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Abstract

A methodology for computing the massless spectrum of heterotic vacua with Wil-

son lines is presented. This is applied to a specific class of vacua with holomor-

phic SU(5)-bundles over torus-fibered Calabi-Yau threefolds with fundamental group

Z2. These vacua lead to low energy theories with the standard model gauge group

SU(3)C × SU(2)L × U(1)Y and three families of quark/leptons. The massless spec-

trum is computed, including the multiplicity of Higgs doublets.
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An important goal of heterotic string theory is to demonstrate the existence of vacua

consistent with low energy particle physics phenomenology. This has been discussed within

the context of G(⊂ E8)-bundles on simply connected elliptic Calabi-Yau threefolds in [1, 2, 3,

4]. These vacua correpond to GUT theories with gauge groups such as SU(5) and Spin(10).

However, to introduce Wilson lines one must extend these results to G-bundles on torus-

fibered Calabi-Yau threefolds X with non-trivial fundamental group. This was done in [5],

where G = SU(5) bundles on Calabi-Yau spaces with π1(X) = Z2 were constructed. These

vacua have low energy theories with standard model gauge group SU(3)C ×SU(2)L ×U(1)Y

and three families of quarks and leptons.

However, to complete the analysis of these vacua, it is essential to compute the entire

massless spectra. This was done within the GUT context in [6], where methods for deter-

mining the spectrum were introduced and used in an SU(5) example. An interesting result

is that the non-chiral part of the spectrum was shown to jump on isolated subspaces of the

G-bundle moduli space. In this paper, these methods are extended to vacua admitting Wil-

son lines. We show how one computes the massless spectrum, and give an explicit example

using the SU(3)C × SU(2)L × U(1)Y standard model vacuum introduced in [5]. Here, we

simply outline our results, presenting the specific details in [7].

A vacuum of heterotic string theory is determined by specifying a Calabi-Yau threefold

X with fundamental group

π1(X) = F (1)

and a stable, holomorphic vector bundle V with structure group

G ⊂ E8. (2)

Denote by

H = ZE8
(G) (3)

the commutant of G in E8. V is constrained to satisfy the anomaly cancellation condition

that

c2(TX) − c2(V ) is effective (4)

and

c3(V ) = 6, (5)

leading to three families of quark/leptons. When F 6= 11, a Wilson line W can be introduced.

A Wilson line is a flat H-bundle. The bundle

V ′ = V ⊕ W (6)
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has structure group G × F , which spontaneously breaks E8 to the gauge group

S = ZH(F ) = ZE8
(G × F ). (7)

X can be constructed as the quotient

X = X̃/F, (8)

where X̃ is a simply connected Calabi-Yau threefold and F acts freely on X̃. V and V ′

coincide when pulled back to X̃ and are denoted by Ṽ . The structure group of Ṽ is G, while

(4) and (5) become

c2(X̃) − c2(Ṽ ) effective, c3(Ṽ ) = 6|F | (9)

respectively. With respect to the subgroup G × H ⊂ E8, adṼ decomposes as

adṼ =
⊕

i

Ui(Ṽ ) ⊗ Ri, (10)

where Ui(Ṽ ) are the vector bundles associated with the irreducible representation Ui of G

and Ri are the corresponding representations of H .

As discussed in [7], the massless spectrum is identified as

ker(/D) =
⊕

q=0,1

⊕

i

(

Hq(X̃, Ui(Ṽ )) ⊗ Ri

)ρ′(F )

, (11)

where /D is the Dirac operator on X, ρ′(F ) specifies the F action on both Hq(X̃, Ui(Ṽ )) and

Ri and the superscript indicates the invariant part of the expression. Decomposing Ri in

terms of its irreducible F -representations Aj ,

Ri =
⊕

j

(Aj ⊗ Bij), (12)

expression (11) becomes

ker(/D) =
⊕

q=0,1

⊕

i,j

(Hq(X̃, Ui(Ṽ )) ⊗ Aj)
ρ′(F ) ⊗ Bij. (13)

Here, Bij carries a representation of the gauge group S. Therefore, to compute the massless

spectrum it suffices to determine the dimension of the space of F -invariants in Hq(X̃, Ui(Ṽ ))⊗

Aj .

In this paper, we choose

F = Z2, G = SU(5). (14)
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Then

H = SU(5) (15)

and (11) becomes

ker(/D) =
(

H1(X̃, Ui(Ṽ )) ⊗ 11
)ρ′(Z2)

⊕
(

H0(X̃,OX̃) ⊗ 24
)ρ′(Z2)

⊕
(

H1(X̃, Ṽ ) ⊗ 10
)ρ′(Z2)

⊕
(

H1(X̃, Ṽ ∗) ⊗ 10
)ρ′(Z2)

⊕
(

H1(X̃,∧2Ṽ ) ⊗ 5
)ρ′(Z2)

⊕
(

H1(X̃,∧2Ṽ ∗) ⊗ 5
)ρ′(Z2)

.(16)

To determine the massless spectrum, one must compute the cohomology groups in (16), the

action of Z2 on these groups and the action of Z2 on each representation Ri. Since the last

of these is straightforward, we discuss it first.

For F = Z2, W spontaneously breaks H to the standard model gauge group

S = SU(3)C × SU(2)L × U(1)Y . (17)

The action of Z2 on each representation Ri of H is easily computed. For example, for Ri = 5

expression (12) is

5 = 1 ⊗ (3, 1)−2 ⊕ (−1) ⊗ (1, 2)3, (18)

where ±1 are the representations Aj of Z2 while (a, b)w are representations of S. For nota-

tional simplicity, we display w = 3Y . The action of Z2 on each representation Ri in (16), as

well as the corresponding representations Bij of S, are listed in Table 1.

To compute the cohomology groups in (16), we must construct X̃ and Ṽ . Choose X̃ to

be the fiber product

X̃ = B ×P1 B′ (19)

of two dP9 surfaces B and B′. X̃ is elliptically fibered over both surfaces with the projections

π′ : X̃ → B, π : X̃ → B′. (20)

B and B′ are themselves elliptically fibered over P
1 with the maps

β : B → P
1, β ′ : B′ → P

1. (21)

A Z2 action τ on X̃ can be obtained as the lift

τ = τB ×P1 τB′ (22)

of two involutions τB and τB′ on B and B′ respectively. It is sufficient to know that τB acts

on P1 as

t0 → t0, t1 → −t1, (23)
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Ui Hq(X̃, Ui(Ṽ )) Ri χAj
Bij

24 H1(X̃, adṼ ) 1 0 (1, 1)0

1 H0(X̃,OX̃) 24 0 (8, 1)0 ⊕ (1, 3)0 ⊕ (1, 1)0

1 (3, 2)−5 ⊕ (3, 2)5

10 H1(X̃,∧2Ṽ ) 5 0 (3, 1)−2

1 (1, 2)3

10 H1(X̃,∧2Ṽ ∗) 5 0 (3, 1)2

1 (1, 2)−3

5 H1(X̃, Ṽ ) 10 0 (3, 1)4 ⊕ (1, 1)−6

1 (3, 2)−1

5 H1(X̃, Ṽ ∗) 10 0 (3, 1)−4 ⊕ (1, 1)6

1 (3, 2)1

Table 1: The decomposition of Hq(X, adV ′) where G = SU(5) and F = Z2. The χAj
are

the characters of the Z2 action on Ri. The a, b in (a, b)w are the representations of SU(3)C

and SU(2)L respectively, whereas w = 3Y .

where t0, t1 are projective coordinates. This action has two fixed points, p0 and p∞. The

fiber f0 = β−1(p0) is acted on freely by τB, whereas f∞ = β−1(p∞) has four fixed points.

The τB′ action on B′ has similar properties. In order for τ in (22) to act freely on X̃, one

must “twist” the two P1 lines in (21) when identifying them in (19). This twist sets p′0 = p∞

and p′
∞

= p0.

Stable, holomorphic vector bundles Ṽ on X̃ with structure group G = SU(5) can be

constructed as the extension

0 → V2 → Ṽ → V3 → 0 (24)

of two vector bundles

Vi = π′∗Wi ⊗ π∗Li (25)

with rkVi = i for i = 2, 3. W2 and W3 are vector bundles on B with rank 2 and 3 respectively,

while L2 and L3 are line bundles on B′. We need to lift the Z2 action on X̃ to an action

on V2, V3 and Ṽ . For Ṽ to be Z2 invariant, it is necessary to restrict both V2 and V3 to

be invariant. This is done by choosing Wi and Li to be τB and τB′ invariant respectively.

There are many line bundles Li that are invariant under τB′ . However, we now impose the
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remaining constraint that Ṽ satisfy (9) with |F | = 2. This restricts the allowed line bundles

to be

L2 = OB′(3r′), L3 = OB′(−2r′), (26)

where r′ is a specific divisor of B′ with deg(r′) = 2 when restricted to a fiber. By construction,

Ṽ corresponds to an extension class

[Ṽ ] ∈ Ext1
X̃

(V3, V2). (27)

Ext1
X̃

(V3, V2) is the direct sum of two subspaces which are invariant and anti-invariant under

the action of τ . Ṽ will be invariant if [Ṽ ] lies in the invariant subspace.

We can now construct the cohomology groups in (16). However, one group, H1(X̃, adṼ ),

corresponding to vector bundle moduli, requires techniques beyond those developed in this

paper and will not be discussed. Let us consider H0(X̃,OX̃). Since OX̃ is the trivial bundle,

it follows that

H0(X̃,OX̃) ≃ C. (28)

Note that since OX̃ is independent of Ṽ , Z2 acts trivially on H0(X̃,OX̃).

Next, we determine H1(X̃, Ṽ ). From the long exact sequence associated with (24), we

find that

H1(X̃, Ṽ ) ≃ H1(X̃, V2). (29)

Using (25) and pushing this down from X̃ to P1 gives

H1(X̃, V2) ≃ H0(P1, R1β∗W2 ⊗ β ′

∗
L2). (30)

We find that R1β∗W2 ≃ Op∞. From (26) it follows that β ′

∗
L2 has degree 6 along f ′

0. We

conclude that

H1(X̃, Ṽ ) ≃ C ⊗ C
6 = C

6. (31)

Now consider H1(X̃, Ṽ ∗). This can be determined from (31) using the Atiyah-Singer index

theorem which, together with Serre duality, gives

h1(X̃, Ṽ ∗) = 6 + h1(X̃, Ṽ ), (32)

where we have used (9) with |F | = 2. This and (31) then imply

H1(X̃, Ṽ ∗) ≃ C
12. (33)
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We now turn to the computation of H1(X̃,∧2Ṽ ). One can show that H1(X̃,∧2Ṽ ) lies in

the exact sequence

0 → H1(X̃,∧2V2) → H1(X̃,∧2Ṽ ) → H1(X̃, V2 ⊗ V3)
MT

−→ H2(X̃,∧2V2) → . . . (34)

To continue, we must compute the terms H i(X̃,∧2V2), i = 2, 3 and H1(X̃, V2 ⊗ V3), as well

as the linear map MT . Pushing H i(X̃,∧2V2), i = 2, 3 down to P1, we find

H1(X̃,∧2V2) ≃

5
⊕

H0(P1,OP1)∗ (35)

and

H2(X̃,∧2V2) ≃
7

⊕

H0(P1,OP1)∗ ⊕
5

⊕

H0(P1,OP1(1))∗. (36)

It follows that

H1(X̃,∧2V2) ≃ C
5, H2(X̃,∧2V2) ≃ C

17. (37)

Calculating H1(X̃, V2 ⊗ V3) is more difficult. Using (25) and pushing down to P1, we find

H1(X̃, V2 ⊗ V3) ≃ H0(P1, R1β∗(W2 ⊗ W3) ⊗ β ′

∗
(L2 ⊗ L3)). (38)

Here, we simply state that R1β∗(W2 ⊗W3) is a sheaf supported at each of 12 points pr ∈ P1,

r = 1, . . . , 12 and at p∞. Specifically,

R1β∗(W2 ⊗ W3) ≃

12
⊕

r=1

Opr
⊕

3
⊕

Op∞. (39)

Furthermore, it follows from (26) that β ′

∗
(L2 ⊗ L3) is a rank two vector bundle on P1.

Combining these results, (38) becomes

H1(X̃, V2 ⊗ V3) ≃ C
15 ⊗ C

2 = C
30. (40)

Finally, we must know the rank of MT . It follows from (37) and (40) that MT is a 30 × 17

matrix. In addition, one can show it depends on 150 vector bundle moduli. At a generic

point in moduli space, we find that

rk(MT ) = 17. (41)

Putting (37), (40) and (41) into (34), we conclude that

H1(X̃,∧2Ṽ ) ≃ C
18. (42)

6



Finally, we need to compute H1(X̃,∧2Ṽ ∗). Again, this is easily determined using the Atiyah-

Singer index theorem. In this context, we find

h1(X̃,∧2Ṽ ∗) = 6 + h1(X̃,∧2Ṽ ). (43)

Combining this with (42) yields

H1(X̃,∧2Ṽ ∗) ≃ C
24. (44)

Having computed all the cohomology groups in (16), we now determine the explicit action

of Z2 on each of them. Let us begin with H1(X̃, Ṽ ), which was given in (31). To begin with,

consider the second factor, C6. This can be shown to be parametrized by the polynomials

{x3−i
0 xi

1, yx1−j
0 xj

1}, (45)

where i = 0, . . . , 3 and j = 0, 1. Here, x0, x1 and y are sections of specific bundles on the

base P1, which transform as

x0 → x0, x1 → −x1, y → y (46)

under τB′ . Applying these transformations to (45), we see that C6 decomposes as C3
(+)⊕C3

(−)

under the action of Z2. Since this is evenly split between + and −, the Z2 action on the first

factor C in (31) is irrelevant. We conclude that

H1(X̃, Ṽ ) ≃ C
3
(+) ⊕ C

3
(−). (47)

We now compute the Z2 action on H1(X̃, Ṽ ∗) in (33) using the Atiyah-Singer index

theorem. First, consider the index theorem for V on X = X̃/Z2. Using (9) with |F | = 2,

the fact that Hq(X̃, Ṽ )(+) = Hq(X, V ) for any q and Serre duality, we find

h1(X̃, Ṽ ∗)(+) = 3 + h1(X̃, Ṽ )(+). (48)

Using (9), Serre duality and (48), the index theorem for Ṽ on X̃ becomes

h1(X̃, Ṽ ∗)(−) = 3 + h1(X̃, Ṽ )(−). (49)

It then follows from (47), (48) and (49) that

H1(X̃, Ṽ ∗) ≃ C
6
(+) ⊕ C

6
(−) (50)

under the action of Z2.
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Now consider H1(X̃,∧2Ṽ ) in (42). It follows from (34) that to find the Z2 action on

H1(X̃,∧2Ṽ ), one must determine its action on H i(X̃,∧2V2), i = 1, 2 in (37), H1(X̃, V2 ⊗V3)

in (40) and on the map MT satisfying (41). Since the decomposition of each of these

cohomology groups under Z2 is computed using methods similar to those leading to (47), we

simply state the results. We find

H1(X̃,∧2V2) ≃ C
3
(+) ⊕ C

2
(−), H2(X̃,∧2V2) ≃ C

9
(+) ⊕ C

8
(−) (51)

and

H1(X̃, V2 ⊗ V3) ≃ C
15
(+) ⊕ C

15
(−). (52)

Furthermore, one can show that MT can be taken to be invariant under Z2, corresponding

to choosing [Ṽ ] to be in Ext1
X̃

(V3, V2)(+). Then, it follows from (51) and (52) that

(ker MT )(+) = C
6
(+), (ker MT )(−) = C

7
(−). (53)

Putting (51) and (53) into the exact sequence (34), we conclude that

H1(X̃,∧2Ṽ ) ≃ C
9
(+) ⊕ C

9
(−). (54)

Finally, we can compute the Z2 action on H1(X̃,∧2Ṽ ∗) using the Atiyah-Singer index

theorem. This computation is very similar to that leading to (50), so we will simply state

the result. We find that

H1(X̃,∧2Ṽ ∗) ≃ C
12
(+) ⊕ C

12
(−). (55)

We now possess all of the ingredients necessary to compute the massless spectrum. Com-

bining (47), (50) and (54)-(55) with the results in Table 1, one can determine the ρ′(Z2)

invariant subspace for each cohomology group in (16). The associated multiplets descend to

X = X̃/Z2 to form the SU(3)C × SU(2)L × U(1)Y particle physics spectrum. The results

are tabulated in Table 2.

To begin with, the spectrum contains one copy of vector supermultiplets transforming

under SU(3)C × SU(2)L × U(1)Y as

(8, 1)0 ⊕ (1, 3)0 ⊕ (1, 1)0. (56)

Furthermore, it contains three families of quarks and lepton superfields, each family trans-

forming as

(3, 2)1, (3, 1)−4, (3, 1)2 (57)
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Ri (χHq , Aj) (Hq(X̃, Ui(Ṽ )) ⊗ Aj)
ρ′(F ) Bij

1

24 (0, 0) C
1
(+) (8, 1)0 ⊕ (1, 3)0 ⊕ (1, 1)0

5 (0, 0) C9
(+) (3, 1)−2

(1, 1) C9
(−) (1, 2)3

5 (0, 0) C12
(+) (3, 1)2

(1, 1) C12
(−) (1, 2)−3

10 (0, 0) C3
(+) (3, 1)4 ⊕ (1, 1)−6

(1, 1) C
3
(−) (3, 2)−1

10 (0, 0) C6
(+) (3, 1)−4 ⊕ (1, 1)6

(1, 1) C6
(−) (3, 2)1

Table 2: The particle spectrum of the low-energy SU(3)C × SU(2)L × U(1)Y theory. The

χHq are the characters of the Z2 representations on Hq(X̃, Ui(Ṽ )). The U(1) charges listed

are w = 3Y .

and

(1, 2)−3, (1, 1)6 (58)

respectively. However, there are additional chiral superfields in the spectrum. It follows from

Table 2 that these occur as conjugate pairs of the SU(3)C ×SU(2)L×U(1)Y representations

(3, 1)−2, (1, 2)3 (59)

and

(3, 1)4 ⊕ (1, 1)−6, (3, 2)−1. (60)

These multiplets arise as Z2 invariants in the 5 and 10 representations of H = SU(5). The

spectrum has

n(3,1)−2
= 9, n(1,2)3 = 9 (61)

and

n(3,1)4⊕(1,1)−6
= 3, n(3,2)−1

= 3 (62)

copies of (59) and (60) respectively. The multiplicity n(1,2)3 corresponds to the number of

Higgs doublet conjugate pairs in the low energy spectrum. The remaining multiplets in (59)

and (60) are exotic. Clearly, the number of Higgs doublets and the exotic multiplets is not
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consistent with phenomenology. However, we emphasize that these results were computed

within a specific context, which is but a small subset of the possible standard model heterotic

vacua. These generalized vacua and their spectra will be presented in future publications.
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