for the induction of CHS, are profoundly altered in phenotype and function by UVB exposure and possess UV-specific DNA damage upon migrating to skin-draining lymph nodes. Expression of the proapoptotic protein FasL has been demonstrated in both skin and lymph node cells following UVB exposure. Additionally, functional FasL expression has recently been demonstrated to be required in the phenomenon of UV-induced immune suppression. To test the hypothesis that FasL expression by DNA-damaged Langerhans cells migrating to the skin-draining lymph nodes is a crucial event in the generation of this phenomenon, mice were given a single 5KJ/m2 UV-B exposure and sensitized to 0.5% FITC through the exposed area. Dendritic cells (DC) harvested from skin-draining lymph nodes (DLN) 18 hours following sensitization by magnetic CD11c-conjugated microbeads expressed high levels of Iab, CD80 and CD86, DEC-205 and bore the FITC hapten, suggesting epidermal origin. Radioimmunoassay of UV-specific DNA damage showed that DC contained the vast majority of cyclobutane pyrimidine dimers (CPDs) found in the DLN after UVB and exhibited increased FasL mRNA expression, a result which correlated with greatly increased FasL-mediated cytotoxicity. The ability of DCs to transfer sensitization to naïve hosts was lost following UVB exposure, a phenomenon which required DC FasL expression, and was completely reversed by cutaneous DNA repair. Collectively, these results demonstrate the central importance of DNA damage-induced FasL expression on migrating dendritic cells in mediating UV-induced suppression of contact hypersensitivity

    Nitric oxide (NO) data set (60--160 km) from SCIAMACHY nominal limb scans

    No full text
    <p><strong>Overview</strong><br> Contains the nitric oxide (NO) number densities (in cm<sup>-3</sup>) from 60 km to 160 km retrieved from SCIAMACHY nominal (~0--90 km) limb scans.</p> <p>SCIAMACHY is a UV-visible-near-infrared spectrometer which flies on ESA's Envisat and was operational from 08/2002 to 04/2012 (see Burrows et al., 1995 and Bovensmann et al., 1999 and references therein). The nominal limb mode was carried out daily (apart from outages and a few days dedicated to other measurement modes) from 08/2002 until the end of the mission. The limb scans were performed from ground to about 90 km tangent altitude, and the retrieval was performed on a 2.5° x 2 km latitude--altitude grid from 90°S--90°N and from 60 km--160 km. This data set comprises all SCIAMACHY nominal NO measurements sorted by date and year, each day comprised about 15 orbits. See the accompanying README for the dimension and variable descriptions.</p> <p>The NO retrieval was carried out at the Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany, and is described in Bender et al., 2017. It is adapted from the MLT NO retrieval described in Bender et al., 2013. We used the SCIAMACHY geo-located atmospheric spectra (SCI_NL__1P) version 8.02 provided by ESA via their data browser at<br> https://earth.esa.int/web/guest/data-access/browse-data-products.<br> The spectra were calibrated with ESA's `SciaL1C` command line tool available for download at<br> https://earth.esa.int/web/guest/software-tools/content/-/article/scial1c-command-line-tool-4073.</p> <p>The SCIAMACHY MLT NO data were previously compared to the results from ACE-FTS, MIPAS, and SMR in Bender et al., 2015, showing that all agree within the respective measurement uncertainties. This nominal data set here was not yet validated with other measurements but compares well to the SCIAMACHY MLT NO measurements below 90 km.</p> <p><strong>Acknowledgements</strong><br> The development of the retrieval was funded by the Helmholtz-society under the grant number VH-NG-624. The SCIAMACHY project, which was initiated by Professor Burrows in 1984, was funded by the German Aerospace Agency (DLR), the Netherlands Space Office NSO, formerly NIVR, and the Belgium ministry responsible for space. ESA funded the Envisat project. Professor Burrows of University of Bremen is the Principal Investigator. He and his research team comprising his colleagues in Bremen and international scientific collaborators led the scientific support and development of SCIAMACHY and the scientific exploitation of its  data products.</p> <p>The SCIAMACHY instrument is developed by an industrial team headed by companies now known as Airbus SD on the German side and by Dutch Space on the Dutch side and included Belgium companies. The instrument and algorithm development is supported by the activities of the SCIAMACHY Science Advisory Group (SSAG), a team of scientists from various  international institutions: University of  Bremen (D), SRON (NL), SAO (USA), IASB (B), MPI Chemistry Mainz (D), KNMI (NL),  University of Heidelberg (D), IMGA (I), CNRS-LPMA (F). Operational data processing is being performed by ESA and DLR-DFD within the ENVISAT ground  segment. Support with respect to mission planning and operations is given by  the SCIAMACHY Operations Support Team (SOST). The relevant work at the University of Bremen is funded by the University and State of Bremen.</p

    Nitric oxide (NO) data set (60--160 km) from SCIAMACHY mesosphere--lower thermosphere limb scans

    No full text
    <p><strong>Overview</strong><br> Contains the nitric oxide (NO) number densities (in cm<sup>-3</sup>) from 60 km to 160 km retrieved from SCIAMACHY mesosphere--lower thermosphere (MLT, 50--150 km) limb scans.</p> <p>SCIAMACHY is a UV-visible-near-infrared spectrometer which flies on ESA's Envisat and was operational from 08/2002 to 04/2012 (see Burrows et al., 1995 and Bovensmann et al., 1999 and references therein). The Mesosphere--Lower Thermosphere (MLT) measurement mode was carried out from 07/2008 until the end of the mission for one day every 15 days. This data set comprises 84 days of SCIAMACHY MLT NO measurements, each<br> containing about 15 orbits.</p> <p>The NO retrieval was carried out at the Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany, and is described in Bender et al., 2013. We used the SCIAMACHY geo-located atmospheric spectra (SCI_NL__1P) version 8.02 provided by ESA via their data browser at<br> https://earth.esa.int/web/guest/data-access/browse-data-products.<br> The spectra were calibrated with ESA's `SciaL1C` command line tool available for download at<br> https://earth.esa.int/web/guest/software-tools/content/-/article/scial1c-command-line-tool-4073.</p> <p>The SCIAMACHY NO data were compared to the results from ACE-FTS, MIPAS, and SMR in Bender et al., 2015, showing that all agree within the respective measurement uncertainties.</p> <p><strong>Acknowledgements</strong><br> The development of the retrieval was funded by the Helmholtz-society under the grant number VH-NG-624. The SCIAMACHY project, which was initiated by Professor Burrows in 1984, was funded by the German Aerospace  Agency (DLR), the Netherlands Space Office NSO, formerly NIVR, and the Belgium ministry responsible for space.  ESA funded the Envisat project. Professor Burrows of University of Bremen is the Principal Investigator. He and his  research team comprising his colleagues in Bremen and international scientific collaborators led the scientific  support and development of SCIAMACHY and the scientific exploitation of its  data products.</p> <p>The SCIAMACHY instrument is developed by an industrial team headed by companies now known as Airbus SD on the German side and by Dutch Space on the Dutch side and included Belgium companies. The instrument and algorithm development is supported by the activities of the SCIAMACHY Science Advisory Group (SSAG), a team of scientists from various  international institutions: University of  Bremen (D), SRON (NL), SAO (USA), IASB (B), MPI Chemistry Mainz (D), KNMI (NL),  University of Heidelberg (D), IMGA (I), CNRS-LPMA (F). Operational data processing is being performed by ESA and DLR-DFD within the ENVISAT ground  segment. Support with respect to mission planning and operations is given by  the SCIAMACHY Operations Support Team (SOST). The relevant work at the University of Bremen is funded by the University and State of Bremen.</p
    corecore