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Superconducting persistent-current qubits are quantum-coherent artificial atoms with multiple,
tunable energy levels. In the presence of large-amplitude harmonic excitation, the qubit state can be
driven through one or more of the constituent energy-level avoided crossings. The resulting Landau-
Zener-Stückelberg (LZS) transitions mediate a rich array of quantum-coherent phenomena. We
review here three experimental works based on LZS transitions: Mach-Zehnder-type interferometry
between repeated LZS transitions, microwave-induced cooling, and amplitude spectroscopy. These
experiments exhibit a remarkable agreement with theory, and are extensible to other solid-state and
atomic qubit modalities. We anticipate they will find application to qubit state-preparation and
control methods for quantum information science and technology.
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I. INTRODUCTION

Superconducting qubits are solid-state artificial atoms,
comprising lithographically defined Josephson tunnel
junctions and superconducting interconnects. When
cooled to milli-Kelvin temperatures, these qubits exhibit
quantized states of charge, flux, or junction phase de-
pending on the circuit design parameters1,2. Associated
with these quantized states is a spectrum of energy levels,
tunable via an external control parameter, e.g., an ap-
plied electric or magnetic field. Although generally only
the lowest two energy eigenstates are utilized for quan-
tum information science applications, the energy spec-
trum indeed extends to higher-energy levels correspond-
ing to higher-excited states of the circuit. The separation
between pairs of energy levels typically falls in the radio
frequency and microwave regimes, and resonantly driv-
ing the artificial atom with a harmonic field can couple
and induce quantum-state transitions.

Due to their relatively large size, superconducting ar-
tificial atoms can be strongly coupled to their external
control fields. It is this feature, along with their quan-
tum coherence, that we utilize in the present article. A
large-amplitude harmonic control field can drive an arti-
ficial atom throughout its energy-level spectrum. When
driven through an avoided level crossing, a Landau-
Zener-Stückelberg (LZS) transition occurs. This is a co-
herent process akin to a beamsplitter for photons, taking
an input state of the atom and outputting a superposition
of states. Repeated passages through an avoided cross-
ing act as an atom interferometer, causing the atomic su-
perposition state to interfere quantum mechanically with
itself. Since the weighting of the superposition state de-
pends sensitively on the size of the avoided crossing and
the velocity (change in relative energy between levels per
unit time) with which it is traversed, the quantum in-
terference reflects the energy spectrum of the artificial
atom. In turn, the quantum interference can be lever-

aged to facilitate non-adiabatic quantum control.
We begin this article with an introduction to the super-

conducting persistent-current qubit3,4 and an overview of
Landau-Zener-Stückelberg (LZS) transitions. We then
present three experimental works that utilize LZS tran-
sitions in a strongly-driven persistent-current qubit. The
first is Mach-Zehnder-type interferometry between re-
peated LZS transitions5, for which we observed quantum
interference fringes in n-photon transition rates6, with
n=1 . . . 50. The second is microwave-induced cooling7,
by which we achieved effective qubit temperatures less
than 3 mK, a factor 10-100 times lower than the envi-
ronmental temperature. The third is amplitude spec-
troscopy8,9, a spectroscopy technique that monitors the
system response to amplitude rather than frequency.
Amplitude spectroscopy allowed us to probe the energy
spectra of our artificial atom from 0.01 - 120 GHz, while
driving it at a fixed frequency near 0.2 GHz. Finally, we
conclude by considering the application of LZS transi-
tions to quantum information science and technology.

II. PERSISTENT-CURRENT QUBIT:
SUPERCONDUCTING ARTIFICIAL ATOM

Superconducting artificial atoms exhibit a high degree
of quantum coherence, and there have been numerous
proposals and demonstrations of quantum phenomena in
these systems, many derived from the fields of atomic
physics and quantum optics. A few examples include:
coherent superpositions of macroscopic states10,11,12,
Rabi oscillations13,14,15,16,17,18,19,20,21,22, Landau-Zener
transitions23, Stückelberg oscillations5,6,24,25,26, mi-
crowave cooling7,27,28,29, electromagnetically induced
transparency30,31, geometrical phase32, and cavity
quantum electrodynamics33,34,35,36,37,38,39. Significant
progress has also been made toward their application
to quantum information science40,41, including state ini-
tialization7, tunable42,43,44,45 and long-distance46,47 cou-
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pling, quantum control48,49,50,51, quantum state52,53 and
process54 tomography, and measurement55,56,57,58,59,60.
For a recent review of superconducting qubits, see Ref. 2.

Here, we use a superconducting persistent-current
qubit to implement an artificial atom3,4. The persistent-
current qubit is a superconducting loop interrupted by
three Josephson junctions (Fig. 1A). When biased with
a static magnetic flux fdc ∼ Φ0/2, where Φ0 is the super-
conducting flux quantum, the system assumes a double-
well potential profile (Fig. 1B). The diabatic ground state
of the left (right) well corresponds to a persistent current
Iq with clockwise (counterclockwise) circulation. These
two diabatic energy levels (Fig. 2A) have a separation
ε = 2Iqδfdc linear in the flux detuning δfdc ≡ fdc−Φ0/2.
Higher-excited states of the double-well potential (see
Fig. 5C) will be considered in Sections V and VI.

The two-level Hamiltonian for the lowest two diabatic
states is shown in Eq. 1. At detuning δfdc = 0, the
double-well potential is symmetric and the diabatic-state
energies are degenerate. At this “degeneracy point,” res-
onant tunneling between the diabatic states opens an
avoided level crossing of energy ∆. Here, the qubit states
are σx eigenstates, corresponding to symmetric and anti-
symmetric combinations of diabatic circulating-current
states. Detuning the flux away from this point tilts
the double well, allowing us to tune the eigenstates and
eigenenergies of the artificial atom. Far from the degen-
eracy point the qubit states are approximately σz eigen-
states, the diabatic states with well-defined circulating
current. The qubit is read out using a hysteretic DC
SQUID (superconducting quantum interference device),
a sensitive magnetometer that can distinguish the flux
generated by circulating current states.

In addition to the static flux biases, the artificial atom
is controlled and read out using the pulses illustrated in
Fig. 1C. As we describe below, the qubit is first prepared
in its ground state using a harmonic cooling pulse with
amplitude Vc and frequency νc. Quantum-state transi-
tions are then driven using a harmonic RF pulse with
amplitude V and frequency ν. These fields are mutu-
ally coupled to the qubit through a small antenna. This
is followed by a SQUID readout current pulse using the
“sample and hold” technique5,18. If the sample current
exceeds the SQUID switching current, a voltage pulse will
appear at the output during the hold phase. Threshold
detection looks for the presence or absence of a SQUID
voltage, and this constitutes a digital measurement of the
qubit state. Alternatively, although not used in these ex-
periments, we have incorporated the SQUID into a res-
onant circuit and realized qubit readout via the shift in
resonance frequency and phase for both the linear and
non-linear resonance regimes61,62.

The “qubit step” is shown in Fig. 1D as a function of
the SQUID sample current and the flux detuning. The
diabatic states |L〉 and |R〉 correspond to different levels
of sample current (dashed lines) located symmetrically
about the degeneracy point δfdc=0. This plot constitutes
a cumulative switching current distribution of the SQUID

for each δfdc value. Additionally, a 3-µs RF pulse at 1.2
GHz is applied to the qubit, and resonant transitions can
be observed as fingers extending down (up) from state
|L〉 (|R〉) when n×1.2 GHz becomes resonant with the
energy-level separation. A best-estimator (dashed-dotted
line) can be determined to provide the best statistical
discrimination between states |L〉 and |R〉. The resulting
qubit step with its saturated n-photon resonances along
the best estimator line is shown in Fig. 1E.

The device used in this work was fabricated at Lin-
coln Laboratory using a fully-planarized niobium tri-
layer process and optical lithography. It has a critical
current density Jc ≈ 160 A/cm2, and the characteristic
Josephson and charging energies are EJ ≈ (2πh̄)300 GHz
and EC ≈ (2πh̄)0.65 GHz respectively. The ratio of the
qubit Josephson junction (JJ) areas is α ≈ 0.84, and
∆ ≡ ∆0,0 ≈ (2πh̄)10 MHz. Although dependent on the
flux detuning, the approximate values for coherence times
are: interwell relaxation time T1 ∼ 100µs, intrawell re-
laxation time T1 ∼ 0.05µs, homogeneous transverse de-
cay time T2 ∼ 20 ns, inhomogeneous transverse decay
time T ∗2 ∼ 10 ns. The experiments were performed in a
dilution refrigerator at a base temperature of 20 mK. The
device was magnetically shielded, and all electrical lines
were carefully filtered and attenuated to reduce noise (see
Ref. 8 for details).

III. LANDAU-ZENER-STÜCKELBERG
TRANSITIONS

Landau-Zener-Stückelberg (LZS) transitions occur
when a quantum system is driven through an energy-level
avoided crossing63,64,65. The resulting quantum dynam-
ics of the LZS mechanism66 in driven systems67 have been
developed68,69 within a two-level coherent scattering for-
malism70,71,72,73 with potential application to quantum
information science and technology72,73,74,75,76.

We model a LZS transition at a single crossing using
the two-level Hamiltonian

H = −1
2

(
ε(t) ∆
∆ −ε(t)

)
, (1)

in which ε is the energy difference between diabatic-state
energy levels (dashed lines in Fig. 2a), and ∆ is the size
of the avoided crossing and corresponds to the coupling
strength between diabatic states |L〉 and |R〉.

The system is prepared in state |R〉 at a static value
ε0 � ∆ far from the avoided crossing (blue dot, Fig. 2A)
and driven longitudinally from that point by making ε(t)
time dependent. We distinguish here between “weak
driving,” in which the resulting excursion is not large
enough to reach the avoided crossing, and “strong driv-
ing” for which the avoided crossing is traversed. Un-
der strong-driving conditions, the asymptotic probability
PD-LZS of a transition between diabatic states,

PD-LZS ≡ 1− PE-LZS = 1− exp
−π∆2

2h̄ζi
, (2)
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FIG. 1: Artificial atom (persistent current qubit) and measurement set-up. A Schematic of the qubit and surrounding DC
SQUID readout. B Double well qubit potential comprising energy levels for static magnetic flux bias δfdc about Φ0/2, where Φ0

is the superconducting flux quantum. Diabatic states of the left (right) well corresponds to a persistent current with clockwise
(counterclockwise) circulation. At detuning δfdc = 0, the double-well potential is symmetric and the diabatic-state energies are
degenerate. Tunnel coupling opens an avoided crossing ∆. C Qubit excitation and read-out pulse sequence. The qubit is first
prepared in its ground state with a harmonic cooling pulse with amplitude Vc and frequency νc. Quantum-state transitions
are induced with a subsequent harmonic RF pulse with amplitude V and frequency ν. The qubit state is read-out using the
DC SQUID switching response. D Qubit step. Cumulative switching current distribution of the SQUID for each δfdc value
following a 3-µs RF driving pulse at 1.2 GHz applied to the qubit (the cooling pulse was not used here). Resonant multiphoton
transitions (of order n) are observed between states |L〉 and |R〉. The switching distribution along the dashed-dotted line
discriminates between states |L〉 and |R〉 (E).

is governed by the relative-energy sweep rate ζi

ζi =
dε(t)
dt
|t=ti (3)

evaluated at the time t = ti at which the system is swept
through the avoided crossing. In the original LZS for-
mulation, the system was driven with a fixed sweep rate,
whereas we will later consider a harmonically driven sys-
tem. We also note that we have elected to monitor the
probability PD-LZS of a transition between the diabatic
states |L〉 and |R〉, because our readout detector is sensi-
tive to changes in diabatic state. This can be written with
no loss of generality in terms of the probability PE-LZS of
a transition between the system eigenstates.

There are two strong-driving limits characterized by
the relative sizes of the sweep velocity ζ and the avoided
crossing ∆. In the adiabatic limit (Fig. 2A), the sweep
velocity is small (hζ � ∆2) and the probability of a
transition from state |R〉 to state |L〉 approaches unity,
PD-LZS → 1. In this case, the system dynamics are
slow enough that the system adiabatically follows the
ground eigenstate through the avoided crossing. In the
nonadiabatic limit (Fig. 2B), the sweep velocity is large
(hζ � ∆2) and the probability of a transition approaches
zero PD-LZS → 0. In this case, the dynamics are too fast
for the system to follow; the system remains in diabatic

state |R〉 and, thereby, effectively jumps the energy gap
at the avoided crossing.

More generally, a superposition state α|L〉 + β|R〉 re-
sults from an excursion through the avoided crossing, as
illustrated in Fig. 2C. Following an idea discussed by Shy-
tov et al.72, the LZS transition acts as a beamsplitter for
the atomic state. The amplitudes α and β are deter-
mined by a unitary transformation UD-LZS, effectively a
2 × 2 “beamsplitter matrix” comprising complex reflec-
tion r and transmission t coefficients related to the adi-
abaticity parameter66 ∆2/h̄ζ present in Eq. 2 such that
|t|2 = 1− PD-LZS, |r|2 = PD-LZS, and U†D-LZSUD-LZS = I.
Note that we have defined |t|2 and |r|2 from the perspec-
tive of a beamsplitter, which “transmits” (“reflects”) an
input state to the same (opposite) diabatic state, respec-
tively. After the transition, a relative phase ∆θ12 accrues
due to the energy difference between the states |L〉 and
|R〉. If the drive ε(t) then returns the system through the
avoided crossing a second time, the atomic state collides
and quantum mechanically interferes with itself during
the second LZS transition (Fig. 2D). The cumulative re-
sult is an atom-state interferometer whose output state
depends on the LZS transition amplitudes and the inter-
ference phase.

An analogy can be made to an optical Mach-Zehnder
interferometer: the atomic states play the role of the pho-
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FIG. 2: Landau-Zener-Stückelberg transition. A Adiabatic limit: hζ � ∆2; the probability of a transition from state |R〉 to
state |L〉 approaches unity. B Nonadiabatic limit: hζ � ∆2; the probability of a transition from state |R〉 to state |L〉 approaches
zero. C Coherent superposition of states. At intermediate sweep velocities (hζ ∼ ∆2) a superposition state α|L〉+ β|R〉 results
from an excursion through the avoided crossing. A phase difference ∆θ12 accrues due to the energy difference between the states
|L〉 and |R〉. D Quantum interference during a second excursion through the avoided crossing. Interference fringes appear at
half-integer and integer values of ∆θ12/2π, which is tunable via the drive amplitude.

ton modes, the LZS transitions play the role of the pho-
ton beamsplitters, and the energy-level splitting, which
determines the interference phase, plays the role of opti-
cal path length difference. The quantum interference is
robust provided the evolution time of the state through
the interferometer is short compared with the atom’s co-
herence times. In addition to superconducting artificial
atoms5,6,14,21,24,25, this concept is generally applicable
to other solid-state artificial atoms80,81 and generalized
spin systems82 (e.g., molecular magnets83,84,85, natural
atoms86,87, and molecules88,89,90) that exhibit avoided
level crossings, and it is extensible to multiple energy
levels as we demonstrate in Section 5.

IV. MACH-ZEHNDER-TYPE
INTERFEROMETRY

The structure of the n-photon spectroscopy peaks seen
in Fig. 1E consists of regularly-spaced resonances posi-
tioned according to the condition n×1.2 GHz being reso-
nant with the energy level separation. Notably, however,
for this particular value of driving amplitude, the n=1, 3,
and 6 photon peaks are missing. As we describe in this
section, the presence and absence of these peaks arise
from Mach-Zehnder-type quantum interference at a level
crossing. The interference phase is tunable via the driv-

ing amplitude, leading to a “Bessel staircase” interfer-
ence pattern in the observed spectroscopy. The interfer-
ence oscillations are known as Stückelberg oscillations65,
and they have been observed in both artificial5,6,24,25 and
natural86,87,88 atomic systems.

In a conventional Mach-Zehnder interferometer, an op-
tical signal is passed through two beamsplitters. The first
beamsplitter coherently divides the signal into two out-
put paths, which may have different effective optical path
lengths. These paths are then recombined at the second
beamsplitter, where the signal waves interfere and exit
the interferometer through the two output ports. An
intensity measurement at either output port exhibits in-
terference fringes depending on the relative path length.

Here, we instead utilize LZS transitions at level cross-
ings as beamsplitters for the atomic state72. We drive the
persistent-current qubit with a harmonic driving field of
the form

ε(t) = ε0 +A sinωt (4)

with ω = 2πν the driving frequency and A > ε0 the field
amplitude (in units of energy), which is proportional to
the RF voltage at the source. As illustrated in Fig. 2D,
the qubit state undergoes two LZS transitions during one
period of the driving field. The first LZS transition at
time t1 splits the qubit into a superposition of excited
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FIG. 3: Mach Zehnder interference. A Measured qubit population as a function of excitation amplitude and flux detuning
in two excitation regimes. Left: ν = 270 MHz. The resonance linewidth is smaller than the excitation frequency (B, top);
individual n-photon resonances can be resolved and a Bessel staircase is observed. Right: ν = 90 MHz. The resonance linewidth
is larger than the excitation frequency (B, bottom); individual resonances are no longer resolved but coherent interference is
still observed. C Interference fringes in qubit population for ν = 270 MHz (left) ν = 90 MHz (right) along the vertical dashed
lines in A.

and ground states. A relative phase ∆θ12 accumulates

∆θ12 =
1
h̄

∫ t2

t1

ε(t)dt, ε(t) = ε|R〉(t)− ε|L〉(t) (5)

until the second LZS transition at time t2, at which point
the qubit state collides with itself and interferes. Inter-
ference fringes appear at half-integer and integer values
of ∆θ12/2π, which is tunable via the drive amplitude.

It is clear, however, that a second phase must also
play a role in this problem, since the qubit state con-
tinues to evolve for the remainder of the driving period.
It is physically meaningful to consider the total phase θ
accumulated over a single period:

θ =
1
h̄

∮
ε(t)dt = 2πε0/h̄ω, (6)

which is independent of the driving amplitude. Over
many periods of the driving field, the cascaded pairs of
LZS transitions (cascaded interferometers) will construc-
tively interfere provided θ = 2πn. One can view this as
a “time-domain” formulation for the familiar n-photon
resonance condition

ε0,n = nhν (7)

where n is the number of photons involved in the transi-
tion. It is only when the product nhν equals the energy
separation ε0,n that the cascaded LZS transitions lead
to a net buildup of state population and, as a function
of ∆θ12, the observed interference fringes. These oscil-
lations are related to photoassisted transport91,92,93 and
Rabi oscillations14,21 in the multiphoton regime.

Mach-Zehnder-type interference in the discrete-
resonance limit driven towards saturation is shown in
Fig. 3A for driving frequency ν = 270 MHz. This fre-
quency is larger than the resonance linewidth (Fig. 3B),
and so individual n-photon resonances can be resolved.
There are two main features observable in this plot. The
first is the presence of equally-spaced n-photon transi-
tions as a function of flux detuning, symmetrically lo-
cated about the qubit step at δfdc = 0. As one might ex-
pect, the onset of the higher-photon transitions requires
larger driving amplitudes. Remarkably, we observe up to
50-photon transitions in this scan. The second main fea-
ture is that for each n-photon resonance, the spectroscopy
appears and disappears as a function of amplitude, which
sweeps the interference phase ∆θ12. For example, 14 os-
cillation lobes are visible for the 1-photon transition. A
vertical slice of the spectroscopy (dashed white line in
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Fig. 3A) is plotted in Fig. 3C; at this particular ampli-
tude, one can see the enhancement and suppression of
the spectroscopy peaks as was observed in Fig. 1E.

The Mach-Zehnder interference for an n-photon tran-
sition yields a modified amplitude-dependent matrix ele-
ment5,14,82

∆n = ∆Jn(λ) (8)

where Jn(λ) is the nth-order Bessel-function, and its ar-
gument λ = A/hν is the dimensionless driving ampli-
tude. Intuitively, the Bessel-function dependence arises,
because the qubit is driven harmonically through energy
levels that are linear in flux detuning and, as a result,
the interference phase accumulates with a harmonic time
dependence. The transition rate and, therefore, the pop-
ulation transfer, at each n-photon resonance is related to
the matrix element squared, ∆2

n. At specific amplitudes,
despite driving the system resonantly, no net transition
occurs due to a complete destructive Mach-Zehnder in-
terference corresponding to the zeros of Jn(λ); this is
the coherent destruction of tunneling77,78,79 condition
for driven n-photon transitions5,6. More generally, as a
function of the driving amplitude, we have observed the
continuous evolution between regions of enhanced and
suppressed tunneling as dictated by Jn(λ) over several
Bessel-function lobes (Fig. 3A).

In the discrete resonance limit, n-photon resonances
are distinguishable, because the coherence time of the
qubit is sufficiently longer than the driving period. By
reducing the frequency to ν = 90 MHz (Fig. 3A, right
panel), we effectively made the drive period compara-
ble with the linewidth, νT ∗2 ∼ 1 (Fig. 3B). In this spec-
troscopy plot, the individual n-photon resonances are no
longer resolvable. However, the Mach-Zehnder interfer-
ence fringes (vertical slice, Fig. 3C) are clearly visible,
because the qubit remains coherent during the critical
fraction of the drive period during which the phase ∆θ12

accumulates and the Mach-Zehnder interference occurs.
Intuitively, provided νT1 � 1, the output populations of
each quantum interferometer are then preserved (frozen)
until the subsequent interferometer is reached in the fol-
lowing period; therefore, although the resonance condi-
tion is lost, the Mach-Zehnder quantum interference re-
mains. This behavior can be contrasted with driven Rabi
oscillations, for which there would be no signature of co-
herence in the limit νT ∗2 ∼ 1.

V. MICROWAVE COOLING

The previous discussion involved driving transitions
in the lowest two energy levels in the double-well po-
tential of our artificial atom (Fig. 4A), which constitute
the two-level qubit subsystem of a more complex energy
level diagram (Fig. 5C). When higher-excited states are
accessed, the driven system behavior can be markedly
different from the population saturation observed when
only two levels are involved. For example, at least three

levels are required to achieve population inversion, and
such a multi-level artificial atom coupled to a microwave
cavity has been used to demonstrate masing (microwave
lasing)94. In that work, Josephson quasi-particle states
were driven to achieve inversion. Alternatively, popula-
tion inversion can be established by accessing an ancil-
liary excited state via direct or LZS transitions. This will
be briefly discussed in the next section.

Here, by reversing the cycle that leads to population in-
version, we show that one can pump population from the
qubit excited state |0L〉 to the qubit ground state |0R〉
(Fig. 4A) via an ancillary energy level |1R〉. In the case
where the population in |0L〉 results from thermal exci-
tation, the transfer of population to |0R〉 effectively cools
the qubit by lowering its effective temperature. This kind
of active cooling represents a means to initialize and reset
qubits with high fidelity, key elements for quantum infor-
mation science and technology. Alternatively, the pump-
ing mechanism can be used to refrigerate environmental
degrees of freedom27, or to cool neighboring quantum
systems28,29.

More explicitly, for a qubit in equilibrium with its envi-
ronment, the population in |0L〉 that is thermally excited
from |0R〉 follows the Boltzmann relation

p0L/p0R = exp[−ε/kBTbath], (9)

where p0L,0R are the qubit populations for energy levels
ε0L,0R, ε = ε0L−ε0R, kB is the Boltzmann constant, and
Tbath is the bath temperature. To cool the qubit subsys-
tem below Tbath, a microwave magnetic flux of amplitude
A and frequency ν targets the |0L〉 → |1R〉 transition,
driving the state-|0L〉 thermal population to state |1R〉,
from which it quickly relaxes to the ground state |0R〉.
Efficient cooling only occurs when the driving-induced
population transfer to |0R〉 is faster than the thermal
repopulation of |0L〉. The hierarchy of relaxation and
absorption rates required, Γ0R,1R � Γ0L,1R,Γ0L,0R, is
achieved in our system owing to a relatively weak tunnel-
ing between wells, which inhibits the interwell relaxation
and absorption processes |1R〉 → |0L〉 and |0R〉 → |0L〉,
compared with the relatively strong intrawell relaxation
process |1R〉 → |0R〉.

Figure 4B shows the qubit step at Tbath = 150 mK in
equilibrium with the bath (top) and after a 3-µs cool-
ing pulse at 5 MHz (bottom). Under equilibrium condi-
tions, the average level populations exhibit a thermally-
broadened qubit step about δfdc = 0, with a width
proportional to Tbath. The presence of microwave ex-
citation targeting the |0L〉 → |1R〉 transition, followed
by relaxation, acts to increase the ground-state popula-
tion and, thereby, sharpens the qubit step. Cooling can
thus be quantified in terms of an effective temperature
Teff < Tbath, a signature that is evident from the narrow-
ing of the qubit steps in Fig. 4B after cooling. More pre-
cisely, using the notation from Fig. 2, the effective qubit
temperature is obtained by fitting an effective temper-
ature that would have been required in equilibrium to
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FIG. 4: Cooling of an artificial atom via an ancillary excited state. A External excitation transfers the thermal population
from state |0L〉 to state |1R〉 (straight line) from which it decays into the ground state |0R〉. Wavy lines represent spontaneous
relaxation and absorption leading to equilibration. B Qubit step at Tbath = 150 mK in equilibrium with the bath (top) and
after a 3-µs cooling pulse at 5 MHz (bottom). The average level populations exhibit a qubit step about δfdc = 0, with a
width proportional to Tbath (top) and Teff � Tbath (bottom). C Schematic level diagram illustrating resonant and adiabatic
cooling. |0L〉 → |1R〉 transitions are resonant at high driving frequency ν (blue lines) and occur via adiabatic passage at low ν
(red lines). ∆00 and ∆01 are the tunnel splittings between |0R〉 - |0L〉 and |0L〉 - |1R〉. D Optimal cooling parameters. State
|0R〉 population vs. flux detuning δfdc and driving amplitude A with ν = 5 MHz, ∆tc = 3µs, and Tbath= 150 mK. Optimal
conditions for cooling are realized at A = A∗, where A∗ is defined in C. E Cooling at driving frequencies ν = 800, 400, 200
and 5 MHz. State |0R〉 population vs. δfdc for the cooled qubit and for the qubit in thermal equilibrium with the bath (black
lines, Tbath = 300 mK). Measurements for ν = 800, 400, 200 and 5 MHz are displaced vertically for clarity. A cooling factor of
100, independent of detuning, is obtained in the adiabatic limit (5 MHz).

achieve the observed qubit population p0R,

p0R =
ε√

ε2 + ∆2

[
tanh

(√
ε2 + ∆2

2kBTeff

)
+ 1

]
. (10)

Universal cooling (cooling that is independent of flux
detuning) occurs near an optimal driving amplitude A∗
(Fig. 4C). This is demonstrated in Fig. 4D where we
present the |0R〉 state population Psw measured as a
function of the microwave amplitude A and flux detuning
δfdc for ν = 5 MHz. Cooling and the diamond feature
can be understood in terms of the energy level diagram
(Fig. 5C). As the amplitude of the microwave pulse is in-
creased from V = 0, population transfer first occurs when
the ∆0,0 avoided crossing is reached, i.e. A > |δfdc|; this
defines the front side of the observed diamond, symmetric
about the qubit step (see also Fig. 3A). For amplitudes
A∗/2 ≤ A ≤ A∗, the ∆0,1 (∆1,0) side avoided crossing

dominates the dynamics, resulting in a second pair of
thresholds A = A∗ − |δfdc|, which define the back side
of the diamond. In the region outside of the diamond’s
backside, the qubit is cooled. As the diamond narrows to
the point A = A∗, the narrowest qubit step is observed.
This is the universal cooling condition: only one of the
two side avoided crossings (∆0,1 or ∆1,0) is reached and,
thereby, strong transitions with relaxation to the ground
state result for all δfdc. In contrast, for A > A∗, both
side avoided crossings (∆0,1 and ∆1,0) are reached si-
multaneously for |δfdc| < A− A∗, leading once again to
a large population transfer between |0R〉 and |0L〉, and
opening the second diamond feature (see Fig. 5).

The cooling exhibits a rich structure as a function of
driving frequency and detuning, resulting from the man-
ner in which state |1R〉 is accessed (Fig. 4C). Transitions
occur via a (multiphoton) resonant or adiabatic passage
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process when the driving frequency is high or low enough,
respectively6,7. At high frequencies (800 and 400 MHz in
Fig. 4E) well-resolved resonances of n-photon transitions
are observed and cooling is thus maximized near reso-
nances. At intermediate frequencies (400 and 200 MHz),
Mach-Zehnder interference at the side avoided crossing
∆01 becomes more prominent and modulates the inten-
sity of the n-photon resonances5,6. Below ν = 200 MHz,
individual resonances are no longer discernible, but as in
Fig. 3C, the modulation envelope persists6. At the lowest
frequencies (ν < 10 MHz), state |1R〉 is reached via adi-
abatic passage through the ∆01 crossing (Fig. 4C), and
the population transfer and cooling become conveniently
independent of detuning (see ν = 5 MHz in Fig. 4E). As
shown in Fig. 4E, we achieve an effective qubit tempera-
ture Teff = 3 mK, even for Tbath = 300 mK. In our qubit,
our determination of Teff was limited primarily by de-
coherence (linewidth), which limited the resolution with
which we could distinguish the states |0R〉 and |0L〉 near
degeneracy. Nonetheless, we can estimate the ideally re-
solvable cooling factor αc for this type of cooling process
using Eq. 9,

αc ≡
Tbath

Teff
=
ε1R→0R

∆
, (11)

where ε1R→0R ≈ h × 25 GHz is the energy separation
where the relaxation |1R〉 → |0R〉 occurs and ∆ ≈ h ×
0.01 GHz for our qubit, yielding a cooling factor αc ∼
2500. For a bath temperature Tbath = 50 mK, this would
correspond to an effective temperature Teff = 20 µK in
our qubit.

Cooling a qubit in equilibrium with the bath requires
a characteristic cooling time. In turn, a cooled qubit will
thermalize to the environmental bath temperature over
a characteristic equilibration time. The relationship be-
tween these two times determines if it is possible to drive
the qubit while it is still cold. We found in this qubit
that equilibration times are at least one order of magni-
tude larger than cooling times at Tbath < 250 mK and up
to three order of magnitude larger at Tbath < 100 mK7.
This allowed us ample time to drive the qubit after cool-
ing it. The implementation of an active cooling pulse
prior to a generic driving pulse is highly advantageous.
On the one hand, it sensibly shortens measurement times,
enabling us to acquire data at repetition rates that far ex-
ceed the intrinsic equilibration rate due to interwell relax-
ation after each measurement trial. By adopting active
cooling, we gained a factor 50 in data acquisition speed,
limited by the bandwidth of our readout circuit. On the
other hand, by analogy to the cooling of trapped ions and
atoms, active cooling greatly reduces thermal smearing,
allowing us to analyze features in the data that would
have been hidden otherwise. This type of active cooling
protocol was required to obtain the detailed, clean data
in Fig. 3, where we could clearly resolve resonances sep-
arated by only 270 MHz (13 mK). In fact, the necessity
of active cooling becomes even more evident in the next
section where, without the cooling pulse, the observed

level of detail could not have been resolved over such a
large parameter space in practical acquisition times.

VI. AMPLITUDE SPECTROSCOPY

Frequency-dependent absorption and emission spec-
troscopy has long played a fundamental role in the char-
acterization of quantum systems. The development of
coherent microwave (maser) and optical (laser) sources,
high-intensity radiation with tunable, narrow spectral
linewidth, has further enabled targeted absorption spec-
troscopy of atoms and molecules with high frequency res-
olution95,96. However, the application of broadband fre-
quency spectroscopy is not universally straightforward.
This is particularly relevant for artificial atoms engi-
neered from solid-state materials which, when cooled to
cryogenic temperatures, assume quantized energy lev-
els that extend into microwave and millimeter wave
regimes (10-300 GHz). Although certainly not an im-
possible task, a broadband frequency-based spectroscopic
study of these atoms in excess of around 50 GHz be-
comes extremely challenging and expensive to implement
due to numerous frequency-dependent effects (e.g., fre-
quency dispersion and the requisite tolerances to control
impedance).

Amplitude spectroscopy is a technique that allows
broadband spectroscopic characterization of a quantum
system. With amplitude spectroscopy, spectroscopic
information is obtained from the system response to
driving-field amplitude at a fixed frequency. The result-
ing spectroscopic interference patterns, “spectroscopy di-
amonds,” are mediated by multilevel LZS transitions and
Mach-Zehnder-type interferometry, and they serve as a
fingerprint of the artificial atom’s multilevel energy spec-
trum (Figs. 5A and 5B). The energy spectrum is then
determined by analyzing the atomic fingerprint. In this
way, the amplitude spectroscopy technique complements
frequency spectroscopy: although a less direct approach,
it allows one to probe the energy level structure of a quan-
tum system over extraordinarily large (even practically
prohibitive) bandwidths by circumventing many of the
challenges associated with a frequency-based approach.

In general, the spectroscopy diamonds arise due to an
interplay between the static flux detuning δfdc and driv-
ing amplitude V . As described in Sections III and IV,
transitions occur when an avoided crossing is reached
for a particular set of values (δfdc,V ). For example, at
a flux detuning δf∗dc, the diamond boundaries occur at
V = V1, V2, V3.... (Fig. 5 A and C). The Mach-Zehnder in-
terference due to a phase accumulation ∆θq,q′ at a given
avoided crossing ∆q,q′ can be modulated by varying both
δfdc and V .

There are two important contributions to the diamond
spectroscopy patterns: LZS-mediated transitions and in-
trawell relaxation. In Fig. 5D, we show a subset of the
diamond interference pattern in Fig. 5A. Arrows indicate
lines of constant phase accumulation ∆θq,q′ = (2N − 1)π
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FIG. 5: Amplitude spectroscopy with long-pulse driving towards saturation. Spectroscopy diamonds obtained at driving
frequencies ν = 185 MHz (A) and ν = 700 MHz (B). The color scale represents the net qubit population in state |q,R〉, where
R (L) labels diabatic states of the right (left) well of the qubit double-well potential, and q = 0, 1, 2, ... labels the longitudinal
modes. The excitation amplitude V is swept for each static flux detuning δfdc. The diamond edges mark the driving amplitude
V for each value of δfdc when an avoided level crossing is first reached (amplitudes V1−V5 for δfdc = δf∗dc). C Schematic energy-
level diagram illustrating the relation between V and the avoided crossing positions for δfdc = δf∗dc. The arrows represent the
amplitudes V1 − V5 in A. (D) Zoom in of 185-MHz interference patterns (box region, Fig. 5A). The arrows point to lines of
constant phase (2N − 1)π along which LZS transitions are likely to occur for the avoided crossings ∆0,0, ∆0,1, and ∆1,0.

in (δfdc,V )-space that leads to LZS transitions at each of
the three listed avoided crossings, ∆0,0, ∆0,1, and ∆1,0.
Where these lines cross, competition (coordination) be-
tween avoided crossings act to suppress (enhance) the
net transition rate between pairs of energy levels. The
arrangement of these crossing lines leads to the checker-
board patterns observed inside and outside the diamonds.

The second contribution, intrawell relaxation, provides
another means to connect energy levels and results in
both cooling and population inversion. In Section V,

Fig. 4C, ∆0,1 mediated the transition |0L〉 → |1R〉,
and intrawell relaxation then mediated the transition
|1R〉 → |0R〉; the net result was cooling, since the flux
δfdc was positive, making |0R〉 the ground state. How-
ever, in Fig. 5D δfdc is negative. Furthermore, in the
upper-right corner of Fig. 5D, both crossings ∆0,1 and
∆1,0 are accessed. In the bright red regions, ∆0,1 still
tends to cause transitions |0L〉 → |1R〉, and relaxation
puts that population in state |0R〉. However, the inter-
ference condition at ∆1,0 on the other side of the energy
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level diagram (Fig. 5C) tends to keep the population in
|0R〉. Therefore, population builds in state |0R〉, the
first excited state for negative flux detuning, resulting
in strong population inversion. Varying the interference
conditions at ∆0,1 and ∆1,0 by changing (δfdc,V ) causes
the observed modulation between population inversion
and cooling.

We have developed several techniques for extracting in-
formation about the energy levels from the spectroscopy
interference patterns8,9. The key metrics are the posi-
tions of the avoided crossings in flux, the values of the
splittings ∆q,q′ , and the slopes of the energy levels. With
this information, one can reconstruct a large portion of
the energy level diagram.

The positions of the avoided crossings can be deter-
mined precisely from the diamond boundaries, because
the onset of each diamond is associated with LZS transi-
tions at a particular level crossing. The splitting of each
avoided crossing can be obtained essentially by fitting
the LZS formula in Eq. 2 to the Mach-Zehnder interfer-
ence patterns. Alternatively, one can study the dynami-
cal population transfer between states using the pulsed,
short-time implementation of amplitude spectroscopy8.

The energy-level slopes can be determined by two
means. The first is by relating the separation between
Mach-Zehnder interference nodes to the expected phase
accumulation ∆θ12, which depends sensitively on the
energy-level slope. Alternatively, we show with Rud-
ner et al. in Ref. 9 that the two-dimensional Fourier
transform of the diamond patterns yields a family of
one-dimensional sinusoids in Fourier space; the periods
of these sinusoids are related to the energy-level slopes.
The intuition is that the Fourier transform inverts the
energy domain of the spectroscopy to the time domain
(scaled by h̄). This means that the sinusoids in Fourier
space image the time-dependence of the quantum phase
of the qubit, which, in turn, depends sensitively on the
energy-level slopes.

Using amplitude spectroscopy, we were able to scan
the energy level diagram continuously beyond the fourth
energy-level avoided crossing (∆0,0 . . .∆0,4, ∆4,0) with
splitting values ranging from ∆0,0 ≈ 0.01 GHz to
∆0,4,∆4,0 ≈ 2.2 GHz8. The equivalent information ob-
tained using frequency spectroscopy would have required
scanning frequencies from 0.01 GHz out to beyond 100
GHz (in this device, each avoided crossing is separated by
approximately 25 GHz, and so each subsequent crossing
in Fig. 5 is raised an additional 25 GHz above the ground
state). Remarkably, with amplitude spectroscopy, the en-
tire scan performed in Fig. 5A was performed at a fixed
frequency ν = 185 MHz. The scan in Fig. 5B shows the
amplitude spectroscopy of the same system for a fixed
frequency ν = 700 MHz, clearly in the discrete reso-
nance limit. The resonance condition adds another con-
straint, making a more complex and interesting checker-
board pattern.

VII. SUMMARY AND CONCLUSIONS

Strongly driving a superconducting artificial atom
through an avoided level crossing results in a Landau-
Zener-Stückelberg transition, which, in general, creates a
superposition of atomic states whose weighting depends
on the size of the avoided crossing and the velocity with
which it is traversed. In this sense, as we discussed in
Section III, the LZS mechanism acts as a beamsplitter
for artificial atoms.

In Section IV, we described how harmonically driving
the system cascades two LZS transitions per driving pe-
riod, resulting in an atomic analog to a Mach-Zehnder in-
terferometer. The relative phase acquired between LZS
transitions is the interference phase of the interferom-
eter, and it is tunable by the driving amplitude. The
buildup of population over many driving periods exhibits
Stückelberg oscillations as a function of the driving am-
plitude (interference phase) due to the cascaded Mach-
Zehnder-type interference effect. To observe these oscil-
lations, the coherence time must only be longer than the
small portion of the drive period during which the inter-
ference phase accrues, and the relaxation time must be
long enough to maintain the population until readout.

The total phase accumulated over one period, in con-
trast, is amplitude independent. For coherence times
longer than the drive period, cascaded interferometers
yield a net population change when this round-trip phase
accumulation is 2πn per driving period, a condition
which can be viewed as the “time-domain” counterpart
to the n-photon resonance condition nhν = ε0,n. By
making the drive period commensurate with the coher-
ence time, we showed that we could still observe the
Stückelberg oscillations, even though the discrete reso-
nances were no longer discernable.

We utilized strong driving and the LZS mechanism
with higher-energy levels to achieve both cooling and
population inversion in our artificial atom. In Section V,
we described using a microwave pumping scheme to cool
the atomic degrees of freedom a factor 10-100 times
colder than the ambient dilution refrigerator tempera-
ture. The scheme involved pumping unwanted thermal
population to an ancillary excited state, from which it
relaxed to the ground state. In Section VI, we showed
that by reversing the order, we could pump population
through an ancillary state to achieve inversion.

The energy level structure can be probed over ex-
traordinarily large bandwidth using the amplitude spec-
troscopy approach presented in Section VI. Since the LZS
mechanism and Mach-Zehnder interference are sensitive
to the defining features in the energy level diagram (en-
ergy band slopes, level splittings, and their locations),
the interference patterns that result from sweeping the
amplitude are a “fingerprint” of the artificial atom’s en-
ergy spectrum. Using amplitude spectroscopy at a fixed
driving frequency of only 185 MHz, we could access con-
tinuously multiple energy levels from about 10 MHz out
to beyond 120 GHz.
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Large-amplitude driving and the LZS mechanism have
application to quantum information science and technol-
ogy. Active cooling has utility in state initialization and
refreshing ancilla qubits in quantum error correction pro-
tocols. Amplitude spectroscopy provides a means to as-
certain over large bandwidth the energy level structure
of a qubit system beyond the lowest two levels. The
Mach-Zehnder-type interference can facilitate nonadia-
batic control schemes, in which the quantum interference
at an avoided crossing is used to achieve state transi-
tions that approach the intrinsic coupling rate ∆. In cold
atoms and molecules, this kind of non-adiabatic control
has been used to drive transitions that would otherwise

be challenging to realize in a weak-driving limit.
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