77 research outputs found

    Adquisició i anàlisis d’imatges de ressonància magnètica funcional del projecte Ecokitchen

    Get PDF
    La Ressonància Magnètica funcional (RMf) és una tècnica d’imatge amb múltiples aplicacions mèdiques que permet obtenir imatges estructurals i funcionals del cervell. No obstant això, igual que succeeix amb altres tècniques d’imatge, les imatges obtingudes mitjançant RMf requereixen una anàlisi i un processament addicional de les imatges per poder extreure’n informació precisa que pugui ser utilitzada en diagnosis i posteriors estudis mèdics. En el present treball, es descriu la utilització de la tècnica de RMf en l’estudi neurològic “Ecokitchen”, en el qual s’ha adquirit l’activitat cerebral de diversos pacients de Parkinson mentre realitzaven una sèrie de tasques específiques. El propòsit d’aquest projecte ha estat el desenvolupament dels principals passos que comporta un experiment de RMf, disseny, adquisició i l’aprenentatge i aplicació del software BrainVoyager, especialitzat en el processament i anàlisi d’imatges, el qual ens ha permès el tractament i correcció de les imatges obtingudes. L’aplicació d’aquest software és fonamental per extreure la veritable activitat cerebral del pacient, minimitzant possibles artefactes i distorsions de les imatges. Analitzant l’activitat cerebral de 30 participants s’ha pogut extreure diferents resultats i conclusions sobre la localització d’aquesta activitat. Finalment, aquest estudi destaca la rellevància de la tècnica de RMf i la importància de la utilització d’un software d’anàlisi d’imatges adequat per a futurs estudis biomèdics i de recerca

    Higher COVID-19 pneumonia risk associated with anti-IFN-α than with anti-IFN-ω auto-Abs in children

    Get PDF
    COVID-19; Immunodeficiency; Infectious diseaseCOVID-19; Inmunodeficiencia; Enfermedad infecciosaCOVID-19; Immunodeficiència; Malaltia infecciosaWe found that 19 (10.4%) of 183 unvaccinated children hospitalized for COVID-19 pneumonia had autoantibodies (auto-Abs) neutralizing type I IFNs (IFN-α2 in 10 patients: IFN-α2 only in three, IFN-α2 plus IFN-ω in five, and IFN-α2, IFN-ω plus IFN-β in two; IFN-ω only in nine patients). Seven children (3.8%) had Abs neutralizing at least 10 ng/ml of one IFN, whereas the other 12 (6.6%) had Abs neutralizing only 100 pg/ml. The auto-Abs neutralized both unglycosylated and glycosylated IFNs. We also detected auto-Abs neutralizing 100 pg/ml IFN-α2 in 4 of 2,267 uninfected children (0.2%) and auto-Abs neutralizing IFN-ω in 45 children (2%). The odds ratios (ORs) for life-threatening COVID-19 pneumonia were, therefore, higher for auto-Abs neutralizing IFN-α2 only (OR [95% CI] = 67.6 [5.7–9,196.6]) than for auto-Abs neutralizing IFN-ω only (OR [95% CI] = 2.6 [1.2–5.3]). ORs were also higher for auto-Abs neutralizing high concentrations (OR [95% CI] = 12.9 [4.6–35.9]) than for those neutralizing low concentrations (OR [95% CI] = 5.5 [3.1–9.6]) of IFN-ω and/or IFN-α2.The Laboratory of Human Genetics of Infectious Diseases is supported by the Howard Hughes Medical Institute, the Rockefeller University, the St. Giles Foundation, the National Institutes of Health (NIH) (R01AI088364, R01AI163029, and R21AI160576), the National Center for Advancing Translational Sciences, the NIH Clinical and Translational Science Award program (UL1TR001866), the Fisher Center for Alzheimer’s Research Foundation, the Meyer Foundation, the JPB Foundation, the Stavros Niarchos Foundation Institute for Global Infectious Disease Research, the program “Investissement d’Avenir” launched by the French Government and implemented by the Agence Nationale de la Recherche (ANR) (ANR-10-IAHU-01), the Integrative Biology of Emerging Infectious Diseases Laboratory of Excellence (ANR-10-LABX-62-IBEID), the French Foundation for Medical Research (FRM) (EQU201903007798), the ANRS-COV05, ANR GENVIR (ANR-20-CE93-003), ANR AI2D (ANR-22-CE15-0046), and ANR AAILC (ANR-21-LIBA-0002) projects, the European Union’s Horizon 2020 research and innovation program under grant agreement no. 824110 (EASI-genomics), the HORIZON-HLTH-2021-DISEASE-04 program under grant agreement 01057100 (UNDINE), the ANR-RHU COVIFERON Program (ANR-21-RHUS-08), the Square Foundation, Grandir - Fonds de solidarité pour l’enfance, the Fondation du Souffle, the SCOR Corporate Foundation for Science, The French Ministry of Higher Education, Research, and Innovation (MESRI-COVID-19), Institut National de la Santé et de la Recherche Médicale (INSERM), REACTing-INSERM, the University of Paris Cité and Imagine Institute, Battersea & Bowery Advisory Group, and William E. Ford, General Atlantic’s Chairman and Chief Executive Officer, Gabriel Caillaux, General Atlantic’s Co-President, Managing Director and Head of Business in EMEA, and the General Atlantic Foundation. I. Meyts is a senior clinical researcher at FWO Vlaanderen; I. Meyts is funded by the European Research Council under HORIZON-HLTL-2021-ID: 101057100 "Undine," KU Leuven C16/18/007, and FWO grant G0B5120N (DADA2). L.D. Notarangelo and H.C. Su (members of the COVID Human Genetic Effort) were supported by the Intramural Research Program of the National Institute of Allergy and Infectious Diseases, NIH. P. Bastard was supported by the French Foundation for Medical Research (FRM, EA20170638020). P. Bastard and T. Le Voyer were supported by the MD-PhD program of the Imagine Institute (with the support of the Fondation Bettencourt-Schueller). P. Bastard was supported by the “Poste CCA-INSERM-Bettencourt” (with the support of the Fondation Bettencourt-Schueller). S. Okada was supported by MEXT/JSPS KAKENHI (grant numbers 22H03041 and 22KK0113) and AMED (grant numbers JP21fk0108436 and JP22fk0108514). L.I. Gonzalez-Granado is supported by the Instituto de Salud Carlos III (ISCIII) through the project FIS-PI21/01642 and cofunded by the European Union. D.C. Vinh is supported by a Fonds de Recherche du Québec - Santé, Senior Clinician-Scientist scholar award. Q. Pan-Hammarström was funded by the Swedish Research Council, and the Knut and Alice Wallenberg Foundation. K. Kisand’s laboratory was funded by the Estonian Research Council grants PRG1117 and PRG1428. This study also received support from ISCIII (TRINEO: PI22/00162; DIAVIR: DTS19/00049; Resvi-Omics: PI19/01039 [A. Salas]; ReSVinext: PI16/01569 [F. Martinón-Torres]; Enterogen: PI19/01090 [F. Martinón-Torres]); OMI-COVI-VAC (PI22/00406 [F. Martinón-Torres] jointly financed by FEDER), GAIN: Grupos con Potencial de Crecimiento (IN607B 2020/08 [A. Salas]); ACIS: BI-BACVIR (PRIS-3 [A. Salas]), and CovidPhy (SA 304 C [A. Salas]); and consorcio Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CB21/06/00103; F. Martinón-Torres); GEN-COVID (IN845D 2020/23, F. Martinón-Torres) and Grupos de Referencia Competitiva (IIN607A2021/05, F. Martinón-Torres). The study was funded by ISCIII (COV20_01333, COV20_01334, PI16/00759, PI18/00223, PI19/00208, PI20/00876, and PI21/00211), the Spanish Ministry of Science and Innovation (RTC-2017-6471-1; AEI/FEDER, EU), the Fundación Canaria Instituto de Investigación Sanitaria de Canarias (FIISC19/43, PIFIISC22/27), Grupo DISA (OA18/017), Fundación MAPFRE Guanarteme (OA21/131), Cabildo Insular de Tenerife (CGIEU0000219140 and “Apuestas científicas del ITER para colaborar en la lucha contra la COVID-19”). A. Pujol is supported by ACCI20-759 CIBERER, H2020 Marató TV3 COVID 2021-31-33, the HORIZON-HLTH-2021-ID: 101057100 (UNDINE), the Horizon 2020 program under grant no. 824110 (EasiGenomics grant no. COVID-19/PID12342), and the CERCA Program/Generalitat de Catalunya. This research is supported by the European Reference Network for Rare Immunodeficiency, Autoinflammatory and Autoimmune Diseases. Open Access funding provided by Rockefeller University

    Early Diagnosis and Treatment of Purine Nucleoside Phosphorylase (PNP) Deficiency through TREC-Based Newborn Screening

    Get PDF
    Newborn screening; Severe combined immunodeficiencyCribatge nounat; Immunodeficiència combinada severaCribado neonato; Inmunodeficiencia combinada gravePurine nucleoside phosphorylase (PNP) deficiency is a rare inherited disorder, resulting in severe combined immunodeficiency. To date, PNP deficiency has been detected in newborn screening only through the use of liquid chromatography tandem mass spectrometry. We report the first case in which PNP deficiency was detected by TREC analysis.This research was funded by Jeffrey Modell Foundation

    The EMT signaling pathways in endometrial carcinoma

    Get PDF
    Endometrial cancer (EC) is the most common gynecologic malignancy of the female genital tract and the fourth most common neoplasia in women. In EC, myometrial invasion is considered one of the most important prognostic factors. For this process to occur, epithelial tumor cells need to undergo an epithelial to mesenchymal transition (EMT), either transiently or stably, and to differing degrees. This process has been extensively described in other types of cancer but has been poorly studied in EC. In this review, several features of EMT and the main molecular pathways responsible for triggering this process are investigated in relation to EC. The most common hallmarks of EMT have been found in EC, either at the level of E-cadherin loss or at the induction of its repressors, as well as other molecular alterations consistent with the mesenchymal phenotype-like L1CAM and BMI-1 up-regulation. Pathways including progesterone receptor, TGFβ, ETV5 and microRNAs are deeply related to the EMT process in EC

    Disease Evolution and Response to Rapamycin in Activated Phosphoinositide 3-Kinase δ Syndrome: The European Society for Immunodeficiencies-Activated Phosphoinositide 3-Kinase δ Syndrome Registry

    Get PDF
    Activated phosphoinositide 3-kinase (PI3K) δ Syndrome (APDS), caused by autosomal dominant mutations in PIK3CD (APDS1) or PIK3R1 (APDS2), is a heterogeneous primary immunodeficiency. While initial cohort-descriptions summarized the spectrum of clinical and immunological manifestations, questions about long-term disease evolution and response to therapy remain. The prospective European Society for Immunodeficiencies (ESID)-APDS registry aims to characterize the disease course, identify outcome predictors, and evaluate treatment responses. So far, 77 patients have been recruited (51 APDS1, 26 APDS2). Analysis of disease evolution in the first 68 patients pinpoints the early occurrence of recurrent respiratory infections followed by chronic lymphoproliferation, gastrointestinal manifestations, and cytopenias. Although most manifestations occur by age 15, adult-onset and asymptomatic courses were documented. Bronchiectasis was observed in 24/40 APDS1 patients who received a CT-scan compared with 4/15 APDS2 patients. By age 20, half of the patients had received at least one immunosuppressant, but 2–3 lines of immunosuppressive therapy were not unusual before age 10. Response to rapamycin was rated by physician visual analog scale as good in 10, moderate in 9, and poor in 7. Lymphoproliferation showed the best response (8 complete, 11 partial, 6 no remission), while bowel inflammation (3 complete, 3 partial, 9 no remission) and cytopenia (3 complete, 2 partial, 9 no remission) responded less well. Hence, non-lymphoproliferative manifestations should be a key target for novel therapies. This report from the ESID-APDS registry provides comprehensive baseline documentation for a growing cohort that will be followed prospectively to establish prognostic factors and identify patients for treatment studies

    Impacts of Use and Abuse of Nature in Catalonia with Proposals for Sustainable Management

    Get PDF
    This paper provides an overview of the last 40 years of use, and in many cases abuse, of the natural resources in Catalonia, a country that is representative of European countries in general, and especially those in the Mediterranean region. It analyses the use of natural resources made by mining, agriculture, livestock, logging, fishing, nature tourism, and energy production and consumption. This use results in an ecological footprint, i.e., the productive land and sea surface required to generate the consumed resources and absorb the resulting waste, which is about seven times the amount available, a very high number but very similar to other European countries. This overexploitation of natural resources has a huge impact on land and its different forms of cover, air, and water. For the last 25 years, forests and urban areas have each gained almost 3% more of the territory at the expense of agricultural land; those municipalities bordering the sea have increased their number of inhabitants and activity, and although they only occupy 6.7% of the total surface area, they account for 43.3% of the population; air quality has stabilized since the turn of the century, and there has been some improvement in the state of aquatic ecosystems, but still only 36% are in good condition, while the remainder have suffered morphological changes and different forms of nonpoint source pollution; meanwhile the biodiversity of flora and fauna remains still under threat. Environmental policies do not go far enough so there is a need for revision of the legislation related to environmental impact and the protection of natural areas, flora, and fauna. The promotion of environmental research must be accompanied by environmental education to foster a society which is Land 2021, 10, 144 3 of 53 more knowledgeable, has more control and influence over the decisions that deeply affect it. Indeed, nature conservation goes hand in hand with other social and economic challenges that require a more sustainable vision. Today’s problems with nature derive from the current economic model, which is environmentally unsustainable in that it does not take into account environmental impacts. Lastly, we propose a series of reasonable and feasible priority measures and actions related to each use made of the country’s natural resources, to the impacts they have had, and to their management, in the hope that these can contribute to improving the conservation and management of the environment and biodiversity and move towards sustainability.info:eu-repo/semantics/publishedVersio

    Jardins per a la salut

    Get PDF
    Facultat de Farmàcia, Universitat de Barcelona. Ensenyament: Grau de Farmàcia. Assignatura: Botànica farmacèutica. Curs: 2014-2015. Coordinadors: Joan Simon, Cèsar Blanché i Maria Bosch.Els materials que aquí es presenten són el recull de les fitxes botàniques de 128 espècies presents en el Jardí Ferran Soldevila de l’Edifici Històric de la UB. Els treballs han estat realitzats manera individual per part dels estudiants dels grups M-3 i T-1 de l’assignatura Botànica Farmacèutica durant els mesos de febrer a maig del curs 2014-15 com a resultat final del Projecte d’Innovació Docent «Jardins per a la salut: aprenentatge servei a Botànica farmacèutica» (codi 2014PID-UB/054). Tots els treballs s’han dut a terme a través de la plataforma de GoogleDocs i han estat tutoritzats pels professors de l’assignatura. L’objectiu principal de l’activitat ha estat fomentar l’aprenentatge autònom i col·laboratiu en Botànica farmacèutica. També s’ha pretès motivar els estudiants a través del retorn de part del seu esforç a la societat a través d’una experiència d’Aprenentatge-Servei, deixant disponible finalment el treball dels estudiants per a poder ser consultable a través d’una Web pública amb la possibilitat de poder-ho fer in-situ en el propi jardí mitjançant codis QR amb un smartphone

    Activated phosphoinositide 3-kinase δ syndrome: Update from the ESID Registry and comparison with other autoimmune-lymphoproliferative inborn errors of immunity

    Get PDF
    Background: Activated phosphoinositide-3-kinase d syndrome (APDS) is an inborn error of immunity (IEI) with infection susceptibility and immune dysregulation, clinically overlapping with other conditions. Management depends on disease evolution, but predictors of severe disease are lacking. Objectives: This study sought to report the extended spectrum of disease manifestations in APDS1 versus APDS2; compare these to CTLA4 deficiency, NFKB1 deficiency, and STAT3 gain of-function (GOF) disease; and identify predictors of severity in APDS. Methods: Data was collected from the ESID (European Society for Immunodeficiencies)-APDS registry and was compared with published cohorts of the other IEIs. Results: The analysis of 170 patients with APDS outlines high penetrance and early onset of APDS compared to the other IEIs. The large clinical heterogeneity even in individuals with the same PIK3CD variant E1021K illustrates how poorly the genotype predicts the disease phenotype and course. The high clinical overlap between APDS and the other investigated IEIs suggests relevant pathophysiological convergence of the affected pathways. Preferentially affected organ systems indicate specific pathophysiology: bronchiectasis is typical of APDS1; interstitial lung disease and enteropathy are more common in STAT3 GOF and CTLA4 deficiency. Endocrinopathies are most frequent in STAT3 GOF, but growth impairment is also common, particularly in APDS2. Early clinical presentation is a risk factor for severe disease in APDS. Conclusions: APDS illustrates how a single genetic variant can result in a diverse autoimmune-lymphoproliferative phenotype. Overlap with other IEIs is substantial. Some specific features distinguish APDS1 from APDS2. Early onset is a risk factor for severe disease course calling for specific treatment studies in younger patients. (J Allergy Clin Immunol 2023;152:984-96.

    Autoantibodies neutralizing type I IFNs are present in ~4% of uninfected individuals over 70 years old and account for ~20% of COVID-19 deaths

    Get PDF
    Publisher Copyright: © 2021 The Authors, some rights reserved.Circulating autoantibodies (auto-Abs) neutralizing high concentrations (10 ng/ml; in plasma diluted 1:10) of IFN-alpha and/or IFN-omega are found in about 10% of patients with critical COVID-19 (coronavirus disease 2019) pneumonia but not in individuals with asymptomatic infections. We detect auto-Abs neutralizing 100-fold lower, more physiological, concentrations of IFN-alpha and/or IFN-omega (100 pg/ml; in 1:10 dilutions of plasma) in 13.6% of 3595 patients with critical COVID-19, including 21% of 374 patients >80 years, and 6.5% of 522 patients with severe COVID-19. These antibodies are also detected in 18% of the 1124 deceased patients (aged 20 days to 99 years; mean: 70 years). Moreover, another 1.3% of patients with critical COVID-19 and 0.9% of the deceased patients have auto-Abs neutralizing high concentrations of IFN-beta. We also show, in a sample of 34,159 uninfected individuals from the general population, that auto-Abs neutralizing high concentrations of IFN-alpha and/or IFN-omega are present in 0.18% of individuals between 18 and 69 years, 1.1% between 70 and 79 years, and 3.4% >80 years. Moreover, the proportion of individuals carrying auto-Abs neutralizing lower concentrations is greater in a subsample of 10,778 uninfected individuals: 1% of individuals 80 years. By contrast, auto-Abs neutralizing IFN-beta do not become more frequent with age. Auto-Abs neutralizing type I IFNs predate SARS-CoV-2 infection and sharply increase in prevalence after the age of 70 years. They account for about 20% of both critical COVID-19 cases in the over 80s and total fatal COVID-19 cases.Peer reviewe

    Higher COVID-19 pneumonia risk associated with anti-IFN-α than with anti-IFN-ω auto-Abs in children

    Get PDF
    We found that 19 (10.4%) of 183 unvaccinated children hospitalized for COVID-19 pneumonia had autoantibodies (auto-Abs) neutralizing type I IFNs (IFN-alpha 2 in 10 patients: IFN-alpha 2 only in three, IFN-alpha 2 plus IFN-omega in five, and IFN-alpha 2, IFN-omega plus IFN-beta in two; IFN-omega only in nine patients). Seven children (3.8%) had Abs neutralizing at least 10 ng/ml of one IFN, whereas the other 12 (6.6%) had Abs neutralizing only 100 pg/ml. The auto-Abs neutralized both unglycosylated and glycosylated IFNs. We also detected auto-Abs neutralizing 100 pg/ml IFN-alpha 2 in 4 of 2,267 uninfected children (0.2%) and auto-Abs neutralizing IFN-omega in 45 children (2%). The odds ratios (ORs) for life-threatening COVID-19 pneumonia were, therefore, higher for auto-Abs neutralizing IFN-alpha 2 only (OR [95% CI] = 67.6 [5.7-9,196.6]) than for auto-Abs neutralizing IFN-. only (OR [95% CI] = 2.6 [1.2-5.3]). ORs were also higher for auto-Abs neutralizing high concentrations (OR [95% CI] = 12.9 [4.6-35.9]) than for those neutralizing low concentrations (OR [95% CI] = 5.5 [3.1-9.6]) of IFN-omega and/or IFN-alpha 2
    corecore