743 research outputs found
Higgs Doublets, Split Multiplets and Heterotic SU(3)_C x SU(2)_L x U(1)_Y Spectra
A methodology for computing the massless spectrum of heterotic vacua with
Wilson lines is presented. This is applied to a specific class of vacua with
holomorphic SU(5)-bundles over torus-fibered Calabi-Yau threefolds with
fundamental group Z_2. These vacua lead to low energy theories with the
standard model gauge group SU(3)_C x SU(2)_L x U(1)_Yand three families of
quark/leptons. The massless spectrum is computed, including the multiplicity of
Higgs doublets.Comment: 11+1 p
Potentiation of sensory responses in ventrobasal thalamus in vivo via selective modulation of mGlu1 receptors with a positive allosteric modulator.
Metabotropic glutamate subtype 1 (mGlu1) receptor is thought to play a role in synaptic responses in thalamic relay nuclei. The aim of this study was to evaluate the positive allosteric modulator (PAM) Ro67-4853 as a tool to modulate thalamic mGlu1 receptors on single thalamic neurones in vivo. Ro67-4853, applied by iontophoresis onto ventrobasal thalamus neurones of urethane-anaesthetised rats, selectively enhanced responses to the agonist (S)-3,5-dihydroxy-phenylglycine (DHPG), an effect consistent with mGlu1 potentiation. The PAM was also able to enhance maintained responses to 10 Hz trains of sensory stimulation of the vibrissae, but had little effect on responses to single sensory stimuli. Thus Ro67-4853 appears to be a highly selective tool that can be useful in investigating how mGlu1 receptor potentiation can alter neural processing in vivo. Our results show the importance of mGlu1 in sensory processing and attention mechanisms at the thalamic level and suggest that positive modulation of mGlu1 receptors might be a useful mechanism for enhancing cognitive and attentional processes
Association between environmental tobacco smoke exposure and dementia syndromes
© 2020 The Authors. Published by BMJ. This is an open access article available under a Creative Commons licence.
The published version can be accessed at the following link on the publisher’s website: http://dx.doi.org/10.1136/oemed-2012-100785Objectives: Environmental tobacco smoke (ETS) has a range of adverse health effects, but its association with dementia remains unclear and with dementia syndromes unknown. We examined the dose-response relationship between ETS exposure and dementia syndromes. Methods: Using a standard method of GMS, we interviewed 5921 people aged ≥60 years in five provinces in China in 2007-2009 and characterised their ETS exposure. Five levels of dementia syndrome were diagnosed using the Automated Geriatric Examination for Computer Assisted Taxonomy instrument. The relative risk (RR) of moderate (levels 1-2) and severe (levels 3-5) dementia syndromes among participants exposed to ETS was calculated in multivariate adjusted regression models. Results: 626 participants (10.6%) had severe dementia syndromes and 869 (14.7%) moderate syndromes. Participants exposed to ETS had a significantly increased risk of severe syndromes (adjusted RR 1.29, 95% CI 1.05 to 1.59). This was dose-dependently related to exposure level and duration. The cumulative exposure dose data showed an adjusted RR of 0.99 (95% CI 0.76 to 1.28) for >0-24 level years of exposure, 1.15 (95% CI 0.93 to 1.42) for 25-49 level years, 1.18 (95% CI 0.87 to 1.59) for 59-74 level years, 1.39 (95% CI 1.03 to 1.84) for 75-99 level years and 1.95 (95% CI 1.34 to 2.83) for ≥100 level years. Significant associations with severe syndromes were found in never smokers and in former/current smokers. There were no positive associations between ETS and moderate dementia syndromes. Conclusions: ETS should be considered an important risk factor for severe dementia syndromes. Avoidance of ETS may reduce the rates of severe dementia syndromes worldwide.Published versio
Eukaryotic Polyribosome Profile Analysis
Protein synthesis is a complex cellular process that is regulated at many levels. For example, global translation can be inhibited at the initiation phase or the elongation phase by a variety of cellular stresses such as amino acid starvation or growth factor withdrawal. Alternatively, translation of individual mRNAs can be regulated by mRNA localization or the presence of cognate microRNAs. Studies of protein synthesis frequently utilize polyribosome analysis to shed light on the mechanisms of translation regulation or defects in protein synthesis. In this assay, mRNA/ribosome complexes are isolated from eukaryotic cells. A sucrose density gradient separates mRNAs bound to multiple ribosomes known as polyribosomes from mRNAs bound to a single ribosome or monosome. Fractionation of the gradients allows isolation and quantification of the different ribosomal populations and their associated mRNAs or proteins. Differences in the ratio of polyribosomes to monosomes under defined conditions can be indicative of defects in either translation initiation or elongation/termination. Examination of the mRNAs present in the polyribosome fractions can reveal whether the cohort of individual mRNAs being translated changes with experimental conditions. In addition, ribosome assembly can be monitored by analysis of the small and large ribosomal subunit peaks which are also separated by the gradient. In this video, we present a method for the preparation of crude ribosomal extracts from yeast cells, separation of the extract by sucrose gradient and interpretation of the results. This procedure is readily adaptable to mammalian cells
O-GlcNAcase:promiscuous hexosaminidase or key regulator of O-GlcNAc signalling?
O-GlcNAc signaling is regulated by an opposing pair of enzymes: O-GlcNAc transferase installs and O-GlcNAcase (OGA) removes the modification from proteins. The dynamics and regulation of this process are only beginning to be understood as the physiological functions of both enzymes are being probed using genetic and pharmacological approaches. This minireview charts the discovery and functional and structural analysis of OGA and summarizes the insights gained from recent studies using OGA inhibition, gene knock-out, and overexpression. We identify several areas of “known unknowns” that would benefit from future research, such as the enigmatic C-terminal domain of OGA
Running coupling: Does the coupling between dark energy and dark matter change sign during the cosmological evolution?
In this paper we put forward a running coupling scenario for describing the
interaction between dark energy and dark matter. The dark sector interaction in
our scenario is free of the assumption that the interaction term is
proportional to the Hubble expansion rate and the energy densities of dark
sectors. We only use a time-variable coupling (with the scale factor
of the universe) to characterize the interaction . We propose a
parametrization form for the running coupling in which the
early-time coupling is given by a constant , while today the coupling is
given by another constant, . For investigating the feature of the running
coupling, we employ three dark energy models, namely, the cosmological constant
model (), the constant model (), and the time-dependent
model (). We constrain the models with the current
observational data, including the type Ia supernova, the baryon acoustic
oscillation, the cosmic microwave background, the Hubble expansion rate, and
the X-ray gas mass fraction data. The fitting results indicate that a
time-varying vacuum scenario is favored, in which the coupling crosses
the noninteracting line () during the cosmological evolution and the sign
changes from negative to positive. The crossing of the noninteracting line
happens at around , and the crossing behavior is favored at about
1 confidence level. Our work implies that we should pay more attention
to the time-varying vacuum model and seriously consider the phenomenological
construction of a sign-changeable or oscillatory interaction between dark
sectors.Comment: 8 pages, 5 figures; refs added; to appear in EPJ
Aluminium oxide barrier films on polymeric web and their conversion for packaging applications
In recent years, inorganic transparent barrier layers such as aluminium oxide or silicon oxide deposited onto polymer films have emerged as an attractive alternative to polymer based transparent barrier layers for flexible food packaging materials. For this application, barrier properties against water vapour and oxygen are critical. Aluminium oxide coatings can provide good barrier levels at thicknesses in the nanometre range, compared to several micrometres for polymer-based barrier layers. These ceramic barrier coatings are now being produced on a large scale using industrial high speed vacuum deposition techniques, here, reactive evaporation on a 'boat-type' roll-to-roll metalliser. For the thin barrier layer to be useful in its final packaging application, it needs to be protected. This can be either via lamination or via an additional topcoat. This study reports on acrylate topcoats, but also undercoats, on aluminium oxide coated biaxially oriented polypropylene films. The effect of the acrylate layer on barrier levels and surface topography and roughness was investigated. The acrylate was found to smooth the substrate surface and improve barrier properties. Furthermore, the activation energy for water vapour and oxygen permeation was determined in order to investigate barrier mechanisms. The oxide coated film was, additionally, converted via adhesive lamination, which also provided improvement in barrier levels. © 2013 Elsevier B.V. All rights reserved
Inflation, moduli (de)stabilization and supersymmetry breaking
We study the cosmological inflation from the viewpoint of the moduli
stabilization. We study the scenario that the superpotential has a large value
during the inflation era enough to stabilize moduli, but it is small in the
true vacuum. This scenario is discussed by using a simple model, one type of
hybrid models.Comment: 17 pages, 7 figure
Variable Geometry Turbocharger Technologies for Exhaust Energy Recovery and Boosting-A Review
As emissions regulations become increasingly demanding, higher power density engine (downsized/downspeeded and increasingly right-sized) requirements are driving the development of turbocharging systems. Variable geometry turbocharging (VGT) at its most basic level is the first step up from standard fixed geometry turbocharger systems. Currently, VGTs offer significant alternative options or complementarity vis-à-vis more advanced turbocharging options. This review details the range of prominent variable geometry technologies that are commercially available or openly under development, for both turbines and compressors and discusses the relative merits of each. Along with prominent diesel-engine boosting systems, attention is given to the control schemes employed and the actuation systems required to operate variable geometry devices, and the specific challenges associated with turbines designed for gasoline engines
Cosmic age problem revisited in the holographic dark energy model
Because of an old quasar APM 08279+5255 at , some dark energy models
face the challenge of the cosmic age problem. It has been shown by Wei and
Zhang [Phys. Rev. D {\bf 76}, 063003 (2007)] that the holographic dark energy
model is also troubled with such a cosmic age problem. In order to accommodate
this old quasar and solve the age problem, we propose in this Letter to
consider the interacting holographic dark energy in a non-flat universe. We
show that the cosmic age problem can be eliminated when the interaction and
spatial curvature are both involved in the holographic dark energy model.Comment: 7 pages, 3 figures; v2: typos corrected, version for publication in
Phys.Lett.B; v3: typos in eqs (17,18) correcte
- …