936 research outputs found

    An SU(5) Heterotic Standard Model

    Full text link
    We introduce a new heterotic Standard Model which has precisely the spectrum of the Minimal Supersymmetric Standard Model (MSSM), with no exotic matter. The observable sector has gauge group SU(3) x SU(2) x U(1). Our model is obtained from a compactification of heterotic strings on a Calabi-Yau threefold with Z_2 fundamental group, coupled with an invariant SU(5) bundle. Depending on the region of moduli space in which the model lies, we obtain a spectrum consisting of the three generations of the Standard Model, augmented by 0, 1 or 2 Higgs doublet conjugate pairs. In particular, we get the first compactification involving a heterotic string vacuum (i.e. a {\it stable} bundle) yielding precisely the MSSM with a single pair of Higgs.Comment: 15 page

    Moduli Dependent Spectra of Heterotic Compactifications

    Get PDF
    Explicit methods are presented for computing the cohomology of stable, holomorphic vector bundles on elliptically fibered Calabi-Yau threefolds. The complete particle spectrum of the low-energy, four-dimensional theory is specified by the dimensions of specific cohomology groups. The spectrum is shown to depend on the choice of vector bundle moduli, jumping up from a generic minimal result to attain many higher values on subspaces of co-dimension one or higher in the moduli space. An explicit example is presented within the context of a heterotic vacuum corresponding to an SU(5) GUT in four-dimensions.Comment: 11+1 pages, 2 figures, comments adde

    Higgs Doublets, Split Multiplets and Heterotic SU(3)_C x SU(2)_L x U(1)_Y Spectra

    Get PDF
    A methodology for computing the massless spectrum of heterotic vacua with Wilson lines is presented. This is applied to a specific class of vacua with holomorphic SU(5)-bundles over torus-fibered Calabi-Yau threefolds with fundamental group Z_2. These vacua lead to low energy theories with the standard model gauge group SU(3)_C x SU(2)_L x U(1)_Yand three families of quark/leptons. The massless spectrum is computed, including the multiplicity of Higgs doublets.Comment: 11+1 p

    Invariant Homology on Standard Model Manifolds

    Full text link
    Torus-fibered Calabi-Yau threefolds Z, with base dP_9 and fundamental group pi_1(Z)=Z_2 X Z_2, are reviewed. It is shown that Z=X/(Z_2 X Z_2), where X=B X_{P_1} B' are elliptically fibered Calabi-Yau threefolds that admit a freely acting Z_2 X Z_2 automorphism group. B and B' are rational elliptic surfaces, each with a Z_2 X Z_2 group of automorphisms. It is shown that the Z_2 X Z_2 invariant classes of curves of each surface have four generators which produce, via the fiber product, seven Z_2 X Z_2 invariant generators in H_4(X,Z). All invariant homology classes are computed explicitly. These descend to produce a rank seven homology group H_4(Z,Z) on Z. The existence of these homology classes on Z is essential to the construction of anomaly free, three family standard-like models with suppressed nucleon decay in both weakly and strongly coupled heterotic superstring theory.Comment: 57 pages, 13 figure

    Torus-Fibered Calabi-Yau Threefolds with Non-Trivial Fundamental Group

    Get PDF
    We construct smooth Calabi-Yau threefolds Z, torus-fibered over a dP_9 base, with fundamental group Z_2 X Z_2. To do this, the structure of rational elliptic surfaces is studied and it is shown that a restricted subset of such surfaces admit at least a Z_2 X Z_2 group of automorphisms. One then constructs Calabi-Yau threefolds X as the fiber product of two such dP_9 surfaces, demonstrating that the involutions on the surfaces lift to a freely acting Z_2 X Z_2 group of automorphisms on X. The threefolds Z are then obtained as the quotient Z=X/(Z_2 X Z_2). These Calabi-Yau spaces Z admit stable, holomorphic SU(4) vector bundles which, in conjunction with Z_2 X Z_2 Wilson lines, lead to standard-like models of particle physics with naturally suppressed nucleon decay.Comment: 60 pages, 13 figures, Typos correcte

    The Spectra of Heterotic Standard Model Vacua

    Get PDF
    A formalism for determining the massless spectrum of a class of realistic heterotic string vacua is presented. These vacua, which consist of SU(5) holomorphic bundles on torus-fibered Calabi-Yau threefolds with fundamental group Z_2, lead to low energy theories with standard model gauge group (SU(3)_C x SU(2)_L x U(1)_Y)/Z_6 and three families of quarks and leptons. A methodology for determining the sheaf cohomology of these bundles and the representation of Z_2 on each cohomology group is given. Combining these results with the action of a Z_2 Wilson line, we compute, tabulate and discuss the massless spectrum.Comment: 41+1pp, 2 fig

    SU(4) Instantons on Calabi-Yau Threefolds with Z_2 x Z_2 Fundamental Group

    Full text link
    Structure group SU(4) gauge vacua of both weakly and strongly coupled heterotic superstring theory compactified on torus-fibered Calabi-Yau threefolds Z with Z_2 x Z_2 fundamental group are presented. This is accomplished by constructing invariant, stable, holomorphic rank four vector bundles on the simply connected cover of Z. Such bundles can descend either to Hermite-Yang-Mills instantons on Z or to twisted gauge fields satisfying the Hermite-Yang-Mills equation corrected by a non-trivial flat B-field. It is shown that large families of such instantons satisfy the constraints imposed by particle physics phenomenology. The discrete parameter spaces of those families are presented, as well as a lower bound on the dimension of the continuous moduli of any such vacuum. In conjunction with Z_2 x Z_2 Wilson lines, these SU(4) gauge vacua can lead to standard-like models at low energy with an additional U(1)_{B-L} symmetry. This U(1)_{B-L} symmetry is very helpful in naturally suppressing nucleon decay.Comment: 68 pages, no figure

    Moduli in N=1 heterotic/F-theory duality

    Full text link
    The moduli in a 4D N=1 heterotic compactification on an elliptic CY, as well as in the dual F-theoretic compactification, break into "base" parameters which are even (under the natural involution of the elliptic curves), and "fiber" or twisting parameters; the latter include a continuous part which is odd, as well as a discrete part. We interpret all the heterotic moduli in terms of cohomology groups of the spectral covers, and identify them with the corresponding F-theoretic moduli in a certain stable degeneration. The argument is based on the comparison of three geometric objects: the spectral and cameral covers and the ADE del Pezzo fibrations. For the continuous part of the twisting moduli, this amounts to an isomorphism between certain abelian varieties: the connected component of the heterotic Prym variety (a modified Jacobian) and the F-theoretic intermediate Jacobian. The comparison of the discrete part generalizes the matching of heterotic 5brane / F-theoretic 3brane impurities.Comment: Latex, 26 pages. Acknowledgements adde

    Vector Bundle Moduli and Small Instanton Transitions

    Get PDF
    We give the general presciption for calculating the moduli of irreducible, stable SU(n) holomorphic vector bundles with positive spectral covers over elliptically fibered Calabi-Yau threefolds. Explicit results are presented for Hirzebruch base surfaces B=F_r. The transition moduli that are produced by chirality changing small instanton phase transitions are defined and specifically enumerated. The origin of these moduli, as the deformations of the spectral cover restricted to the ``lift'' of the horizontal curve of the M5-brane, is discussed. We present an alternative description of the transition moduli as the sections of rank n holomorphic vector bundles over the M5-brane curve and give explicit examples. Vector bundle moduli appear as gauge singlet scalar fields in the effective low-energy actions of heterotic superstrings and heterotic M-theory.Comment: 52 pages, LATEX, corrected typo
    • …
    corecore