204 research outputs found

    AU-Rich Element-Mediated mRNA Decay Can Occur Independently of the miRNA Machinery in Mouse Embryonic Fibroblasts and Drosophila S2-Cells

    Get PDF
    AU-rich elements (AREs) are regulatory sequences located in the 3′ untranslated region of many short-lived mRNAs. AREs are recognized by ARE-binding proteins and cause rapid mRNA degradation. Recent reports claimed that the function of AREs may be – at least in part – relayed through the miRNA pathway. We have revisited this hypothesis using dicer knock-out mouse embryonic fibroblasts and cultured Drosophila cells. In contrast to the published results, we find no evidence for a general requirement of the miRNA pathway in the function of AREs. Endogenous ier3 mRNA, which is known to contain a functional ARE, was degraded rapidly at indistinguishable rates in wild type and dicer knock-out mouse embryonic fibroblasts. In cultured Drosophila cells, both ARE-containing GFP reporter mRNAs and the endogenous cecA1 mRNA were resistant to depletion of the mi/siRNA factors dcr-1, dcr-2, ago1 and ago2. Furthermore, the Drosophila miRNA originally proposed to recognize AU-rich elements, miR-289, is not detectably expressed in flies or cultured S2 cells. Even our attempts to overexpress this miRNA from its genomic hairpin sequence failed. Thus, this sequence cannot serve as link between the miRNA and the AU-rich element mediated silencing pathways. Taken together, our studies in mammalian and Drosophila cells strongly argue that AREs can function independently of miRNAs

    An endogenous small interfering RNA pathway in Drosophila

    Get PDF
    Drosophila endogenous small RNAs are categorized according to their mechanisms of biogenesis and the Argonaute protein to which they bind. MicroRNAs are a class of ubiquitously expressed RNAs of 22 nucleotides in length, which arise from structured precursors through the action of Drosha - Pasha and Dicer- 1-Loquacious complexes(1-7). These join Argonaute-1 to regulate gene expression(8,9). A second endogenous small RNA class, the Piwi-interacting RNAs, bind Piwi proteins and suppress transposons(10,11). Piwi- interacting RNAs are restricted to the gonad, and at least a subset of these arises by Piwi- catalysed cleavage of single-stranded RNAs12,13. Here we show that Drosophila generates a third small RNA class, endogenous small interfering RNAs, in both gonadal and somatic tissues. Production of these RNAs requires Dicer- 2, but a subset depends preferentially on Loquacious(1,4,5) rather than the canonical Dicer- 2 partner, R2D2 ( ref. 14). Endogenous small interfering RNAs arise both from convergent transcription units and from structured genomic loci in a tissue- specific fashion. They predominantly join Argonaute- 2 and have the capacity, as a class, to target both protein- coding genes and mobile elements. These observations expand the repertoire of small RNAs in Drosophila, adding a class that blurs distinctions based on known biogenesis mechanisms and functional roles

    Expansion of the miRNA Pathway in the Hemipteran Insect Acyrthosiphon pisum

    Get PDF
    The pathways that allow short noncoding RNAs such as the microRNAs (miRNAs) to mediate gene regulation and control critical cellular and developmental processes involve a limited number of key protein components. These proteins are the Dicer-like RNases, double-stranded RNA (dsRNA)-binding proteins, and the Argonaute (AGO) proteins that process stem-loop hairpin transcripts of endogenous genes to generate miRNAs or long dsRNA precursors (either exogenous or endogenous). Comparative genomics studies of metazoans have shown the pathways to be highly conserved overall; the major difference observed is that the vertebrate pathways overlap in sharing a single Dicer (DCR) and AGO proteins, whereas those of insects appear to be parallel, with distinct Dicers and AGOs required for each pathway. The genome of the pea aphid is the first available for a hemipteran insect and discloses an unexpected expansion of the miRNA pathway. It has two copies of the miRNA-specific dicr-1 and ago1 genes and four copies of pasha a cofactor of drosha involved in miRNA biosynthesis. For three of these expansions, we showed that one copy of the genes diverged rapidly and in one case (ago1b) shows signs of positive selection. These expansions occurred concomitantly within a brief evolutionary period. The pea aphid, which reproduces by viviparous parthenogenesis, is able to produce several adapted phenotypes from one single genotype. We show by reverse transcriptase-polymerase chain reaction that all the duplicated copies of the miRNA machinery genes are expressed in the different morphs. Investigating the function of these novel genes offers an exciting new challenge in aphid biology

    Saccharomyces cerevisiae Ebs1p is a putative ortholog of human Smg7 and promotes nonsense-mediated mRNA decay

    Get PDF
    The Smg proteins Smg5, Smg6 and Smg7 are involved in nonsense-mediated RNA decay (NMD) in metazoans, but no orthologs have been found in the budding yeast Saccharomyces cerevisiae. Sequence alignments reveal that yeast Ebs1p is similar in structure to the human Smg5-7, with highest homology to Smg7. We demonstrate here that Ebs1p is involved in NMD and behaves similarly to human Smg proteins. Indeed, both loss and overexpression of Ebs1p results in stabilization of NMD targets. However, Ebs1-loss in yeast or Smg7-depletion in human cells only partially disrupts NMD and in the latter, Smg7-depletion is partially compensated for by Smg6. Ebs1p physically interacts with the NMD helicase Upf1p and overexpressed Ebs1p leads to recruitment of Upf1p into cytoplasmic P-bodies. Furthermore, Ebs1p localizes to P-bodies upon glucose starvation along with Upf1p. Overall our findings suggest that NMD is more conserved in evolution than previously thought, and that at least one of the Smg5-7 proteins is conserved in budding yeast

    Effect of asymmetric terminal structures of short RNA duplexes on the RNA interference activity and strand selection

    Get PDF
    Short interfering RNAs (siRNAs) are valuable reagents for sequence-specific inhibition of gene expression via the RNA interference (RNAi) pathway. Although it has been proposed that the relative thermodynamic stability at the 5′-ends of siRNAs plays a crucial role in siRNA strand selection, we demonstrate here that a character of the 2-nt 3′-overhang of siRNAs is the predominant determinant of which strand participates in the RNAi pathway. We show that siRNAs with a unilateral 2-nt 3′-overhang on the antisense strand are more effective than siRNAs with 3′-overhangs at both ends, due to preferential loading of the antisense strand into the RNA-induced silencing complex (RISC). Regardless of the relative thermodynamic stabilities at the ends of siRNAs, overhang-containing strands are predominantly selected as the guide strand; whereas, relative stability markedly influences opposite strand selection. Moreover, we show that sense strand modifications, such as deletions or DNA substitutions, of siRNAs with unilateral overhang on the antisense strand have no negative effect on the antisense strand selection, but may improve RNAi potency. Our findings provide useful guidelines for the design of potent siRNAs and contribute to understanding the crucial factors in determining strand selection in mammalian cells

    Peculiarities of piRNA-mediated post-transcriptional silencing of Stellate repeats in testes of Drosophila melanogaster

    Get PDF
    Silencing of Stellate genes in Drosophila melanogaster testes is caused by antisense piRNAs produced as a result of transcription of homologous Suppressor of Stellate (Su(Ste)) repeats. Mechanism of piRNA-dependent Stellate repression remains poorly understood. Here, we show that deletion of Su(Ste) suppressors causes accumulation of spliced, but not nonspliced Stellate transcripts both in the nucleus and cytoplasm, revealing post-transcriptional degradation of Stellate RNA as the predominant mechanism of silencing. We found a significant amount of Su(Ste) piRNAs and piRNA-interacting protein Aubergine (Aub) in the nuclear fraction. Immunostaining of isolated nuclei revealed co-localization of a portion of cellular Aub with the nuclear lamina. We suggest that the piRNA–Aub complex is potentially able to perform Stellate silencing in the cell nucleus. Also, we revealed that the level of the Stellate protein in Su(Ste)-deficient testes is increased much more dramatically than the Stellate mRNA level. Similarly, Su(Ste) repeats deletion exerts an insignificant effect on mRNA abundance of the Ste-lacZ reporter, but causes a drastic increase of β-gal activity. In cell culture, exogenous Su(Ste) dsRNA dramatically decreases β-gal activity of hsp70-Ste-lacZ construct, but not its mRNA level. We suggest that piRNAs, similarly to siRNAs, degrade only unmasked transcripts, which are accessible for translation

    PCNA directs type 2 RNase H activity on DNA replication and repair substrates

    Get PDF
    Ribonuclease H2 is the major nuclear enzyme degrading cellular RNA/DNA hybrids in eukaryotes and the sole nuclease known to be able to hydrolyze ribonucleotides misincorporated during genomic replication. Mutation in RNASEH2 causes Aicardi–Goutières syndrome, an auto-inflammatory disorder that may arise from nucleic acid byproducts generated during DNA replication. Here, we report the crystal structures of Archaeoglobus fulgidus RNase HII in complex with PCNA, and human PCNA bound to a C-terminal peptide of RNASEH2B. In the archaeal structure, three binding modes are observed as the enzyme rotates about a flexible hinge while anchored to PCNA by its PIP-box motif. PCNA binding promotes RNase HII activity in a hinge-dependent manner. It enhances both cleavage of ribonucleotides misincorporated in DNA duplexes, and the comprehensive hydrolysis of RNA primers formed during Okazaki fragment maturation. In addition, PCNA imposes strand specificity on enzyme function, and by localizing RNase H2 and not RNase H1 to nuclear replication foci in vivo it ensures that RNase H2 is the dominant RNase H activity during nuclear replication. Our findings provide insights into how type 2 RNase H activity is directed during genome replication and repair, and suggest a mechanism by which RNase H2 may suppress generation of immunostimulatory nucleic acids

    Evidence That a RecQ Helicase Slows Senescence by Resolving Recombining Telomeres

    Get PDF
    RecQ helicases, including Saccharomyces cerevisiae Sgs1p and the human Werner syndrome protein, are important for telomere maintenance in cells lacking telomerase activity. How maintenance is accomplished is only partly understood, although there is evidence that RecQ helicases function in telomere replication and recombination. Here we use two-dimensional gel electrophoresis (2DGE) and telomere sequence analysis to explore why cells lacking telomerase and Sgs1p (tlc1 sgs1 mutants) senesce more rapidly than tlc1 mutants with functional Sgs1p. We find that apparent X-shaped structures accumulate at telomeres in senescing tlc1 sgs1 mutants in a RAD52- and RAD53-dependent fashion. The X-structures are neither Holliday junctions nor convergent replication forks, but instead may be recombination intermediates related to hemicatenanes. Direct sequencing of examples of telomere I-L in senescing cells reveals a reduced recombination frequency in tlc1 sgs1 compared with tlc1 mutants, indicating that Sgs1p is needed for tlc1 mutants to complete telomere recombination. The reduction in recombinants is most prominent at longer telomeres, consistent with a requirement for Sgs1p to generate viable progeny following telomere recombination. We therefore suggest that Sgs1p may be required for efficient resolution of telomere recombination intermediates, and that resolution failure contributes to the premature senescence of tlc1 sgs1 mutants

    TERRA Promotes Telomere Shortening through Exonuclease 1–Mediated Resection of Chromosome Ends

    Get PDF
    The long noncoding telomeric repeat containing RNA (TERRA) is expressed at chromosome ends. TERRA upregulation upon experimental manipulation or in ICF (immunodeficiency, centromeric instability, facial anomalies) patients correlates with short telomeres. To study the mechanism of telomere length control by TERRA in Saccharomyces cerevisiae, we mapped the transcriptional start site of TERRA at telomere 1L and inserted a doxycycline regulatable promoter upstream. Induction of TERRA transcription led to telomere shortening of 1L but not of other chromosome ends. TERRA interacts with the Exo1-inhibiting Ku70/80 complex, and deletion of EXO1 but not MRE11 fully suppressed the TERRA–mediated short telomere phenotype in presence and absence of telomerase. Thus TERRA transcription facilitates the 5′-3′ nuclease activity of Exo1 at chromosome ends, providing a means to regulate the telomere shortening rate. Thereby, telomere transcription can regulate cellular lifespan through modulation of chromosome end processing activities

    A role for human Dicer in pre-RISC loading of siRNAs

    Get PDF
    RNA interference is a powerful mechanism for sequence-specific inhibition of gene expression. It is widely known that small interfering RNAs (siRNAs) targeting the same region of a target-messenger RNA can have widely different efficacies. In efforts to better understand the siRNA features that influence knockdown efficiency, we analyzed siRNA interactions with a high-molecular weight complex in whole cell extracts prepared from two different cell lines. Using biochemical tools to study the nature of the complex, our results demonstrate that the primary siRNA-binding protein in the whole cell extracts is Dicer. We find that Dicer is capable of discriminating highly functional versus poorly functional siRNAs by recognizing the presence of 2-nt 3′ overhangs and the thermodynamic properties of 2–4 bp on both ends of effective siRNAs. Our results suggest a role for Dicer in pre-selection of effective siRNAs for handoff to Ago2. This initial selection is reflective of the overall silencing potential of an siRNA
    corecore