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ABSTRACT 

In recent years, inorganic transparent barrier layers such as aluminium oxide or silicon oxide 

deposited onto polymer films have emerged as an attractive alternative to polymer based 

transparent barrier layers for flexible food packaging materials. For this application, barrier 

properties against water vapour and oxygen are critical. Aluminium oxide coatings can 

provide good barrier levels at thicknesses in the nanometre range compared to several 

micrometres for polymer-based barrier layer. These ceramic barrier coatings are now being 

produced on a large scale using industrial high speed vacuum deposition techniques, here, 

reactive evaporation on a ‘boat-type’ roll-to-roll metalliser. For the thin barrier layer to be 

useful in its final packaging application, it needs to be protected. This can be either via 

lamination or via an additional top coat. This study reports on acrylate topcoats, but also 

undercoats on aluminium oxide coated biaxially oriented polypropylene films. The effect of 

the acrylate layer on barrier levels and surface topography and roughness was investigated. 

The acrylate was found to smooth the substrate surface and improve barrier properties. 

Furthermore, the activation energy for water vapour and oxygen permeation was determined 
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in order to investigate barrier mechanisms. The oxide coated film was, additionally, 

converted via adhesive lamination, which also provided improvement in barrier levels.  

Keywords: Aluminium oxide, BOPP, barrier coatings, reactive evaporation, lamination, 

acrylate coatings 

1. Introduction 

Transparent barrier films have been attracting increasing interest in recent years. Applications 

range from moderate barrier levels required for food packaging to very high barrier levels for 

encapsulating electronic devices. With the transparent barrier flexible packaging market 

growing worldwide at a rate of 10 to 15 % per year [1], the use of vacuum deposition 

techniques to produce transparent barrier layers such as aluminium oxide (AlOx) or silicon 

oxide has become a favourable and powerful tool. For food packaging, this market is 

traditionally dominated by ethylene vinyl alcohol copolymer co-extruded barrier layer films 

and polyvinylidene chloride coated films [2]. However, vacuum-deposited barrier coatings 

only require a small fraction of the thickness of these barrier layers, i.e. their thickness is 

three orders of magnitude smaller, whilst still producing comparable barrier properties. The 

standard aluminium metallisation process, usually carried out in a roll-to-roll coater, can be 

modified by the injection of oxygen into the aluminium vapour in order to deposit a 

transparent aluminium oxide barrier layer; a process that has been developed over the last few 

decades [3-7]. The use of such large scale and high speed coating equipment can potentially 

provide vast economic and environmental benefits, which is of great importance for the low 

cost food packaging market where profit margins generally are small. Considering the low 

profit margins within the packaging market, the associated cost of the base substrate also 

plays an important role. On this point, biaxially oriented polypropylene (BOPP) base film 

still remains at a lower cost level than polyethylene terephthalate (PET) film, which causes it 
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to be the material of choice regarding commodity clear barrier films. Nevertheless, whilst 

PET films coated with reactively evaporated AlOx give reliable barrier properties against 

water and oxygen, BOPP films have proven to be a more difficult substrate material. Here, 

the barrier levels strongly depend on the film surface characteristics and the resulting growth 

conditions for the AlOx layer, as discussed in more detail in our earlier paper [7]. After 

coating with the thin barrier layer there is, though, a further conversion step required in order 

to obtain the final packaging structure. This is either achieved by laminating the vacuum 

coated films (adhesive lamination, extrusion lamination) or via application of an additional 

polymer coating on top of the inorganic layer, both serving the purpose of protecting the thin 

barrier layer during its final packaging application. Hence, it is essential that barrier loss upon 

conversion due to damage of the coating is avoided. In the course of this investigation, the 

effects of adhesive lamination as well as acrylate coatings on AlOx coated polymer film was 

examined. 

2. Experimental details 

2.1. Substrate, coating and conversion processes 

The film used in this study was a 20 µm thick three layer coextruded biaxially oriented 

polypropylene film with a homopolymer core and either a co- or terpolymer skin layer on 

each side. The film was also corona treated in-house by the film manufacturer. The corona 

treated side was coated with a 10 nm thin AlOx layer via reactive thermal evaporation on an 

industrial roll-to-roll metalliser using a Bobst Manchester (formerly General Vacuum 

Equipment) General K4000 vacuum metalliser. This vacuum coater has a source consisting 

of resistively heated evaporation boats onto which aluminium wire is continuously fed. 

Oxygen is introduced into the aluminium vapour cloud to produce a transparent aluminium 

oxide coating and an optical monitoring beam and closed loop control system is used to 
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achieve consistent optical properties of the coated film across the web width and length. The 

pressure during aluminium oxide deposition is of the order of 0.05 Pa. AlOx layers were 

deposited onto rolls of film (for acrylate top coats and lamination) and A4 samples mounted 

onto a carrier web (for acrylate undercoats). In the development work carried out, all coated 

film samples exhibit a transparency between 90 to 92 % visible light transmission, which is 

approximately equivalent to the light transmission of the uncoated BOPP substrate used. The 

transparency level is also maintained during the subsequent conversion processes of acrylate 

topcoating and lamination. 

The acrylate deposition was achieved via flash evaporation of a monomer liquid in vacuum. 

These monomers condense as a liquid film on the substrate surface and are subsequently 

cured using electron beam radiation (with a current of 400 mA) to obtain a cross-linked layer. 

Acrylate deposition was carried out on a system licensed by Sigma Technologies 

International Inc. (USA). Tripropylene glycol diacrylate was chosen as a monomer and an 

acrylate thickness of 0.75 µm was deposited. Acrylate layers were coated onto A4 samples as 

undercoats and topcoats prior and after AlOx deposition as an off-line process. 

Lamination of the AlOx coated film was performed on an industrial laminator (Bobst 

Rotomec CL850) via solvent-based adhesive lamination. A high performance two component 

polyurethane adhesive was used and the AlOx coated BOPP was laminated against another 

plain 20 µm BOPP film.  

2.2. Analytical methods 

Oxygen and water vapour transmission rates (OTR/WVTR) were determined in compliance 

with ASTM F 1927 and ASTM F 1249/ISO 15106-3 using a Mocon Oxtran 2/20 and Systech 

Illinois 8001 for oxygen permeation and a Mocon Permatran-W 3/33 and Systech Illinois 7001 
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for water vapour permeation. Test conditions for OTR were 23 °C and 50 % relative humidity 

(RH), whilst WVTR is stated for 37.8 °C and a gradient of 90 % RH. During WVTR 

measurement of coated samples, the coated side was always facing the 0 % RH. For the 

determination of the apparent activation energy of oxygen/moisture permeation, barrier 

measurements were carried out at 4 different temperatures (20 °C, 30 °C, 40 °C in addition to 

the respective temperature for a standard measurement).  

A Veeco DI CP II atomic force microscope (AFM) in tapping mode was used to acquire 

roughness data and topography images. All images were corrected by first order line-wise 

levelling. Root mean square (RMS) values were calculated from 5 x 5 µm2 size scans.  

3. Results and discussion 

3.1. Acrylate coated films 

3.1.1 Barrier performance 

The barrier performance of AlOx coated BOPP with and without the application of acrylate 

top- and undercoats is summarised in Table I. Additionally, the barrier properties of the plain 

BOPP film and the acrylate coated BOPP film prior to AlOx deposition are listed. As can be 

seen, the OTR of the plain film can be significantly reduced by the application of the 

inorganic AlOx layer. Nevertheless, the improvement of WVTR is only marginal. These 

differences have been attributed to the film surface properties affecting coating nucleation 

and growth and thus the final structure of the thin AlOx barrier layer [7, 8]. Furthermore, the 

use of an acrylate undercoat prior to AlOx deposition can additionally enhance the oxygen as 

well as water barrier, though the acrylate on its own only slightly improves the plain film 

OTR and leaves the WVTR unchanged. This has also been reported by other research groups 

for AlOx layers on polypropylene [9] and polyethylene terephthalate [10-13] and is assigned 
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to a variety of changes the acrylate confers to the polymer film. Acrylate layers have the 

capability to smoothen the substrate surface, eliminate surface features and thus decouple its 

defects from the subsequently deposited inorganic barrier layer [10, 12-15]. Furthermore, the 

barrier properties of the acrylate itself, which has a better oxygen barrier than BOPP [16], 

play a role, as this can affect and reduce the concentration gradient of the permeating 

substance in the polymer layer adjacent to the defect [17, 18]. Finally, the acrylate represents 

a change of surface chemistry which may offer more nucleation sites to the depositing 

inorganic coating thus resulting in a denser coating structure [9, 12]. The improvement seen 

when applying an acrylate topcoat, especially the significant enhancement of WVTR to less 

than 1 g/(m² d), could can be attributed to the protection of the barrier layer by the topcoat 

from damage during winding and handling, which is generally argued to be the reason for the 

barrier improvement [9, 10]. However, it is possible that infiltration of the acrylate into the 

defects of the AlOx layer (‘pore-filling’) could lead to a reduction of the permeation 

coefficient within the defects from that of air to that of the acrylate [19]. A reduction in 

permeation has previously been reported for a post-winding laminated barrier film [20], and, 

more recently, a post-production chemical vapour deposition layer has also been reported to 

fill defects [21]. In our case, the samples were rewound in vacuum after AlOx deposition as 

well as being handled prior to depositing the topcoat. Subsequently an acrylate coat was 

applied. So in our experiments, we were able to test whether the acrylate top-coat gave an 

inherent improvement in barrier due to pore-filling, rather than acting as a protection layer 

during winding and handling. Once again, the barrier properties of the acrylate should be 

mentioned here. Acrylate has a slightly better oxygen barrier than BOPP, nevertheless, it does 

not enhance the moisture barrier of BOPP (see Table I), i.e. its water vapour barrier is 

inferior. Hence, we conclude that to some degree the oxygen barrier improvement seen by the 

application of the topcoat may also be caused by the better oxygen barrier of the acrylate (and 
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therefore the resulting lower concentration gradient in the direct vicinity of defects). For the 

water barrier improvement seen we assume, though, that the pore-filling plays a major role. 

3.1.2 Apparent activation energy 

To further investigate the permeation mechanisms of oxygen and moisture through AlOx 

coated and AlOx/acrylate topcoated films, the activated rate theory was applied in order to 

calculate apparent activation energies of permeation [22-24]. The Arrhenius plots of this 

investigation and the activation energies obtained are summarised in Fig. 1 and Table II, 

respectively. As can be seen, the activation energy of oxygen permeation remains largely 

unchanged by the application of the AlOx layer as well as the acrylate topcoat, which 

indicates a macro-defect dominated permeation of oxygen through the coated film with the 

permeation through the BOPP polymer being the rate limiting step [25]. Furthermore, the 

activation energies obtained for oxygen are in agreement with values given in the literature 

[25-27]. For water vapour the AlOx layer apparently slightly decreases the activation energy, 

whilst the application of the acrylate topcoat results in an increase back to the level of plain 

BOPP. It is, however, assumed that this change is not significant given the relatively small 

number of samples tested; in this case two (compare also the high standard deviations of 

activation energies obtained by Tropsha and Harvey [22]). The lack of significant change in 

activation energy is attributed to a macro-defect driven mechanism, as stated previously for 

oxygen permeation. This means that the vast majority of the permeating molecules passes 

through defects of the size of a few nanometres to several micrometres, whilst the rest of the 

coating can be assumed to be virtually impermeable. Consequently, the AlOx layer primarily 

acts as a hurdle containing macroscopic defects, which the permeating molecules have to 

negotiate in order to enter/leave the polymer. There are, however, also a few cases published 

where despite the unchanged activation energy additional investigations suggested a chemical 
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interaction rather than a defect dominated permeation [22, 28]. The activation energy values 

for water vapour permeation through uncoated BOPP fall within the broad range of values 

reported in literature (Deng et al. [25] 64.6 ± 2.0 kJ/mol, Tropsha and Harvey [22] 

38.9 ± 2.1 kJ/mol).  

3.1.3 Surface topography 

The surface topographies of the uncoated and acrylate undercoated films were additionally 

investigated. Differential interference contrast light microscopy (no images shown) revealed 

major changes induced by the acrylate with smaller filler particles being masked by the 

acrylate layer as well as the typical BOPP film texture (‘orange-peel’) being eliminated, 

which is in agreement with results published by other researchers [10, 14, 29]. AFM 

investigation of the uncoated and acrylate coated BOPP revealed a substantial decline of 

surface roughness with RMS values decreasing from 4.1  ± 0.3 nm to 1.1 ± 0.1 nm by the 

application of the acrylate layer, accompanied by a considerable change in surface structure, 

as can be seen in Fig. 2. The acrylate RMS roughness compares well with a range of 0.8 to 

1.5 nm as stated by Affinito et al. [11]. This smoother surface could reduce the number of 

defects in the subsequently deposited AlOx layer, and thus account for the improved barrier 

of the films with an acrylate undercoat, as reported in Table I. 

3.2. Lamination 

For the industrial scale lamination the AlOx coated BOPP film was combined with an 

uncoated 20 µm BOPP film using a two component polyurethane adhesive. Thus, the thin 

AlOx barrier layer is embedded between and protected by the BOPP films and is adjacent to 

the adhesive layer. As can be seen from the barrier performance pre and post lamination 

stated in Table III, the OTR could be significantly decreased, whilst WVTR was 
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approximately halved. The latter could be attributed to the doubling of the film thickness by 

adding another 20 µm thick BOPP film. The improvement of OTR is predominantly assigned 

to the barrier properties of the adhesive, which has a lower oxygen permeability compared to 

BOPP. This results in a reduction of the concentration gradient in the adhesive layer adjacent 

to the defects and therefore improves the overall oxygen barrier of the laminated structure 

containing the AlOx barrier layer [30]. Furthermore, the infiltration of the adhesive into 

defects in the AlOx layer, as discussed for the acrylate topcoat, has also been suggested by 

other researchers [31] to play an important role for the barrier improvement obtained by the 

adhesive lamination of vacuum coated polymer films. 

4. Summary and conclusions 

Acrylate top- and undercoats as well as adhesive lamination can significantly enhance the 

barrier performance of reactively evaporated AlOx barrier layers on BOPP film. The change 

of surface chemistry and the smoothing of the BOPP film surface induced by the acrylate 

undercoat are thought to be of major importance for this barrier enhancement. During 

topcoating and presumably also lamination, the infiltration of the acrylate and adhesive into 

defects of the inorganic AlOx layer, such as cracks, pinholes or pores, and the better oxygen 

barrier properties of the acrylate/adhesive can account for the obtained improvement of 

barrier levels. The investigation of apparent activation energy revealed a macro-defect driven 

permeation process through the AlOx coated as well as AlOx/acrylate topcoated film for both, 

oxygen and water vapour. 
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List of figure and table captions 

Fig. 1: Arrhenius plots of ln(OTR), top, and ln(WVTR), bottom, as a function of 1/T for 

uncoated, AlOx coated and acrylate topcoated BOPP. 

 

 
 

Fig. 2: Representative 5 x 5 µm² AFM scans of uncoated BOPP (top) and acrylate coated 

BOPP, undercoat, no AlOx (bottom). 
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Table I – Barrier performance of AlOx coated BOPP in combination with acrylate top- and 

undercoats. 

Description  
OTR WVTR 

cm³/(m² d) g/(m² d) 

BOPP (uncoated)  ≈ 2100 6 – 7 

BOPP + Acrylate undercoat  1675.50 ± 129.40 6.59 ± 0.08 

BOPP + Acrylate undercoat + AlOx  15.83 ± 1.94 1.93 ± 0.21 
BOPP + AlOx  26.68 ± 3.07 4.73 ± 0.07 

BOPP + AlOx + Acrylate topcoat  13.65 ± 0.49 0.46 ± 0.07 
 

Table II – Apparent activation energy EA of oxygen and water vapour permeation through 

uncoated BOPP, AlOx coated BOPP and acrylate topcoated AlOx coated BOPP. 

Description  
EA (OTR) EA (WVTR) 

kJ/mol kJ/mol 

BOPP (uncoated)  41.5 ± 0.3 57.3 ± 0.2 

BOPP + AlOx  39.4 ± 0.3 51.8 ± 0.4 
BOPP + AlOx + Acrylate topcoat  39.2 ± 0.7 58.6 ± 1.1 

 

Table III – Barrier performance of AlOx coated BOPP before and after adhesive lamination. 

Description 
OTR WVTR 

cm³/(m² d) g/(m² d) 
BOPP + AlOx  
(before lamination) 48.62 ± 8.18 4.76 ± 0.35 

BOPP + AlOx + adhesive + BOPP 
(laminated) 11.92 ± 0.61 2.63 ± 0.17 

 
 

 


