564 research outputs found

    A Brain-Machine Interface Instructed by Direct Intracortical Microstimulation

    Get PDF
    Brain–machine interfaces (BMIs) establish direct communication between the brain and artificial actuators. As such, they hold considerable promise for restoring mobility and communication in patients suffering from severe body paralysis. To achieve this end, future BMIs must also provide a means for delivering sensory signals from the actuators back to the brain. Prosthetic sensation is needed so that neuroprostheses can be better perceived and controlled. Here we show that a direct intracortical input can be added to a BMI to instruct rhesus monkeys in choosing the direction of reaching movements generated by the BMI. Somatosensory instructions were provided to two monkeys operating the BMI using either: (a) vibrotactile stimulation of the monkey's hands or (b) multi-channel intracortical microstimulation (ICMS) delivered to the primary somatosensory cortex (S1) in one monkey and posterior parietal cortex (PP) in the other. Stimulus delivery was contingent on the position of the computer cursor: the monkey placed it in the center of the screen to receive machine–brain recursive input. After 2 weeks of training, the same level of proficiency in utilizing somatosensory information was achieved with ICMS of S1 as with the stimulus delivered to the hand skin. ICMS of PP was not effective. These results indicate that direct, bi-directional communication between the brain and neuroprosthetic devices can be achieved through the combination of chronic multi-electrode recording and microstimulation of S1. We propose that in the future, bidirectional BMIs incorporating ICMS may become an effective paradigm for sensorizing neuroprosthetic devices

    Characterising the impact of heatwaves on work-related injuries and illnesses in three Australian cities using a standard heatwave definition- Excess Heat Factor (EHF)

    Get PDF
    BACKGROUND AND AIMS:Heatwaves have potential health and safety implications for many workers, and heatwaves are predicted to increase in frequency and intensity with climate change. There is currently a lack of comparative evidence for the effects of heatwaves on workers' health and safety in different climates (sub-tropical and temperate). This study examined the relationship between heatwave severity (as defined by the Excess Heat Factor) and workers' compensation claims, to define impacts and identify workers at higher risk. METHODS:Workers' compensation claims data from Australian cities with temperate (Melbourne and Perth) and subtropical (Brisbane) climates for the years 2006-2016 were analysed in relation to heatwave severity categories (low and moderate/high severity) using time-stratified case-crossover models. RESULTS:Consistent impacts of heatwaves were observed in each city with either a protective or null effect during heatwaves of low-intensity while claims increased during moderate/high-severity heatwaves compared with non-heatwave days. The highest effect during moderate/high-severity heatwaves was in Brisbane (RR 1.45, 95% CI: 1.42-1.48). Vulnerable worker subgroups identified across the three cities included: males, workers aged under 34 years, apprentice/trainee workers, labour hire workers, those employed in medium and heavy strength occupations, and workers from outdoor and indoor industrial sectors. CONCLUSION:These findings show that work-related injuries and illnesses increase during moderate/high-severity heatwaves in both sub-tropical and temperate climates. Heatwave forecasts should signal the need for heightened heat awareness and preventive measures to minimise the risks to workers.Blesson M. Varghese, Adrian G. Barnett, Alana L. Hansen, Peng Bi, John Nairn, Shelley Rowett, Monika Nitschke, Scott Hanson-Easey, Jane S. Heyworth, Malcolm R. Sim, Dino L. Pisaniell

    Large-amplitude driving of a superconducting artificial atom: Interferometry, cooling, and amplitude spectroscopy

    Get PDF
    Superconducting persistent-current qubits are quantum-coherent artificial atoms with multiple, tunable energy levels. In the presence of large-amplitude harmonic excitation, the qubit state can be driven through one or more of the constituent energy-level avoided crossings. The resulting Landau-Zener-Stueckelberg (LZS) transitions mediate a rich array of quantum-coherent phenomena. We review here three experimental works based on LZS transitions: Mach-Zehnder-type interferometry between repeated LZS transitions, microwave-induced cooling, and amplitude spectroscopy. These experiments exhibit a remarkable agreement with theory, and are extensible to other solid-state and atomic qubit modalities. We anticipate they will find application to qubit state-preparation and control methods for quantum information science and technology.Comment: 13 pages, 5 figure

    Tomato: a crop species amenable to improvement by cellular and molecular methods

    Get PDF
    Tomato is a crop plant with a relatively small DNA content per haploid genome and a well developed genetics. Plant regeneration from explants and protoplasts is feasable which led to the development of efficient transformation procedures. In view of the current data, the isolation of useful mutants at the cellular level probably will be of limited value in the genetic improvement of tomato. Protoplast fusion may lead to novel combinations of organelle and nuclear DNA (cybrids), whereas this technique also provides a means of introducing genetic information from alien species into tomato. Important developments have come from molecular approaches. Following the construction of an RFLP map, these RFLP markers can be used in tomato to tag quantitative traits bred in from related species. Both RFLP's and transposons are in the process of being used to clone desired genes for which no gene products are known. Cloned genes can be introduced and potentially improve specific properties of tomato especially those controlled by single genes. Recent results suggest that, in principle, phenotypic mutants can be created for cloned and characterized genes and will prove their value in further improving the cultivated tomato.

    A First Search for coincident Gravitational Waves and High Energy Neutrinos using LIGO, Virgo and ANTARES data from 2007

    Get PDF
    We present the results of the first search for gravitational wave bursts associated with high energy neutrinos. Together, these messengers could reveal new, hidden sources that are not observed by conventional photon astronomy, particularly at high energy. Our search uses neutrinos detected by the underwater neutrino telescope ANTARES in its 5 line configuration during the period January - September 2007, which coincided with the fifth and first science runs of LIGO and Virgo, respectively. The LIGO-Virgo data were analysed for candidate gravitational-wave signals coincident in time and direction with the neutrino events. No significant coincident events were observed. We place limits on the density of joint high energy neutrino - gravitational wave emission events in the local universe, and compare them with densities of merger and core-collapse events.Comment: 19 pages, 8 figures, science summary page at http://www.ligo.org/science/Publication-S5LV_ANTARES/index.php. Public access area to figures, tables at https://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=p120000

    Psychosocial Treatment of Children in Foster Care: A Review

    Get PDF
    A substantial number of children in foster care exhibit psychiatric difficulties. Recent epidemiologi-cal and historical trends in foster care, clinical findings about the adjustment of children in foster care, and adult outcomes are reviewed, followed by a description of current approaches to treatment and extant empirical support. Available interventions for these children can be categorized as either symptom-focused or systemic, with empirical support for specific methods ranging from scant to substantial. Even with treatment, behavioral and emotional problems often persist into adulthood, resulting in poor functional outcomes. We suggest that self-regulation may be an important mediat-ing factor in the appearance of emotional and behavioral disturbance in these children

    The Sudbury Neutrino Observatory

    Full text link
    The Sudbury Neutrino Observatory is a second generation water Cherenkov detector designed to determine whether the currently observed solar neutrino deficit is a result of neutrino oscillations. The detector is unique in its use of D2O as a detection medium, permitting it to make a solar model-independent test of the neutrino oscillation hypothesis by comparison of the charged- and neutral-current interaction rates. In this paper the physical properties, construction, and preliminary operation of the Sudbury Neutrino Observatory are described. Data and predicted operating parameters are provided whenever possible.Comment: 58 pages, 12 figures, submitted to Nucl. Inst. Meth. Uses elsart and epsf style files. For additional information about SNO see http://www.sno.phy.queensu.ca . This version has some new reference
    corecore