487 research outputs found
Carbon uptake and distribution in Spark Plasma Sintering (SPS) processed Sm(Co, Fe, Cu, Zr)z
Spark Plasma Sintering (SPS) rapidly consolidates high-melting point powders between carbon dies, but carbon can pose a risk for many materials. Carbon uptake in SPS and conventional, pressure-less sintered (CS) Sm(Co, Fe, Cu, Zr)z has been analysed using Electron Probe Micro-Analysis (EPMA) to produce high-detail elemental distribution maps. Field's metal was used as mounting material to avoid introducing carbon into the samples. The distribution maps show high surface carbon levels in the SPS-processed Sm(Co, Fe, Cu, Zr)z to a depth of 10 μm. Much less carbon was observed in CS Sm(Co, Fe, Cu, Zr)z. Furthermore, elemental carbon analysis (LECO-C) confirmed carbon was most abundant at the surface in SPS-processed Sm(Co, Fe, Cu, Zr)z but also at higher levels internally, when compared to the CS sample. It is inferred that the carbon contamination is due to the contact between the powder and the graphite die/paper at elevated temperatures during SPS process. The measured levels of carbon in the SPS-processed sample are not expected to significantly impact the magnetic properties of Sm(Co, Fe, Cu, Zr)z. These results may have implications for other powder materials processed by SPS with properties sensitive to carbon
Analytical Results for Individual and Group Selection of Any Intensity
The idea of evolutionary game theory is to relate the payoff of a game to reproductive success (= fitness). An underlying assumption in most models is that fitness is a linear function of the payoff. For stochastic evolutionary dynamics in finite populations, this leads to analytical results in the limit of weak selection, where the game has a small effect on overall fitness. But this linear function makes the analysis of strong selection difficult. Here, we show that analytical results can be obtained for any intensity of selection, if fitness is defined as an exponential function of payoff. This approach also works for group selection (= multi-level selection). We discuss the difference between our approach and that of inclusive fitness theory
Risk Factors for Graft-versus-Host Disease in Haploidentical Hematopoietic Cell Transplantation Using Post-Transplant Cyclophosphamide
Post-transplant cyclophosphamide (PTCy) has significantly increased the successful use of haploidentical donors with a relatively low incidence of graft-versus-host disease (GVHD). Given its increasing use, we sought to determine risk factors for GVHD after haploidentical hematopoietic cell transplantation (haplo-HCT) using PTCy. Data from the Center for International Blood and Marrow Transplant Research on adult patients with acute myeloid leukemia, acute lymphoblastic leukemia, myelodysplastic syndrome, or chronic myeloid leukemia who underwent PTCy-based haplo-HCT (2013 to 2016) were analyzed and categorized into 4 groups based on myeloablative (MA) or reduced-intensity conditioning (RIC) and bone marrow (BM) or peripheral blood (PB) graft source. In total, 646 patients were identified (MA-BM = 79, MA-PB = 183, RIC-BM = 192, RIC-PB = 192). The incidence of grade 2 to 4 acute GVHD at 6 months was highest in MA-PB (44%), followed by RIC-PB (36%), MA-BM (36%), and RIC-BM (30%) (P =.002). The incidence of chronic GVHD at 1 year was 40%, 34%, 24%, and 20%, respectively (P <.001). In multivariable analysis, there was no impact of stem cell source or conditioning regimen on grade 2 to 4 acute GVHD; however, older donor age (30 to 49 versus <29 years) was significantly associated with higher rates of grade 2 to 4 acute GVHD (hazard ratio [HR], 1.53; 95% confidence interval [CI], 1.11 to 2.12; P =.01). In contrast, PB compared to BM as a stem cell source was a significant risk factor for the development of chronic GVHD (HR, 1.70; 95% CI, 1.11 to 2.62; P =.01) in the RIC setting. There were no differences in relapse or overall survival between groups. Donor age and graft source are risk factors for acute and chronic GVHD, respectively, after PTCy-based haplo-HCT. Our results indicate that in RIC haplo-HCT, the risk of chronic GVHD is higher with PB stem cells, without any difference in relapse or overall survival
Stochastic Acceleration by Turbulence
The subject of this paper is stochastic acceleration by plasma turbulence, a
process akin to the original model proposed by Fermi. We review the relative
merits of different acceleration models, in particular the so called first
order Fermi acceleration by shocks and second order Fermi by stochastic
processes, and point out that plasma waves or turbulence play an important role
in all mechanisms of acceleration. Thus, stochastic acceleration by turbulence
is active in most situations. We also show that it is the most efficient
mechanism of acceleration of relatively cool non relativistic thermal
background plasma particles. In addition, it can preferentially accelerate
electrons relative to protons as is needed in many astrophysical radiating
sources, where usually there are no indications of presence of shocks. We also
point out that a hybrid acceleration mechanism consisting of initial
acceleration by turbulence of background particles followed by a second stage
acceleration by a shock has many attractive features. It is demonstrated that
the above scenarios can account for many signatures of the accelerated
electrons, protons and other ions, in particular He and He, seen
directly as Solar Energetic Particles and through the radiation they produce in
solar flares.Comment: 29 pages 7 figures for proceedings of ISSI-Bern workshop on Particle
Acceleration 201
The evolution of language: a comparative review
For many years the evolution of language has been seen as a disreputable topic, mired in fanciful "just so stories" about language origins. However, in the last decade a new synthesis of modern linguistics, cognitive neuroscience and neo-Darwinian evolutionary theory has begun to make important contributions to our understanding of the biology and evolution of language. I review some of this recent progress, focusing on the value of the comparative method, which uses data from animal species to draw inferences about language evolution. Discussing speech first, I show how data concerning a wide variety of species, from monkeys to birds, can increase our understanding of the anatomical and neural mechanisms underlying human spoken language, and how bird and whale song provide insights into the ultimate evolutionary function of language. I discuss the ‘‘descended larynx’ ’ of humans, a peculiar adaptation for speech that has received much attention in the past, which despite earlier claims is not uniquely human. Then I will turn to the neural mechanisms underlying spoken language, pointing out the difficulties animals apparently experience in perceiving hierarchical structure in sounds, and stressing the importance of vocal imitation in the evolution of a spoken language. Turning to ultimate function, I suggest that communication among kin (especially between parents and offspring) played a crucial but neglected role in driving language evolution. Finally, I briefly discuss phylogeny, discussing hypotheses that offer plausible routes to human language from a non-linguistic chimp-like ancestor. I conclude that comparative data from living animals will be key to developing a richer, more interdisciplinary understanding of our most distinctively human trait: language
Operation and performance of the ATLAS semiconductor tracker
The semiconductor tracker is a silicon microstrip detector forming part of the inner tracking system of the ATLAS experiment at the LHC. The operation and performance of the semiconductor tracker during the first years of LHC running are described. More than 99% of the detector modules were operational during this period, with an average intrinsic hit efficiency of (99.74±0.04)%. The evolution of the noise occupancy is discussed, and measurements of the Lorentz angle, δ-ray production and energy loss presented. The alignment of the detector is found to be stable at the few-micron level over long periods of time. Radiation damage measurements, which include the evolution of detector leakage currents, are found to be consistent with predictions and are used in the verification of radiation background simulations
- …