10 research outputs found

    Comparative study on the rice bran stabilization processes: A review

    Get PDF
    Rice bran is an undervalued/underutilized by-product of rice milling, rich in protein, lipids, dietary fibers, vitamins, and minerals. It is an inexpensive source of high-quality protein, fiber and lipids to be incorporated into value-added food products. The issue with rice bran is its susceptibility to rancidity and therefore measures must be taken to stabilize the bran in order for it to be fully utilized. Due to this susceptibility to rancidity, historically the bran has either been disposed and wasted or used as low-grade animal feed. As the nutritional value of the bran has been recognized, along with its potential to add value to food products, research has been increasing in volume in order to determine the most effective methods for stabilizing the bran and extracting the valuable nutrients from it. It’s been reported that a free fatty acid content of over 5% is considered to render the bran unfit for human consumption (Tao, Rao & Liuzzo, 1993). Therefore, controlling this level of rancidity is imperative to being able to store and use rice bran over extended periods of time. In order to achieve control, stabilization procedures can be carried out on the rice bran to slow down the lipase activity within the bran and preserve the nutritional qualities that rice bran possesses. Stabilization of rice bran is particularly important for use over winter months in developing countries, where there may be no crops to harvest and therefore a supply of non- rancid rice bran could be extremely beneficial. This length of storage for stabilized rice bran could be up to a period of 6 months, where it can become important for value-added product development (Bagchi, Adak & Chattopadhyay, 2014). The present review will provide an overview of the traditional and innovation rice bran stabilization techniques, those have been a common interest in the research community, and the suitability of the process in terms of the energy consumption

    Evidence for the generation of juvenile granitic crust during continental extension, Mineral Mountains Batholith, Utah

    Get PDF
    This is the published version. Copyright 1976 American Geophysical Union. All Rights Reserved.Field, chemical and isotopic data from the Miocene Mineral Mountains batholith in southwest Utah are consistent with the batholith being derived through differentiation of material recently separated from the lithospheric mantle, with little involvement of pre-Oligocene crust. The batholith ranges in composition and texture from diabase and gabbro to high-silica rhyolite and granite and is distinctly calcalkaline in nature. Field evidence for anatexis of intermediate-composition Oligocene crust and magma mixing suggest that fractional melting and mixing were important processes during the evolution of the batholith. Major oxide and rare earth element data for the batholith are consistent with chemical evolution of the magma system being controlled by fractionation of hornblende, plagioclase and sphene (all of which occur in restitic portions of Miocene migmatites exposed in the field area) during partial melting, and mixing between gabbro and granite. Isotopic data indicate a lithospheric mantle source for mafic rocks in the study area and, on the basis of field data and their similarity in isotopic composition, granitic rocks are interpreted to be derived indirectly from the same source during Basin and Range extension. Evolution of the granites is hypothesized to involve a series of partial melting steps, one of which is exposed in the batholith, which refine mantle-derived gabbros into high-silica rocks. Thus the Mineral Mountains batholith represents juvenile granitic material added to the crust during extension. This raises the possibility that extension may be an important granitic crust-forming event. Furthermore, this suggests that pure-shear igneous inflation of the crust by the mantle can be an important mechanism during extensional deformation. Data presented here indicate that fractional melting of young mafic crust may be an important process in the evolution of isotopically homogeneous intrusive suites which span a broad compositional range. Furthermore, the data support the idea that lithospheric mantle in the Great Basin region may be Proterozoic in age

    The Wealden (non-marine Lower Cretaceous) of the Weald Sub-basin, southern England

    No full text

    Pharmacological alterations of peritoneal transport rates and pharmacokinetics in peritoneal dialysis.

    No full text
    corecore